JP2001144224A - Metal-ceramic composite substrate - Google Patents

Metal-ceramic composite substrate

Info

Publication number
JP2001144224A
JP2001144224A JP2000275057A JP2000275057A JP2001144224A JP 2001144224 A JP2001144224 A JP 2001144224A JP 2000275057 A JP2000275057 A JP 2000275057A JP 2000275057 A JP2000275057 A JP 2000275057A JP 2001144224 A JP2001144224 A JP 2001144224A
Authority
JP
Japan
Prior art keywords
substrate
metal
ceramic
aluminum
composite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000275057A
Other languages
Japanese (ja)
Other versions
JP3613759B2 (en
Inventor
Gyosan Nei
暁山 寧
Masami Kimura
正美 木村
Masami Sakuraba
正美 桜庭
Choju Nagata
長寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000275057A priority Critical patent/JP3613759B2/en
Publication of JP2001144224A publication Critical patent/JP2001144224A/en
Application granted granted Critical
Publication of JP3613759B2 publication Critical patent/JP3613759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PROBLEM TO BE SOLVED: To obtain a metal-ceramic composite substrate having excellent heat cycle resistant characteristics. SOLUTION: The metal-ceramic composite substrate is produced by solidifying molten aluminum directly on a ceramic substrate. A specified circuit is formed by etching aluminum solidified on the composite substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パワーモジュール
等の大電力電子部品の実装に好適な金属−セラミックス
複合基板に関し、更に詳しくは特に優れた耐ヒートサイ
クル特性が要求される自動車用電子部品の実装に好適な
複合基板を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite substrate suitable for mounting high-power electronic components such as a power module, and more particularly, to an electronic component for an automobile which requires particularly excellent heat cycle resistance. It is an object to provide a composite substrate suitable for mounting.

【0002】[0002]

【従来の技術】従来、パワーモジュールのような大電力
電子部品の実装に使用する基板として、セラミックス基
板の表面に銅板を接合して作製された銅張りセラミック
ス複合基板が使用されている。この複合基板は更に、使
用するセラミックス基板の種類やその製造法によって、
銅/アルミナ直接接合基板、銅/窒化アルミニウム直接
接合基板、銅/アルミナろう接基板、及び銅/窒化アル
ミニウムろう接基板に分けられている。
2. Description of the Related Art Conventionally, as a substrate used for mounting a high-power electronic component such as a power module, a copper-clad ceramic composite substrate produced by bonding a copper plate to the surface of a ceramic substrate has been used. This composite substrate further depends on the type of ceramic substrate used and its manufacturing method.
It is divided into a copper / alumina direct bonding substrate, a copper / aluminum nitride direct bonding substrate, a copper / alumina brazing substrate, and a copper / aluminum nitride brazing substrate.

【0003】このうち、銅/アルミナ直接接合基板は、
特開昭52−37914号公報に開示されるように、酸
素を含有する銅板を使用するか、無酸素銅板を使用して
酸化性雰囲気中で加熱することによって無酸素銅板の表
面に酸化銅を発生させてから、銅板とアルミナ基板を重
ねて不活性雰囲気中で加熱し、銅板とアルミナ基板との
界面に銅とアルミニウムとの複合酸化物を生成させ銅板
とアルミナ基板とを接合するものである。
Of these, the copper / alumina direct bonding substrate is:
As disclosed in JP-A-52-37914, copper oxide is used on the surface of an oxygen-free copper plate by using a copper plate containing oxygen or by using an oxygen-free copper plate and heating in an oxidizing atmosphere. After the generation, the copper plate and the alumina substrate are superposed and heated in an inert atmosphere to generate a composite oxide of copper and aluminum at the interface between the copper plate and the alumina substrate and join the copper plate and the alumina substrate. .

【0004】一方、銅/窒化アルミニウム直接接合基板
の場合には、予め窒化アルミニウム基板の表面に酸化物
を形成する必要がある。例えば特開平3−93687号
公報に開示するように、予め空気中において、約100
0℃の温度で窒化アルミニウム基板を処理し、表面に酸
化物を生成させてから、この酸化物層を介して上述の方
法により銅板と窒化アルミニウム基板とを接合してい
る。
On the other hand, in the case of a copper / aluminum nitride direct bonding substrate, it is necessary to previously form an oxide on the surface of the aluminum nitride substrate. For example, as disclosed in Japanese Patent Application Laid-Open No. 3-93687, about 100
After treating the aluminum nitride substrate at a temperature of 0 ° C. to generate an oxide on the surface, the copper plate and the aluminum nitride substrate are joined via the oxide layer by the above-described method.

【0005】また銅/アルミナろう接基板及び銅/窒化
アルミニウムろう接基板は、銅板とセラミックス基板と
の間に低触点のろう材を用いて接合するが、この場合、
使用するろう材に銅の他、融点を下げる為の合金元素及
びセラミックスとの濡れを良くする為の合金元素が添加
され、一例としてAg−Cu−Ti系のような活性金属
ろう材はよく使用されている。
A copper / alumina brazing substrate and a copper / aluminum nitride brazing substrate are joined between a copper plate and a ceramic substrate by using a brazing material having a low contact point.
In addition to copper, an alloying element for lowering the melting point and an alloying element for improving the wettability with ceramics are added to the brazing material to be used. For example, active metal brazing materials such as Ag-Cu-Ti are often used. Have been.

【0006】上述のように銅/セラミックス複合基板は
広く使用されるにもかかわらず、製造中及び実用上幾つ
かの問題点がある。その中で最も重大な問題点は、電子
部品の実装及び使用中にセラミックス基板の内部にクラ
ックが形成し、基板の表裏間を電気的に導通することに
よる故障である。
Although the copper / ceramic composite substrate is widely used as described above, there are some problems during manufacturing and practically. Among them, the most serious problem is a failure due to the formation of cracks inside the ceramic substrate during mounting and use of electronic components, and electrical conduction between the front and back of the substrate.

【0007】これは銅の熱膨張係数がセラミックスの係
数より約一桁大きいことに起因する。接合する場合、セ
ラミックス基板と銅が1000℃近くまで加熱され、接
合温度から室温に冷却する時に、熱膨張係数の違いによ
り複合基板の内部に多大の熱応力が発生する。
This is because the coefficient of thermal expansion of copper is about one order of magnitude greater than that of ceramics. In the case of joining, a ceramic substrate and copper are heated to nearly 1000 ° C., and when cooled from the joining temperature to room temperature, a large thermal stress is generated inside the composite substrate due to a difference in thermal expansion coefficient.

【0008】また、パワーモジュール等の電子部品を実
装するときに、銅・セラミックス複合基板は400℃近
くまで加熱されるため、さらに使用環境や使用中の発熱
により、同複合基板の温度が常に変化し、同複合基板に
変動熱応力が掛けられる。これらの熱応力によってセラ
ミックス基板にクラックが発生する。
Further, when mounting electronic components such as power modules, the copper / ceramic composite substrate is heated to nearly 400 ° C., and the temperature of the composite substrate constantly changes due to the use environment and heat generation during use. Then, a fluctuating thermal stress is applied to the composite substrate. Cracks occur in the ceramic substrate due to these thermal stresses.

【0009】上記複合基板の重要な評価項目の一つに耐
ヒートサイクル特性がある。これは基板を−40℃から
125℃まで繰り返し、加熱・冷却する際の熱応力によ
って基板にクラックが発生するまでの循環回数で示して
いるが、直接接合法で作製した銅・セラミックス複合基
板は約50回で、ろう接法で作製した同複合基板のこの
特性値は50回以下である。
One of the important evaluation items of the composite substrate is heat cycle resistance. This is indicated by the number of circulations until cracks occur in the substrate due to the thermal stress during heating and cooling when the substrate is repeated from −40 ° C. to 125 ° C. The copper / ceramic composite substrate manufactured by the direct bonding method is After about 50 cycles, the characteristic value of the composite substrate manufactured by the brazing method is 50 cycles or less.

【0010】しかもこのような特性を得るために、セラ
ミックス基板の厚さを両主表面に接合された銅板の厚さ
の合計により厚くするという制限条件が有り、セラミッ
クス基板の厚さを基板本来の電気絶縁性を保つために必
要な厚さより倍以上に厚くしなければならないという問
題があった。逆に、上記複合基板にとってもう一つ重要
な特性である熱伝導性の方は犠牲にされているのが現状
である。
Furthermore, in order to obtain such characteristics, there is a restriction condition that the thickness of the ceramic substrate is increased by the sum of the thicknesses of the copper plates bonded to both main surfaces. There has been a problem that the thickness must be at least twice as large as necessary to maintain electrical insulation. Conversely, the thermal conductivity, which is another important characteristic of the composite substrate, is sacrificed at present.

【0011】近年、電気自動車用パワーモジュールの開
発により、耐ヒートサイクル特性の優れた複合基板への
要望が特に高まっており、例えば電気自動車の様に温度
変化が激しく、振動が大きい使用条件の場合、複合基板
の耐ヒートサイクル特性が3000回以上必要であると
言われているが現在使用されている銅・セラミックス複
合基板では、このような要望に対応できない。
In recent years, with the development of power modules for electric vehicles, the demand for composite substrates having excellent heat cycle resistance has been particularly increased. For example, in the case of use conditions in which temperature changes are severe and vibrations are large like electric vehicles. It is said that the heat cycle resistance of the composite substrate is required to be 3000 times or more, but the copper / ceramic composite substrate currently used cannot meet such a demand.

【0012】銅と同じような優れた電気と熱伝導性を有
するアルミニウムを導電回路材料として使う構想は以前
からあり、例えば特開昭59−121890号にこのよ
うな構想が記述されている。アルミニウムとセラミック
スとの接合にろう接法は使用され、特開平3−1254
63号、特開平4−12554号及び特開平4−187
46号にろう接法で作製したアルミニウム−セラミック
ス基板を開示している。これによると、作製したアルミ
ニウム−セラミックス基板の耐ヒートサイクル特性は約
200回であり、上述のように高い耐ヒートサイクル特
性が要求される用途には、依然として充分対応できない
ものであった。
The concept of using aluminum having excellent electrical and thermal conductivity similar to that of copper as a conductive circuit material has been known for a long time. The brazing method is used for joining aluminum and ceramics.
No. 63, JP-A-4-12554 and JP-A-4-187
No. 46 discloses an aluminum-ceramic substrate produced by a brazing method. According to this, the heat cycle resistance of the manufactured aluminum-ceramic substrate was about 200 times, and it was still not possible to sufficiently cope with the use requiring the high heat cycle resistance as described above.

【0013】しかも、この方法の場合、接合は真空中で
行わなければならないし、また非酸化物セラミックスの
場合、あらかじめ予備処理を施し、セラミックスの表面
に酸化物を形成しなければならない、製造コストおよび
熱伝導性の面においても満足できないところがあった。
In addition, in the case of this method, the joining must be performed in a vacuum, and in the case of non-oxide ceramics, a pre-treatment must be performed in advance to form an oxide on the surface of the ceramics. In addition, there were also points where the thermal conductivity was not satisfactory.

【0014】[0014]

【発明が解決しようとする課題】上述のように従来製造
された銅/セラミックス直接基板やアルミニウムろう接
基板は耐ヒートサイクル特性の面からは、電気自動車向
けの基板としては向かなかった。本発明は電気自動車向
けの耐ヒートサイクル特性として3000回以上の性能
を有する新規な基板を提供することを目的とするもので
ある。
As described above, conventional copper / ceramic direct substrates and aluminum brazed substrates conventionally manufactured have not been suitable as substrates for electric vehicles from the viewpoint of heat cycle resistance. An object of the present invention is to provide a novel substrate having a heat cycle resistance of 3000 times or more for electric vehicles.

【0015】[0015]

【課題を解決するための手段】本発明者らは、ろう接に
使用されるろう材は接合する金属より硬いとの事実に着
眼した。硬いろう材の使用により、金属自身が持つ応力
緩和機能が阻害され、基板中に比較的に大きい熱応力が
発生し、耐ヒートサイクル特性などは低下する。熱応力
が低く、耐ヒートサイクル特性の優れた基板を開発する
ために本発明者らは発明者の一人の以前の発明(特願平
4−355211号)をさらに改良し、アルミニウム−
セラミックス直接接合基板を作製した。これらの基板を
評価する所、優れた耐ヒートサイクル特性が確認され、
本発明を提出することができた。
The present inventors have focused on the fact that the brazing material used for brazing is harder than the metal to be joined. The use of a hard brazing material impairs the stress relaxation function of the metal itself, generates relatively large thermal stress in the substrate, and reduces heat cycle resistance and the like. In order to develop a substrate having low thermal stress and excellent heat cycle resistance, the present inventors have further improved one of the previous inventions (Japanese Patent Application No. 4-355211), and
A ceramic direct bonding substrate was fabricated. When evaluating these substrates, excellent heat cycle resistance was confirmed,
The invention could be submitted.

【0016】本発明の、第1の発明は、セラミックス基
板の少なくとも一主面に電気導通及び電子部品搭載のた
めの金属部分を形成した金属−セラミックス複合基板に
おいて、アルミニウム溶湯をセラミックス基板上に直接
凝固させて接合せしめた複合基板上の金属板をエッチン
グ処理することによって所定の回路を形成して成ること
を特徴とする金属−セラミックス複合基板に関するもの
であり、第2の発明は上記セラミックス基板として窒化
アルミニウム基板を用いたものである。
According to a first aspect of the present invention, there is provided a metal-ceramic composite substrate having at least one main surface of a ceramic substrate formed with a metal portion for electrical conduction and mounting of electronic components. The present invention relates to a metal-ceramic composite substrate characterized in that a predetermined circuit is formed by etching a metal plate on a composite substrate which has been solidified and joined, and a second invention relates to the above-mentioned ceramic substrate. This uses an aluminum nitride substrate.

【0017】[0017]

【作用】本発明において使用する基板としては、アルミ
ナ、窒化アルミニウム、炭化硅素、ジルコニア等のセラ
ミックス基板やガラス等であり、この場合、高強度の素
材であればなおさらに好ましい。
The substrate used in the present invention is a ceramic substrate such as alumina, aluminum nitride, silicon carbide, or zirconia, or glass. In this case, a high-strength material is still more preferable.

【0018】また本発明で用いる金属はアルミニウムの
純金属であるが、これにより導電性が向上し、且つ、軟
らかさを得るものである。この場合、純度が高い程導電
性が向上するが、逆に価格が高くなるため、本発明では
99.9%(3N)の純アルミニウムを使用した。
The metal used in the present invention is a pure metal of aluminum, which improves the conductivity and obtains softness. In this case, the higher the purity, the higher the conductivity, but the higher the price. Conversely, 99.9% (3N) pure aluminum was used in the present invention.

【0019】この金属とセラミックス基板との接合は溶
湯接合法で行ない、これにより高い接合強度と未接欠陥
の少ない複合基板が得られる。また、接合雰囲気として
窒素雰囲気下で行うことができるため、従来法のように
真空下で行う必要がなく製造コストが安くなり、さらに
窒化アルミニウム基板にも、表面改質することなく直接
に接合することができる。
The joining between the metal and the ceramic substrate is performed by a molten metal joining method, whereby a composite substrate having high joining strength and few unconnected defects can be obtained. In addition, since the bonding can be performed in a nitrogen atmosphere, there is no need to perform in a vacuum as in the conventional method, so that the manufacturing cost is reduced. Further, the bonding is directly performed on an aluminum nitride substrate without surface modification. be able to.

【0020】セラミックス基板の厚さとアルミニウム金
属の厚さとの関係においては、従来の銅張りのセラミッ
クス複合基板に比べ、金属の厚さをさらに厚くする一
方、セラミックス基板の厚さを逆に薄くすることができ
るため、金属/セラミックスの厚さの比は従来品よりさ
らに大きくすることができる。この結果、本発明複合基
板の放熱性及び流れる電流の量は増大することが容易に
考えられる。
Regarding the relationship between the thickness of the ceramic substrate and the thickness of the aluminum metal, it is necessary to further increase the thickness of the metal while reducing the thickness of the ceramic substrate in comparison with the conventional copper-clad ceramic composite substrate. Therefore, the thickness ratio of metal / ceramics can be made larger than that of the conventional product. As a result, it is easily conceivable that the heat dissipation of the composite substrate of the present invention and the amount of flowing current increase.

【0021】以下図面を参照して本発明複合基板(以下
アルミニウム−セラミックス直接接合基板とする)につ
いて詳細に説明する。
The composite substrate of the present invention (hereinafter referred to as an aluminum-ceramic direct bonding substrate) will be described in detail with reference to the drawings.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0023】(実施例1)(Example 1)

【0024】図7は本発明のアルミニウム−セラミック
ス直接接合基板を製造するための設備の原理図である。
純度99.9%のアルミニウムをルツボ10にセットし
てから蓋13をしめて、ケース12の内部に窒素ガスを
充填する。ヒーター11で750℃に加熱し、アルミニ
ウムを溶化してから、ルツボ10内に設けたガイド一体
型ダイス14の左側入口からセラミックス基板1として
36mm×52mm×0.635mmのアルミナ基板を
順番に挿入した。ルツボ10内に入った該アルミナ基板
にアルミニウム溶湯を接触させ、次いで出口側において
凝固させることによって、厚さ0.5mmのアルミニウ
ム板が両面に接合されたアルミニウム−アルミナ直接接
合基板を得た。
FIG. 7 is a diagram showing the principle of equipment for manufacturing the aluminum-ceramic direct bonding substrate of the present invention.
Aluminum having a purity of 99.9% is set in the crucible 10, the lid 13 is closed, and the inside of the case 12 is filled with nitrogen gas. After heating to 750 ° C. with the heater 11 to melt the aluminum, a 36 mm × 52 mm × 0.635 mm alumina substrate was sequentially inserted as the ceramic substrate 1 from the left entrance of the integrated guide die 14 provided in the crucible 10. . The molten aluminum was brought into contact with the alumina substrate contained in the crucible 10 and then solidified at the outlet side to obtain an aluminum-alumina direct bonding substrate having a 0.5 mm-thick aluminum plate bonded to both surfaces.

【0025】次いで該複合基板上のアルミニウム部に、
エッチングレジストを加熱圧着し、遮光、現像処理を行
って所望のパターンを形成した後、塩化第2鉄溶液にて
エッチングを行って回路を形成した。さらに回路表面を
Zn置換してNiめっき処理を施して、図1に示すよう
な形状のアルミニウム−セラミックス直接接合基板を得
た。
Next, on the aluminum portion on the composite substrate,
The etching resist was heated and pressed, subjected to light shielding and development processing to form a desired pattern, and then etched with a ferric chloride solution to form a circuit. Further, the circuit surface was replaced with Zn and subjected to Ni plating to obtain an aluminum-ceramic direct bonding substrate having a shape as shown in FIG.

【0026】該複合基板の諸特性を測定したところ、以
下の結果を得た。
When the properties of the composite substrate were measured, the following results were obtained.

【0027】ピール特性>30kg/cm(アルミニウ
ムが切れる)
Peeling characteristic> 30 kg / cm (aluminum breaks)

【0028】ヒートサイクル>3000回(クラックな
し)
Heat cycle> 3000 times (no crack)

【0029】抗折強度:69kg/mm2 Bending strength: 69 kg / mm 2

【0030】たわみ:286μm(図5参照)Deflection: 286 μm (see FIG. 5)

【0031】(比較例1)(Comparative Example 1)

【0032】厚さ0.3mmの銅板7を36mm×52
mm×0.635mmのアルミナ基板6の上下面に直接
接合し、図2に示す形状の銅−アルミナ直接接合基板を
得た。なお、3は酸化物(Al−Cu−Si−O)であ
る。
A copper plate 7 having a thickness of 0.3 mm is formed of 36 mm × 52
It was directly bonded to the upper and lower surfaces of an alumina substrate 6 of mm × 0.635 mm to obtain a copper-alumina direct bonding substrate having a shape shown in FIG. 3 is an oxide (Al-Cu-Si-O).

【0033】実施例1に示す諸特性を同様に求めたとこ
ろ、
When the characteristics shown in Example 1 were similarly obtained,

【0034】ピール特性>10kg/cm(アルミナと
Cuとの界面で切れる)
Peeling characteristic> 10 kg / cm (cut at the interface between alumina and Cu)

【0035】ヒートサイクル:50回でクラックが発生
し、600回で銅板が剥離
Heat cycle: cracks occur 50 times, copper plate peels off 600 times

【0036】抗折強度:49kg/mm2 Bending strength: 49 kg / mm 2

【0037】たわみ:172μmであった。Deflection: 172 μm.

【0038】(実施例2)(Example 2)

【0039】セラミックス基板1としてアルミナに代え
て窒化アルミニウム板(36mm×52mm×0.63
5mm)を用いた他は、実施例1と同様の手段でアルミ
ニウム−窒化アルミニウム直接接合基板を得た。
As the ceramic substrate 1, an aluminum nitride plate (36 mm × 52 mm × 0.63) was used instead of alumina.
An aluminum-aluminum nitride direct bonding substrate was obtained in the same manner as in Example 1 except that 5 mm) was used.

【0040】この複合基板の特性は、The characteristics of this composite substrate are as follows:

【0041】ピール特性>20kg/cmPeeling characteristic> 20 kg / cm

【0042】ヒートサイクル>3000回Heat cycle> 3000 times

【0043】抗折強度:53kg/mm2 Flexural strength: 53 kg / mm 2

【0044】たわみ:230μmDeflection: 230 μm

【0045】であるように耐ヒートサイクル特性が自動
車向けとして好ましいものであった。
As described above, the heat cycle resistance was favorable for use in automobiles.

【0046】(比較例2)(Comparative Example 2)

【0047】図4に示すように金属板9として厚さ0.
3mmの銅板を活性金属ろう材(Ag−Cu−Ti)5
を介して窒化アルミニウム板8に接合して得た銅−窒化
アルミニウムろう接基板を用いて、実施例2と同様に特
性を測定したところ、
As shown in FIG.
3mm copper plate is coated with active metal brazing material (Ag-Cu-Ti) 5
The characteristics were measured in the same manner as in Example 2 using a copper-aluminum nitride soldered substrate obtained by bonding to an aluminum nitride plate 8 through

【0048】ピール特性>30kg/cmPeeling characteristic> 30 kg / cm

【0049】ヒートサイクル:40回でクラックが発生
し、500回で銅板剥離
Heat cycle: cracks occur 40 times, copper plate peels 500 times

【0050】抗折強度:42kg/mm2 Flexural strength: 42 kg / mm 2

【0051】たわみ:140μmDeflection: 140 μm

【0052】であり、ピール特性は優れているものの目
的とする耐ヒートサイクル特性は要求にほど遠いもので
あった。
Although the peel characteristics were excellent, the desired heat cycle resistance was far from required.

【0053】(実施例3)(Embodiment 3)

【0054】実施例1で用いた厚さ0.635mmのア
ルミナ基板の片面に厚さ0.5mmのアルミニウム層を
形成し、360℃に加熱された連続加熱炉に通炉したも
ののソリ量を図5に示すように測定し、同様な操作を繰
り返し行って該基板のソリ量を回数毎にまとめ図6に示
した。尚、加熱炉内の雰囲気はH2 :N2 =1:4であ
った。
The alumina amount of 0.5 mm was formed on one side of the alumina substrate having a thickness of 0.635 mm used in Example 1, and the amount of warpage was measured after passing through a continuous heating furnace heated to 360 ° C. The measurement was performed as shown in FIG. 5, and the same operation was repeated. The amounts of warpage of the substrate were summarized for each number of times and shown in FIG. The atmosphere in the heating furnace was H 2 : N 2 = 1: 4.

【0055】(比較例3)(Comparative Example 3)

【0056】アルミニウムに代えて厚さ0.3mmの銅
板を用いて直接接合させた銅張りアルミナ基板以外は、
実施例3に示す手段でソリ量を測定し、その結果を図6
に併せて示した。
Except for a copper-clad alumina substrate directly bonded using a copper plate having a thickness of 0.3 mm instead of aluminum,
The amount of warpage was measured by the means shown in Example 3, and the result was shown in FIG.
Are also shown.

【0057】この結果、比較例3の銅張りアルミナ基板
に比べ、本発明に係るアルミニウム/アルミナ基板のソ
リ量は約1/3であった。このソリ量は基板内部の応力
の増大に伴って増加するため、アルミニウム/アルミナ
基板内部の応力は銅張りアルミナ基板と比べてはるかに
小さいことがわかった。
As a result, as compared with the copper-clad alumina substrate of Comparative Example 3, the amount of warpage of the aluminum / alumina substrate according to the present invention was about 1/3. Since the amount of warpage increases as the stress inside the substrate increases, it was found that the stress inside the aluminum / alumina substrate was much smaller than that of the copper-clad alumina substrate.

【0058】[0058]

【発明の効果】上述のように本発明に係るアルミニウム
/セラミックス直接接合基板は、従来の複合基板では得
られなかった耐ヒートサイクル特性に富み、電気自動車
向けパワーモジュール基板として好ましいものである。
As described above, the aluminum / ceramic direct bonding substrate according to the present invention is rich in heat cycle resistance, which cannot be obtained with a conventional composite substrate, and is preferable as a power module substrate for electric vehicles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアルミニウム/セラミックス直接
接合基板の模式図である。
FIG. 1 is a schematic view of an aluminum / ceramic direct bonding substrate according to the present invention.

【図2】従来の銅/アルミナ直接接合基板の模式図であ
る。
FIG. 2 is a schematic view of a conventional copper / alumina direct bonding substrate.

【図3】従来の銅/窒化アルニウム直接接合基板の模式
図である。
FIG. 3 is a schematic view of a conventional copper / alnium nitride direct bonding substrate.

【図4】従来の金属/セラミックスろう接基板の模式図
である。
FIG. 4 is a schematic view of a conventional metal / ceramic brazing substrate.

【図5】実施例3におけるソリ量測定の模式図である。FIG. 5 is a schematic view of a warpage amount measurement in a third embodiment.

【図6】実施例3、比較例3における通炉回数に対する
ソリ量を求めた線図である。
FIG. 6 is a diagram illustrating a warpage amount with respect to the number of times of furnace passing in Example 3 and Comparative Example 3.

【図7】本発明複合基板の製造装置の原理図である。FIG. 7 is a principle view of an apparatus for manufacturing a composite substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 アルミニウム 3 酸化物(Al−Cu−Si−O) 4 窒化アルミニウム表面の酸化物 5 金属ろう材 6 アルミナ基板 7 銅板 8 窒化アルミニウム板 9 金属板 10 ルツボ 11 ヒーター 12 ケース 13 蓋 14 ガイド一体型ダイス Reference Signs List 1 ceramic substrate 2 aluminum 3 oxide (Al-Cu-Si-O) 4 oxide on aluminum nitride surface 5 metal brazing material 6 alumina substrate 7 copper plate 8 aluminum nitride plate 9 metal plate 10 crucible 11 heater 12 case 13 lid 14 guide Integrated die

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜庭 正美 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 永田 長寿 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masami Sakuraba 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Nagatoshi Nagata 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Same as above Inside Wa Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板の少なくとも一主面に
電気導通及び電子部品搭載のための金属部分を形成した
金属−セラミックス複合基板において、アルミニウム溶
湯をセラミックス基板上に直接凝固させて接合せしめた
複合基板上の金属板をエッチング処理することによって
所定の回路を形成して成ることを特徴とする金属−セラ
ミックス複合基板。
1. A metal-ceramic composite substrate having at least one principal surface of a ceramic substrate formed with a metal portion for electrical conduction and mounting of electronic components, wherein the molten aluminum is directly solidified on the ceramic substrate and joined. A metal-ceramic composite substrate, wherein a predetermined circuit is formed by etching an upper metal plate.
【請求項2】 窒化アルミニウム基板の少なくとも一主
面に電気導通及び電子部品搭載のための金属部分を形成
した金属−セラミックス複合基板において、アルミニウ
ム溶湯を窒化アルミニウム基板上に直接凝固させて接合
せしめた複合基板上の金属板をエッチング処理すること
によって所定の回路を形成して成ることを特徴とする金
属−セラミックス複合基板。
2. A metal-ceramic composite substrate having at least one principal surface of an aluminum nitride substrate formed with a metal portion for electrical conduction and mounting of electronic components, wherein an aluminum melt is directly solidified and joined to the aluminum nitride substrate. A metal-ceramic composite substrate, wherein a predetermined circuit is formed by etching a metal plate on the composite substrate.
JP2000275057A 2000-09-11 2000-09-11 Metal-ceramic composite substrate Expired - Fee Related JP3613759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275057A JP3613759B2 (en) 2000-09-11 2000-09-11 Metal-ceramic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275057A JP3613759B2 (en) 2000-09-11 2000-09-11 Metal-ceramic composite substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02726295A Division JP3430348B2 (en) 1995-01-24 1995-01-24 Metal-ceramic composite substrate

Publications (2)

Publication Number Publication Date
JP2001144224A true JP2001144224A (en) 2001-05-25
JP3613759B2 JP3613759B2 (en) 2005-01-26

Family

ID=18760736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275057A Expired - Fee Related JP3613759B2 (en) 2000-09-11 2000-09-11 Metal-ceramic composite substrate

Country Status (1)

Country Link
JP (1) JP3613759B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046033A (en) * 2001-07-27 2003-02-14 Kyocera Corp Wiring board
EP1400500A1 (en) * 2002-09-13 2004-03-24 Dowa Mining Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
JP2006156994A (en) * 2004-11-05 2006-06-15 Dowa Mining Co Ltd Substrate with electronic component, manufacturing apparatus therefor, and manufacturing method therefor
JP2011166127A (en) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled integrated substrate, and liquid-cooled integrated substrate
JP2013191640A (en) * 2012-03-12 2013-09-26 Mitsubishi Materials Corp Substrate for power module and manufacturing method of the same
WO2020170877A1 (en) 2019-02-22 2020-08-27 Dowaメタルテック株式会社 Metal-ceramic joined substrate and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046033A (en) * 2001-07-27 2003-02-14 Kyocera Corp Wiring board
JP4593841B2 (en) * 2001-07-27 2010-12-08 京セラ株式会社 Wiring board
EP1400500A1 (en) * 2002-09-13 2004-03-24 Dowa Mining Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
US7131483B2 (en) 2002-09-13 2006-11-07 Dowa Mining Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
US8011416B2 (en) 2002-09-13 2011-09-06 Dowa Metaltech Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
JP2006156994A (en) * 2004-11-05 2006-06-15 Dowa Mining Co Ltd Substrate with electronic component, manufacturing apparatus therefor, and manufacturing method therefor
JP2011166127A (en) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled integrated substrate, and liquid-cooled integrated substrate
JP2011166126A (en) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd Liquid-cooled integrated substrate, and method of manufacturing the same
US9320129B2 (en) 2010-01-12 2016-04-19 Dowa Metaltech Co., Ltd. Liquid-cooled integrated substrate and manufacturing method of liquid-cooled integrated substrate
JP2013191640A (en) * 2012-03-12 2013-09-26 Mitsubishi Materials Corp Substrate for power module and manufacturing method of the same
WO2020170877A1 (en) 2019-02-22 2020-08-27 Dowaメタルテック株式会社 Metal-ceramic joined substrate and manufacturing method thereof
KR20210126723A (en) 2019-02-22 2021-10-20 도와 메탈테크 가부시키가이샤 Metal-ceramic bonded substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP3613759B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP4756200B2 (en) Metal ceramic circuit board
US8559475B2 (en) Heat sink and assembly or module unit
JP2004115337A (en) Aluminum-ceramic bonded body
US6485816B2 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
KR100374379B1 (en) Substrate
EP1518847B1 (en) Aluminum/ceramic bonding substrate and method for producing same
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
JP2001144224A (en) Metal-ceramic composite substrate
JP5467407B2 (en) Aluminum-ceramic bonded body
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JP3430348B2 (en) Metal-ceramic composite substrate
JP4543275B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
JPH08274423A (en) Ceramic circuit board
JP3392594B2 (en) Method for etching aluminum-ceramic composite substrate and etchant
JPH107480A (en) Composite metal-ceramic substrate and its production
US20220033317A1 (en) Aluminum/ceramic bonding substrate and method for producing same
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPH09315875A (en) Aluminum-ceramic composite substrate and its production
JPH09286681A (en) Metal-ceramic composite substrate
JP4862196B2 (en) Method for manufacturing metal ceramic circuit board

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees