JP2001147194A - Infrared light source for analysis device - Google Patents

Infrared light source for analysis device

Info

Publication number
JP2001147194A
JP2001147194A JP2000286284A JP2000286284A JP2001147194A JP 2001147194 A JP2001147194 A JP 2001147194A JP 2000286284 A JP2000286284 A JP 2000286284A JP 2000286284 A JP2000286284 A JP 2000286284A JP 2001147194 A JP2001147194 A JP 2001147194A
Authority
JP
Japan
Prior art keywords
light source
infrared light
silicon nitride
infrared
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000286284A
Other languages
Japanese (ja)
Other versions
JP3509728B2 (en
Inventor
Shinichi Kuroda
晋一 黒田
Hideki Sato
秀樹 佐藤
Yasuro Tsukuda
康郎 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000286284A priority Critical patent/JP3509728B2/en
Publication of JP2001147194A publication Critical patent/JP2001147194A/en
Application granted granted Critical
Publication of JP3509728B2 publication Critical patent/JP3509728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared light source for an analysis device such as an infrared spectrophotometer having large light emission power, less unevenness in strength distribution and a long service life. SOLUTION: This infrared light source 10 comprises two silicon nitride sintered bodies of plate shape sandwiching a heating conductor 12. A silicon oxide film is previously formed on the surface of each silicon nitride sintered body so as to be uninfluenced by the gradual formation of an oxide film on the surface caused by heating when lighted. When an electric current is fed to a lead wire 13 from the outside, heat is generated at the comb-like bent part of the heating conductor 12 to emit infrared rays. Since a light emission part is formed in a plane area, uniform light emission can be obtained, and since material is stable, service life is long even under high temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外分光光度計や
フーリエ変換赤外分光光度計、或いはその他の分析装置
に用いられる赤外光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared light source used for an infrared spectrophotometer, a Fourier transform infrared spectrophotometer, or another analyzer.

【0002】[0002]

【従来の技術】従来、赤外分光光度計の赤外光源として
は、カンタル線をコイル状に形成した熱放射体等が用い
られている。
2. Description of the Related Art Conventionally, as an infrared light source of an infrared spectrophotometer, a heat radiator or the like in which a kanthal wire is formed in a coil shape has been used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この従
来の光源には以下のような幾つかの問題点がある。すな
わち、コイル状の熱放射体では、光の強度分布に粗密が
生じエネルギー密度が低くなるため、結果的に光のパワ
ーが小さい。また、光源から放射された光を集光するた
めの反射鏡による焦点位置にアパーチャーを置く光学部
品配置とするとコイル像ができてしまうため、焦点位置
から若干ずれた位置にアパーチャーを置き発光むらの影
響を軽減する必要がある。このため光の利用効率が悪く
なる。更に、長期間の使用によりコイル形状に変形が生
じ、光束密度が低くなる上に寿命も短い。
However, this conventional light source has several problems as follows. That is, in the coil-shaped heat radiator, since the intensity distribution of light becomes uneven and the energy density becomes low, the light power is consequently small. In addition, if an optical component is placed so that the aperture is located at the focal position of the reflector for condensing the light emitted from the light source, a coil image will be formed. The impact needs to be reduced. For this reason, the light use efficiency deteriorates. Furthermore, the coil shape is deformed due to long-term use, the luminous flux density is reduced, and the life is short.

【0004】本発明は上記課題を解決するために成され
たものであり、その目的とするところは発光パワーが大
きく且つその強度分布のむらが小さく、更に長寿命であ
る赤外光源を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an infrared light source having a large emission power, a small uneven intensity distribution, and a long life. It is in.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る赤外光源は、金属導体から成る
発熱抵抗体と、該発熱抵抗体を挟み込んで形成される平
板形状の窒化珪素焼結体とから成り、この窒化珪素焼結
体の表面には予め酸化珪素膜が形成されていることを特
徴としている。
An infrared light source according to the present invention, which has been made to solve the above-mentioned problems, has a heating resistor made of a metal conductor and a flat plate-like shape formed by sandwiching the heating resistor. And a silicon nitride sintered body, wherein a silicon oxide film is previously formed on the surface of the silicon nitride sintered body.

【0006】[0006]

【発明の実施の形態】金属導体は発熱を生じ易いよう
に、例えば櫛形形状に形成される。そして、この金属導
体は二枚の窒化珪素の平板に挟み込まれ、内部に密封さ
れるようにして赤外発光部が形成される。金属導体に通
電されることにより発生する熱は接触する窒化珪素平板
に伝播し、発熱抵抗体に対応する面領域が発熱して赤外
光を発する。窒化珪素は安定な材料であるため、金属導
体に通電する電流を大きくすることにより、高温にして
輝度を上げることができる。また、材料の色自体が黒色
であるため、放射効率も良好である。
BEST MODE FOR CARRYING OUT THE INVENTION A metal conductor is formed, for example, in a comb shape so as to easily generate heat. Then, the metal conductor is sandwiched between two silicon nitride flat plates, and an infrared light emitting portion is formed so as to be sealed inside. The heat generated by energizing the metal conductor propagates to the contacting silicon nitride flat plate, and the surface area corresponding to the heating resistor generates heat and emits infrared light. Since silicon nitride is a stable material, the luminance can be increased at a high temperature by increasing the current flowing through the metal conductor. Further, since the color of the material itself is black, the radiation efficiency is also good.

【0007】なお、赤外光源として、使用初期から安定
的なスペクトルを得るためには、窒化珪素の表面に予め
酸化珪素膜を形成しておくことが好ましい。この膜は、
珪酸ナトリウム溶液等を塗布し熱処理することにより、
比較的容易に形成することができる。
In order to obtain a stable spectrum from the beginning of use as an infrared light source, it is preferable to form a silicon oxide film on the surface of silicon nitride in advance. This membrane
By applying a sodium silicate solution and heat-treating,
It can be formed relatively easily.

【0008】[0008]

【実施例】以下、本発明に係る赤外光源の構造及び効果
を、図面を用いて具体的に説明する。図1は本発明に係
る赤外光源の実施例の外観図、図2は図1の赤外光源の
構造図である。この光源10は、窒化珪素焼結体11、
発熱導体12及びリード線13から構成される。発熱導
体12は、タングステン、モリブデンのような高融点金
属又はその合金が用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and effects of an infrared light source according to the present invention will be specifically described below with reference to the drawings. FIG. 1 is an external view of an embodiment of an infrared light source according to the present invention, and FIG. 2 is a structural diagram of the infrared light source of FIG. The light source 10 includes a silicon nitride sintered body 11,
It comprises a heating conductor 12 and a lead wire 13. The heating conductor 12 is made of a high melting point metal such as tungsten or molybdenum or an alloy thereof.

【0009】窒化珪素焼結体11は、図2のように発熱
導体12をサンドイッチ状に挟み込む二枚の平板状部材
から成り、発熱導体12を内部に保持した状態で一体焼
成される。これにより、発熱導体12は窒化珪素焼結体
11の内部に封入される。発熱導体12に接続されるリ
ード線13に外部から電流が供給されると、発熱導体1
2が櫛形状に折り曲げられた発熱部(図1では約3.6
×10mmの領域)で発熱が生じ、赤外光を放出する。な
お、図1中の寸法は一例であり、適宜変更可能である。
As shown in FIG. 2, the silicon nitride sintered body 11 is composed of two flat members sandwiching the heating conductor 12 in a sandwich shape, and is integrally fired with the heating conductor 12 held inside. As a result, the heating conductor 12 is sealed inside the silicon nitride sintered body 11. When an external current is supplied to the lead wire 13 connected to the heating conductor 12, the heating conductor 1
2 is a comb-shaped heating portion (about 3.6 in FIG. 1).
(Area of × 10 mm) generates heat and emits infrared light. In addition, the dimension in FIG. 1 is an example and can be changed suitably.

【0010】図3は上記赤外光源を使用した赤外分光光
度計のパワースペクトルを、従来のカンタル線を用いた
光源と比較した結果を示す図である。光源温度はカンタ
ル線1100℃、本実施例の光源を1200℃とし、横
軸は波数(cm-1)、縦軸はパワー相対強度すなわち相
対輝度を示している。図中、(1)は本発明に係る赤外光
源、(2)はカンタル線の光源によるパワースペクトルで
ある。図に示されているように、本実施例による光源は
従来光源と比較して遙かに輝度が高く、結果的に分光測
定のS/N比が向上する。
FIG. 3 is a diagram showing the result of comparing the power spectrum of an infrared spectrophotometer using the above-mentioned infrared light source with a conventional light source using a Kanthal line. The light source temperature is 1100 ° C. of the Kanthal wire, the light source of the present embodiment is 1200 ° C., the horizontal axis is the wave number (cm −1), and the vertical axis is the power relative intensity, that is, the relative luminance. In the figure, (1) is an infrared light source according to the present invention, and (2) is a power spectrum by a Kanthal line light source. As shown in the figure, the light source according to the present embodiment has much higher luminance than the conventional light source, and as a result, the S / N ratio of the spectroscopic measurement is improved.

【0011】また、上記実施例の赤外光源の寿命を測定
した結果、光源温度1200℃では予想された5000
時間以上の寿命が得られることが確認された。これは、
従来の一般的なカンタル線の光源の寿命が1200℃程
度の光源温度で2000時間程度であるのに比べて、遙
かに長寿命である。
Further, as a result of measuring the life of the infrared light source of the above embodiment, the expected light source temperature of 1200.degree.
It was confirmed that a life of more than hours was obtained. this is,
The life of the light source of the conventional general Kanthal wire is much longer than that of about 2000 hours at the light source temperature of about 1200 ° C.

【0012】ところで、上述の如き窒化珪素等の非酸化
物系窒化物から成る赤外光源では、点灯時の発熱により
非酸化物系窒化物の表面に徐々に酸化膜が形成される。
この酸化膜はゆっくりと形成されるため安定した膜が形
成される迄に時間を要し、その間安定した赤外線スペク
トルが得られにくい。この課題を解決するため、予め非
酸化物系窒化物の表面に酸化珪素の薄い膜を形成するべ
く表面処理を行なうことが好ましい。
In the infrared light source made of a non-oxide nitride such as silicon nitride as described above, an oxide film is gradually formed on the surface of the non-oxide nitride due to heat generated during lighting.
Since this oxide film is formed slowly, it takes time until a stable film is formed, during which it is difficult to obtain a stable infrared spectrum. In order to solve this problem, it is preferable to perform a surface treatment in advance to form a thin film of silicon oxide on the surface of the non-oxide nitride.

【0013】表面処理の最も簡単な方法としては、図1
のような赤外光源に対し、その表面に珪酸ナトリウム溶
液等を塗布し熱処理する。これにより、窒化珪素の表面
に始めから安定的な酸化珪素膜が形成される。
The simplest method of surface treatment is shown in FIG.
A sodium silicate solution or the like is applied to the surface of the infrared light source and heat-treated. Thereby, a stable silicon oxide film is formed on the surface of the silicon nitride from the beginning.

【0014】図4及び図5は表面処理の効果を説明する
ための図であり、図4は表面処理を施した赤外光源を用
いた赤外分光光度計のパワースペクトルの経時変化、図
5は表面処理を施さない赤外光源を用いた赤外分光光度
計のパワースペクトルの経時変化の実測例を示してい
る。図4、図5ともに、横軸は波数(cm-1)、縦軸は
パワー相対強度すなわち相対輝度を示し、点灯開始を0
時間(h)として所定時間経過後の相対輝度を表わして
いる。
FIGS. 4 and 5 are diagrams for explaining the effect of the surface treatment. FIG. 4 shows the change over time of the power spectrum of the infrared spectrophotometer using the surface-treated infrared light source. Shows an actual measurement example of the change over time of the power spectrum of an infrared spectrophotometer using an infrared light source without surface treatment. 4 and 5, the horizontal axis represents the wave number (cm -1), the vertical axis represents the power relative intensity, that is, the relative luminance.
Time (h) represents relative luminance after a predetermined time has elapsed.

【0015】図5において、波数850〜900cm-1
付近ではSi−Nの吸収スペクトルによる経時変化が生
じておりスペクトルが安定しないが、図4の表面処理し
た赤外光源では殆ど経時変化は生じておらず安定してい
る。
In FIG. 5, the wave number is 850 to 900 cm @ -1.
In the vicinity, a change over time due to the absorption spectrum of Si-N occurs, and the spectrum is not stable. However, the infrared light source treated with the surface treatment in FIG. 4 hardly changes over time and is stable.

【0016】また、図4では、1050〜1100cm
-1付近で約1日点灯したあとに酸化珪素による吸収スペ
クトルが明瞭に現われ、その後はスペクトルは安定して
いる。これは、塗布及び乾燥により形成された酸化膜
が、点灯後1日程度のエージングにより安定な膜として
完成することを示している。すなわち、膜形成時にはピ
ンホールや膜厚の不均一性が生じる可能性があるが、所
定時間エージングすることにより酸素を透過させにくい
完全な膜となる。一方、表面処理を施さないものでは、
約500時間点灯した後でもSi−N及びSi−Oによ
る吸収スペクトルが不安定となっている。
Also, in FIG.
After lighting for about one day at around -1, the absorption spectrum by silicon oxide clearly appears, after which the spectrum is stable. This indicates that the oxide film formed by coating and drying is completed as a stable film by aging for about one day after lighting. That is, there is a possibility that pinholes and nonuniformity of the film thickness may occur at the time of film formation. However, aging for a predetermined period of time results in a complete film which is difficult to transmit oxygen. On the other hand, for those without surface treatment,
Even after lighting for about 500 hours, the absorption spectrum by Si-N and Si-O is unstable.

【0017】以上のように、予め窒化珪素焼結体に本発
明の表面処理を施すことにより、点灯のほぼ初期段階か
ら安定したパワースペクトルを得ることができる。
As described above, by applying the surface treatment of the present invention to the silicon nitride sintered body in advance, a stable power spectrum can be obtained from almost the initial stage of lighting.

【0018】[0018]

【発明の効果】本発明に係る赤外光源によれば、発光部
分が平面状であるため、光の強度分布にむらがなく大き
な発光パワーが得られる。また、高温(約1350℃)
迄安定し変形も生じないため、輝度を上げることができ
且つ長寿命である。更に、窒化珪素自体が黒色であるた
め、放射効率を上げるために従来行なっていた黒化処理
も不要となる。
According to the infrared light source of the present invention, since the light-emitting portion is planar, a large light-emitting power can be obtained without uneven light intensity distribution. High temperature (about 1350 ° C)
Until it is stable and no deformation occurs, the brightness can be increased and the life is long. Further, since the silicon nitride itself is black, the conventional blackening process for improving the radiation efficiency becomes unnecessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の赤外光源の実施例の外観図。FIG. 1 is an external view of an embodiment of an infrared light source according to the present invention.

【図2】 本発明の赤外光源の実施例の構造図。FIG. 2 is a structural view of an embodiment of the infrared light source of the present invention.

【図3】 図1の実施例による赤外光源を使用した赤外
分光光度計のパワースペクトルを示す図。
FIG. 3 is a diagram showing a power spectrum of an infrared spectrophotometer using the infrared light source according to the embodiment of FIG.

【図4】 本発明の実施例による赤外光源に表面処理を
施した場合のパワースペクトルの経時変化を示す図。
FIG. 4 is a diagram showing a change over time in a power spectrum when a surface treatment is applied to an infrared light source according to an embodiment of the present invention.

【図5】 本発明の実施例による赤外光源に表面処理を
施さない場合のパワースペクトルの経時変化を示す図。
FIG. 5 is a diagram showing a temporal change of a power spectrum when a surface treatment is not performed on an infrared light source according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…赤外光源 11…窒化珪素焼結体 12…発熱導体 13…リード線 DESCRIPTION OF SYMBOLS 10 ... Infrared light source 11 ... Sintered silicon nitride 12 ... Heating conductor 13 ... Lead wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属導体から成る発熱抵抗体と、該発熱
抵抗体を挟み込んで形成される平板形状の窒化珪素焼結
体とから成り、前記窒化珪素焼結体の表面には予め酸化
珪素膜が形成されていることを特徴とする分析装置用赤
外光源。
1. A heating resistor comprising a metal conductor, and a flat silicon nitride sintered body formed by sandwiching the heating resistor, and a silicon oxide film is formed on a surface of the silicon nitride sintered body in advance. An infrared light source for an analyzer, characterized in that a laser beam is formed.
JP2000286284A 2000-09-21 2000-09-21 Infrared light source for analyzer Expired - Fee Related JP3509728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286284A JP3509728B2 (en) 2000-09-21 2000-09-21 Infrared light source for analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286284A JP3509728B2 (en) 2000-09-21 2000-09-21 Infrared light source for analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24855395A Division JP3205230B2 (en) 1995-08-31 1995-08-31 Infrared light source

Publications (2)

Publication Number Publication Date
JP2001147194A true JP2001147194A (en) 2001-05-29
JP3509728B2 JP3509728B2 (en) 2004-03-22

Family

ID=18770226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286284A Expired - Fee Related JP3509728B2 (en) 2000-09-21 2000-09-21 Infrared light source for analyzer

Country Status (1)

Country Link
JP (1) JP3509728B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505451A (en) * 2009-09-18 2013-02-14 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー Mid-infrared light source with enhanced emissivity
JP2022540541A (en) * 2019-04-18 2022-09-16 サーフィス イグナイタ エルエルシー Infrared source for airport runway lighting applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505451A (en) * 2009-09-18 2013-02-14 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー Mid-infrared light source with enhanced emissivity
JP2022540541A (en) * 2019-04-18 2022-09-16 サーフィス イグナイタ エルエルシー Infrared source for airport runway lighting applications
JP7271715B2 (en) 2019-04-18 2023-05-11 サーフィス イグナイタ エルエルシー Infrared source for airport runway lighting applications

Also Published As

Publication number Publication date
JP3509728B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US5479069A (en) Planar fluorescent lamp with metal body and serpentine channel
JP3205230B2 (en) Infrared light source
US6844664B2 (en) Field emission electron source and production method thereof
KR960019426A (en) Manufacturing method of electron emitting element, electron source and image generating device
KR100270643B1 (en) Process for producing infrared emitting device and infrared emitting device produced by the process
JP2003323845A (en) Manufacturing method of electron emitting element, electron source and image forming device
JPH10223182A (en) Fluorescent lamp
DE102018101974A1 (en) Infrared radiation source
JP3509728B2 (en) Infrared light source for analyzer
EP2051284B1 (en) Light-emitting apparatus
JPS58102487A (en) Method of producing el display unit
JPH0449222B2 (en)
JP3508652B2 (en) Field emission type electron source and method of manufacturing the same
JPH0542768B2 (en)
JP2825756B2 (en) Method and apparatus for manufacturing thin film EL element
JP2978716B2 (en) Far infrared heater
JPH0640847U (en) Infrared light source for microscopic infrared analyzer
JP3332454B2 (en) Flat fluorescent lamp
KR100413447B1 (en) cathod of impregnate type for cathod ray tube and method manufacture of the same
JPH0364823A (en) Cathode body structure
JP2000082389A (en) Electron emission element, manufacture thereof and image forming device
JPH04172221A (en) Lighting device for instrument of vehicle
JP2000134421A (en) Image reader and image forming device
JPH0644948A (en) Flat fluoprescent lamp
JP2004327359A (en) Light irradiation device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees