JP2001141583A - Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device - Google Patents

Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device

Info

Publication number
JP2001141583A
JP2001141583A JP32783299A JP32783299A JP2001141583A JP 2001141583 A JP2001141583 A JP 2001141583A JP 32783299 A JP32783299 A JP 32783299A JP 32783299 A JP32783299 A JP 32783299A JP 2001141583 A JP2001141583 A JP 2001141583A
Authority
JP
Japan
Prior art keywords
tension
optical fiber
vibration
measuring
vibration waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32783299A
Other languages
Japanese (ja)
Inventor
Shigeo Hiruma
繁男 肥留間
Hideo Utsuno
秀夫 宇津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32783299A priority Critical patent/JP2001141583A/en
Publication of JP2001141583A publication Critical patent/JP2001141583A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber drawing tension measuring method and a device and a tension control device capable of heightening control reliability of an automatic control operation and guaranteeing stable production of a highest- quality optical fiber, by enabling accurate detection of a natural frequency peak value and by enabling accurate drawing out by using a tension having a calculated optimum drawing condition different in each base material. SOLUTION: In this fiber drawing tension measuring method of an optical fiber for measuring a vibration waveform of the optical fiber which is just being drawn by a vibration measuring means and for obtaining the tension of the optical fiber from a natural frequency peak of the vibration waveform, the vibration waveform of the optical fiber 3 which is just being drawn is measured by the noncontact-type vibration measuring means 11, and frequency analysis of the vibration waveform is executed by using a maximum entropy method, and a distinguished peak frequency is taken as the natural frequency peak.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの製造
に際し、光ファイバの線引き張力を精度よくかつ安定し
て測定するための改良された張力測定方法に関し、更に
その測定方法の実施に好適に用いられる張力測定装置並
びに高品質の光ファイバの製造に資する線引き張力制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved tension measuring method for accurately and stably measuring the drawing tension of an optical fiber in the production of an optical fiber, and moreover, it is suitable for implementing the measuring method. The present invention relates to a tension measuring device used and a drawing tension control device contributing to the production of high quality optical fibers.

【0002】[0002]

【従来の技術】光ファイバの線引き張力の測定に関する
典型的な先行技術が特開平10−316446号公報等に挙示さ
れるように公知である。レーザ方式で代表される非接触
ファイバ振動検出センサで検出した線引き中の光ファイ
バの振動波形は、一般的にフーリエ変換(FFT)法に
よってその周波数分析を行っているが、線引き中の光フ
ァイバの場合は、加えられる張力が小さく、かつ、両端
の非自由点間の光ファイバ長さ(スパン;span)が長く
て、しかも周囲に冷却風等の流れが生じているために、
外乱が光ファイバに加わっている。このことから、ピー
クの基本周波数以外にもこれに近似の振動波形を持つノ
イズを近接した位置で含んでおり、従って、前述のFF
T解析を行ってもノイズとの判別がつかないために基本
周波数が特定し難くて、周波数分析の結果から張力を正
確に求めることが難しかった。
2. Description of the Related Art A typical prior art for measuring the drawing tension of an optical fiber is known as disclosed in Japanese Patent Application Laid-Open No. Hei 10-316446. The vibration waveform of an optical fiber during drawing, which is detected by a non-contact fiber vibration detection sensor represented by a laser system, is generally subjected to frequency analysis by a Fourier transform (FFT) method. In this case, the applied tension is small, and the length of the optical fiber (span; span) between the non-free points at both ends is long, and a flow of cooling air or the like is generated in the surrounding area.
Disturbance is added to the optical fiber. From this, in addition to the fundamental frequency of the peak, a noise having a vibration waveform similar to this is included at a close position, and accordingly, the above-described FF
Even if T analysis is performed, it is difficult to identify the fundamental frequency because it cannot be distinguished from noise, and it has been difficult to accurately determine the tension from the result of the frequency analysis.

【0003】このようなことから、特開平10−316446号
公報等に記載の先行技術は、振動波形をFFT解析する
際、検索中央値a、検索幅bを事前に設定して、検索範
囲を狭めて特定する方法及び数回に亘る計測作業におい
て前回検出したピーク値を次回の検索中央値とする等の
方法を採用している。
For this reason, in the prior art described in Japanese Patent Application Laid-Open No. Hei 10-316446, when performing a FFT analysis on a vibration waveform, a search median a and a search width b are set in advance to set a search range. A method of narrowing down and specifying, and a method of using the peak value detected last time in the measurement work several times as the median value for the next search are adopted.

【0004】しかしながら上述する先行技術では、線引
き炉の近くに通常具備されるレーザ式外径測定器を振動
検出センサに共用しようとしても、その個所が外乱を多
く含む個所であるためにFFT解析が依然として困難で
あるところから、類似方式のレーザ式振動検出センサを
別の個所に、例えば、被覆ダイスよりも上流側に別途設
ける必要があり、スペースを占有する問題がある。加え
て、張力測定に当たっては事前に予備テストを行うか、
或いは経験的に設定値を予測しなければならず、取扱い
上の面倒な点が存することは免れない。また、その際の
設定が適切でなければ、見当違いの周波数を検出して誤
った張力値に収束してしまう恐れもある。
However, in the above-mentioned prior art, even if an attempt is made to share a laser type outer diameter measuring device usually provided near a drawing furnace with a vibration detecting sensor, the FFT analysis is performed because the portion is a portion containing a large amount of disturbance. Because it is still difficult, it is necessary to separately provide a laser type vibration detection sensor of a similar type in another location, for example, on the upstream side of the coating die, and there is a problem of occupying space. In addition, do a preliminary test before measuring the tension,
Alternatively, it is necessary to predict the set value empirically, and it is inevitable that there is a troublesome point in handling. In addition, if the setting at that time is not appropriate, an incorrect frequency may be detected and converge to an erroneous tension value.

【0005】このような例とは別に典型的な先行技術の
他例として特開平10− 53431号公報に挙示される公知の
技術があるが、これは光学的に光ファイバの振動を検出
し、FFT解析により張力を算出してこの張力測定値に
基づいて母材の下降速度、炉の出力を制御するものであ
る。なお、この先行技術の目的とすところは、母材の過
熱による線引き装置の暴走を防ぐ、つまり、オペレータ
の手動操作をなくして自動的に安定速度での線引き運転
を継続させようとすることにある。
[0005] Apart from such an example, there is a well-known technique disclosed in Japanese Patent Application Laid-Open No. Hei 10-53431 as another example of a typical prior art. This technique optically detects the vibration of an optical fiber, and The tension is calculated by the FFT analysis, and the descending speed of the base material and the output of the furnace are controlled based on the measured value of the tension. The purpose of this prior art is to prevent runaway of the drawing apparatus due to overheating of the base material, that is, to eliminate the manual operation of the operator and automatically continue the drawing operation at a stable speed. is there.

【0006】線引き工程において高品質の光ファイバを
生産するためには、炉内での母材温度を正確に管理する
ことが最も重要であるのは十分に知られているところで
あって、母材温度を直接測定できないので、通常は張力
をその代替の制御対象として用いているのに対して、上
記の方法で線引き速度制御に炉出力、即ち炉温度を使用
することは実際に可能であるものの、FFT解析結果で
は前述の通り、正確な算出値が得られ難い点からファイ
バ品質に好ましくない影響を与えるため、必ずしも適切
な方法とは言えない。
It is well known that in order to produce a high quality optical fiber in the drawing process, it is sufficiently important to accurately control the temperature of the preform in the furnace. Although the temperature cannot be directly measured, the tension is usually used as an alternative control object, whereas the furnace power, that is, the furnace temperature can be used for the drawing speed control in the above-described method, although it is actually possible. As described above, the result of FFT analysis has an unfavorable effect on the fiber quality because it is difficult to obtain an accurate calculated value, and is not necessarily an appropriate method.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
従来技術が持つ問題点の解消を図るために成されたもの
であって、本発明の主たる目的は、光ファイバの振動波
形を従来考慮されなかった新規な演算手法に基づいて的
確に解析し得ることによって、周波数ピークから張力を
算出する過程で、固有振動数ピーク値を精度良く検出す
ることを可能と成し、以て各母材毎に異なる最適線引き
条件を算出した張力を用いて正確に引出し得るようにす
ることにより、自動制御運転の制御信頼性を高めて高品
質の光ファィバの安定生産を保証させることにある。さ
らに本発明は、特別な構造のファイバ振動検出センサを
新たに追加使用することなく、既存の検出用機器を有効
活用して実現可能と成すことにより、線引き装置におけ
る制御用付帯機器の設置スペースの増加を抑えるととも
に、張力検出のための装置の簡易化を図って、線引き装
置のコスト低減化を果たさせることもまた主要な目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and a main object of the present invention is to reduce the vibration waveform of an optical fiber. By being able to accurately analyze based on a new calculation method that was not considered, it was possible to accurately detect the natural frequency peak value in the process of calculating the tension from the frequency peak. An object of the present invention is to improve the control reliability of the automatic control operation and to assure stable production of high-quality optical fiber by making it possible to accurately draw the optimum drawing conditions different for each material using the calculated tension. Further, the present invention can be realized by effectively utilizing existing detection equipment without newly using a fiber vibration detection sensor having a special structure, thereby reducing the installation space for the control auxiliary equipment in the drawing apparatus. It is also a main object to suppress the increase and to simplify the device for detecting the tension to reduce the cost of the drawing device.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明における請求項1の発明は、線引き中の光フ
ァイバの振動波形を振動測定手段によって測定し、その
振動波形の固有振動数ピークから前記光ファイバの張力
を求める張力測定方法において、非接触式の振動測定手
段により線引き中の光ファイバの振動波形を測定し、そ
の振動波形の周波数分析を最大エントロピー法を用いて
行い、卓越してなるピークの周波数を固有振動数ピーク
とすることを特徴とする光ファイバの線引き張力測定方
法である。
The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 in the present invention is a tension measuring method for measuring the vibration waveform of an optical fiber being drawn by a vibration measuring means and obtaining the tension of the optical fiber from the natural frequency peak of the vibration waveform. The vibration waveform of the optical fiber being drawn is measured by the contact-type vibration measuring means, and the frequency analysis of the vibration waveform is performed using the maximum entropy method, and the frequency of the preeminent peak is set as the natural frequency peak. This is a characteristic method for measuring the drawing tension of an optical fiber.

【0009】また、本発明における請求項2の発明は、
線引き中の光ファイバに近接して設けられ該光ファイバ
の振動を光学的に測定する非接触式の振動測定手段と、
測定した振動波形のスペクトルから最大エントロピー法
に基づきピークの周波数を求めてこれを固有振動数ピー
クと判断する振動数ピーク演算手段と、線引き中の光フ
ァイバにおける線引き速度、両端の非自由点間の光ファ
イバ長さ及び単位長当たりの質量に基づき前記固有振動
数ピークから目的の張力を求める張力演算手段とを含む
ことを特徴とする光ファイバの線引き張力測定装置であ
る。
Further, the invention of claim 2 of the present invention provides:
Non-contact vibration measuring means provided in proximity to the optical fiber being drawn and optically measuring the vibration of the optical fiber,
Frequency peak calculation means for determining the peak frequency from the spectrum of the measured vibration waveform based on the maximum entropy method and determining this as the natural frequency peak, and the drawing speed in the optical fiber being drawn, between the non-free points at both ends. A tension calculating means for calculating a target tension from the natural frequency peak based on an optical fiber length and a mass per unit length.

【0010】また、本発明における請求項3の発明は、
前記請求項2の発明に係る光ファイバの線引き張力測定
装置において、振動測定手段が、線引き炉から冷却管に
至る間における線引き中の未被覆光ファイバの振動をレ
ーザ光により測定するレーザ式振動測定器であって、線
引き中の未被覆光ファイバの振動波形及び外径変化を測
定可能な共用型に形成される構成としたことを特徴とす
る。
[0010] The invention of claim 3 in the present invention provides:
In the optical fiber drawing tension measuring apparatus according to the invention of claim 2, the vibration measuring means measures the vibration of the uncoated optical fiber during drawing from the drawing furnace to the cooling pipe by using a laser beam. The apparatus is characterized in that it is formed in a common type capable of measuring a vibration waveform and a change in outer diameter of an uncoated optical fiber during drawing.

【0011】また、本発明における請求項4の発明は、
前記請求項2又は3に記載の構成になる光ファイバの線
引き張力測定装置と、線引き中の光ファイバに対する目
標張力を設定する張力設定手段と、前記張力測定装置に
よる測定張力と張力設定手段による設定張力とを比較し
て設定張力が大きいときは線引き炉の出力を下げ、設定
張力が小さいときは出力を上げて測定張力を設定張力に
合致させる線引き炉出力調節手段とを含むことを特徴と
する光ファイバの線引き張力制御装置である。
[0011] The invention of claim 4 in the present invention provides:
An optical fiber drawing tension measuring apparatus having the configuration according to claim 2 or 3, a tension setting means for setting a target tension for the optical fiber being drawn, and a measurement tension by the tension measuring apparatus and a setting by the tension setting means. A draw furnace output adjusting means for lowering the output of the drawing furnace when the set tension is larger than the tension, and increasing the output when the set tension is small to match the measured tension to the set tension. This is an optical fiber drawing tension control device.

【0012】本発明の請求項1に記載の張力測定方法並
びに請求項2に記載の張力測定装置においては、非接触
式の振動測定手段により測定した線引き中の光ファイバ
の振動波形の周波数分析を最大エントロピー法を用いて
実行し、卓越してなるピークの周波数を固有振動数ピー
クとするものであり、高い周波数分解能の要求を満たす
点ですぐれた手法の最大エントロピー法を用いてスペク
トル解析を行ったところに特徴が存する。すなわち、最
大エントロピー法は、自己回帰モデルあるいは線形予測
モデルともよばれて、短いデータから分解能の高いスペ
クトル解析が可能な手法であり、外乱に起因するノイズ
と光ファイバ固有の振動波形とを明確に区別することが
可能で、固有振動数周波数の検出精度を向上し得る。そ
の結果、目的とする張力計算結果の変動幅も小さくなっ
て、炉出力等の制御対象に対して高精度で安定した制御
用信号を速やかに与えることができる。
In the tension measuring method according to the first aspect of the present invention and the tension measuring apparatus according to the second aspect, the frequency analysis of the vibration waveform of the optical fiber during drawing measured by the non-contact vibration measuring means is performed. It is performed using the maximum entropy method, and the frequency of the preeminent peak is used as the natural frequency peak, and the spectrum analysis is performed using the maximum entropy method which is excellent in satisfying the requirement of high frequency resolution. There is a characteristic in the place. In other words, the maximum entropy method, also known as an autoregressive model or a linear prediction model, is a method that can perform high-resolution spectral analysis from short data, and clearly distinguishes noise due to disturbance from the vibration waveform unique to the optical fiber. And the accuracy of detecting the natural frequency can be improved. As a result, the fluctuation range of the target tension calculation result is also reduced, and a highly accurate and stable control signal can be promptly provided to a control target such as a furnace output.

【0013】本発明の請求項3に記載の張力測定装置に
おいては、請求項2に記載の張力測定装置における非接
触式の振動測定手段が、線引き炉から冷却管に至る間に
おける線引き中の未被覆光ファイバの振動波形及び外径
変化をレーザ光により測定する共用型レーザ式振動測定
器により構成している。すなわち、外径測定機能と振動
測定機能を併せ持つ測定器であることから、従来の線引
き装置に必ず具備していた外径測定器を利用して光ファ
イバ振動波形の測定が可能であり、特別な構造のファイ
バ振動検出センサを新たに追加使用することなく、既存
の検出用機器を有効活用することができる。
According to a third aspect of the present invention, in the tension measuring apparatus according to the second aspect of the present invention, the non-contact type vibration measuring means includes a non-contact type vibration measuring means which is not used during drawing from the drawing furnace to the cooling pipe. It is composed of a shared laser-type vibration measuring device that measures the vibration waveform and outer diameter change of the coated optical fiber using laser light. That is, since it is a measuring instrument having both the outer diameter measuring function and the vibration measuring function, it is possible to measure the optical fiber vibration waveform using the outer diameter measuring instrument which is always provided in the conventional drawing apparatus, and a special Existing detection equipment can be effectively used without newly using a fiber vibration detection sensor having a structure.

【0014】本発明の請求項4に記載の張力制御装置に
よれば、請求項2又は3に記載の構成になる光ファイバ
の線引き張力測定装置を要素部材として、測定した固有
振動数ピークに基づく張力値が予め設定した最適設定値
となるように線引き炉の出力(温度)を自動制御するよ
うにしたから、母材毎に最適な母材温度(張力)に制御
可能であり、高品質の光ファイバを安定して生産するこ
とができる。
According to a fourth aspect of the present invention, there is provided a tension control device for an optical fiber having the configuration according to the second or third aspect as an element member based on a measured natural frequency peak. Since the output (temperature) of the drawing furnace is automatically controlled so that the tension value becomes a preset optimum set value, the base material temperature (tension) can be controlled to the optimum base material temperature for each base material, and high quality Optical fibers can be stably produced.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施形態
を、添付図面を参照しながら具体的に説明する。先ず、
この実施形態の説明の前に最大エントロピー法( Maxim
um EntropyMethod、以下、MEMと略称する)の内容を
概説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings. First,
Before describing this embodiment, the maximum entropy method (Maxim
um EntropyMethod (hereinafter abbreviated as MEM)).

【0016】MEMは、与えられたN点の時系列データ
{xi }を、仮定したm点の予測誤差フィルタγm に通
し、そのときの出力Pm が最小になるようにm=1から
漸化的にフィルタ係数γm とフィルタ出力Pm 、自己相
関関数Cm を計算する手法である。なお、周波数スペク
トルP(f) は、求まった自己相関関数Cm から下記式
(A)、(B)に示す Wiener-Khintchineの関係式を利
用して計算する。
The MEM passes the given time-series data {x i } of N points through an assumed m-point prediction error filter γ m, and from = 1 so that the output P m at that time is minimized. This is a method of recursively calculating a filter coefficient γ m , a filter output P m , and an autocorrelation function C m . The frequency spectrum P (f) is represented by the following formulas Motoma' autocorrelation function C m (A), is calculated using a relational expression of Wiener-Khintchine shown in (B).

【数1】 (Equation 1)

【0017】フィルタ出力Pm は、下記の図式に示され
るように予測誤差フィルタγm に時系列データ{xi
を前から通す場合の出力{yi }と後向きに通す場合の
出力{yi ' }の2乗和(下記式(C)参照)で定義
し、その値(≒エントロピー)が最小となる条件を課す
ことで係数を決定する。
The filter output P m is supplied to the prediction error filter γ m by the time series data {x i } as shown in the following equation.
Is defined as the sum of squares (see the following equation (C)) of the output {y i } when passing through from the front and the output {y i } when passing backward, and the condition that the value (≒ entropy) is minimized To determine the coefficient.

【数2】 (Equation 2)

【0018】具体的にフィルタ出力Pm が最小となる条
件を課すための漸加式を計算してみると、下記の通りで
ある。
[0018] Specifically filter output P m is try to calculate the recurrence-batch for imposing smallest condition is as follows.

【数3】 (Equation 3)

【0019】以上は、m<3の場合の式であるが、m≧
3では一般的に次式で計算する。
The above equation is for the case of m <3, where m ≧ 3.
In No. 3, calculation is generally performed by the following equation.

【数4】 (Equation 4)

【0020】 ◇γm,k の決定 既に求まっているγm-1,k と上記(D)式で求まったγm,m とから、Levinson アルゴリズムに従ってγm,k を計算する。 γm,k =γm-1,k +γm,m * γm-1,m-k ……(E) ◇Pm の計算 Pm =Pm-1 (1−γm,m 2 ) ……(F) ◇自己相関関数Cm の計算 Cm =−〔γm1m-1 +γm2m-2 +…+γmm0 〕…(G)Determination of ◇ γ m, k γ m, k is calculated from γ m-1, k already obtained and γ m, m obtained by the above formula (D) according to the Levinson algorithm. γ m, k = γ m- 1, k + γ m, m * γ m-1, mk ...... (E) ◇ calculation of P m P m = P m- 1 (1-γ m, m 2) ...... (F) 計算 Calculation of autocorrelation function C m C m = − [γ m1 C m−1 + γ m2 C m−2 +... + Γ mm C 0 ] (G)

【0021】そして、エントロピーを最大ならしめる周
波数スペクトルP(f) はフィルタ係数γm を用いて下記
式(H)となる。
[0021] Then, the frequency spectrum P occupying become maximum entropy (f) is the following equation using the filter coefficients γ m (H).

【数5】 (Equation 5)

【0022】以上説明したMEMでは、フーリエ変換の
ようにデータ個数を2のべき乗に選ぶ必要がなく、自由
なデータ個数を選定できる利点がある。そこで、MEM
を用いて固有振動数ピークから張力を算定する場合、所
望の張力算定精度を実現し、かつ演算時間が最小となる
ように振動信号のサンプリング周波数とデータ個数と選
定する必要があるが、これらの点は後記の実施形態に基
づいて後述する。
The MEM described above has an advantage that the number of data can be freely selected without having to select the number of data to a power of 2 unlike the Fourier transform. So, MEM
When calculating the tension from the natural frequency peak using, it is necessary to select the sampling frequency of the vibration signal and the number of data so as to achieve the desired tension calculation accuracy and minimize the calculation time. The points will be described later based on an embodiment described later.

【0023】図1において、光ファイバ線引き装置(以
下、線引き装置と略称する)で測定した光ファイバの振
動信号の例が(イ)に、同信号をMEMにより解析した
場合の周波数分析結果が(ロ)に、同信号をフーリエ変
換で解析した場合の周波数分析結果が(ハ)にそれぞれ
示される。図1(イ)において横軸は時間で、トータル
4秒間の振動信号であるが、(ハ)のフーリエ変換では
ピークが林立し、かつ振幅も共振周波数と同程度のピー
クが接近して存在するため、共振周波数の判定が困難と
なるが、これに対して(ロ)のMEMでは周波数スペク
トルは滑らかな曲線となり、従って、ピークの周波数を
ノイズとの関連で見誤るおそれは全くない。
In FIG. 1, an example of an optical fiber vibration signal measured by an optical fiber drawing apparatus (hereinafter, abbreviated as a drawing apparatus) is shown in FIG. 1A, and a frequency analysis result when the signal is analyzed by MEM is shown in FIG. (B) shows the result of frequency analysis when the same signal is analyzed by Fourier transform. In FIG. 1A, the horizontal axis is time, which is a vibration signal for a total of 4 seconds. In the Fourier transform of FIG. 1C, peaks are established and peaks having amplitudes close to the resonance frequency are close to each other. Therefore, it is difficult to determine the resonance frequency. On the other hand, in the case of (b), the frequency spectrum has a smooth curve, and therefore, there is no possibility that the peak frequency is mistaken for noise.

【0024】図2には、本発明の実施の形態に係る線引
き装置の略示全体構造図が表される。図2の線引き装置
は、上方から下方に向けて記載順に配設された母材送り
装置10、線引き炉2、冷却管4、第1被覆ダイス5、
第1樹脂硬化装置6、第2被覆ダイス7、第2樹脂硬化
装置8及び引取りキャプスタン9の各要素機器から構成
されていて(但し、光ファイバを回収する巻取機は省略
する)、線引き炉2と冷却管4との間には、外径振動測
定器11が線引き中の光ファイバ3に近接した位置で、
かつ、光ファイバ3を囲ませて設けられ、また、第1樹
脂硬化装置6と第2被覆ダイス7との間には、外径振動
測定器12が線引き中の光ファイバ3に近接した位置
で、かつ、光ファイバ3を囲ませて設けられ、さらに、
第2樹脂硬化装置8の直下部には、外径振動測定器13
が線引き中の光ファイバ3に近接した位置で囲ませて設
けられる。
FIG. 2 is a schematic overall structural view of a drawing apparatus according to an embodiment of the present invention. The drawing apparatus in FIG. 2 includes a base material feeder 10, a drawing furnace 2, a cooling pipe 4, a first coating die 5, and a base material feeding apparatus 10, which are arranged in the order from the top to the bottom.
The first resin curing device 6, the second coating die 7, the second resin curing device 8, and the take-up capstan 9 are configured with respective component devices (however, a winding machine for collecting an optical fiber is omitted). Between the drawing furnace 2 and the cooling pipe 4, an outer diameter vibration measuring device 11 is located at a position close to the optical fiber 3 being drawn.
The outer diameter vibration measuring device 12 is provided between the first resin curing device 6 and the second coating die 7 at a position close to the optical fiber 3 being drawn. And provided so as to surround the optical fiber 3,
Immediately below the second resin curing device 8, an outer diameter vibration measuring device 13 is provided.
Is provided so as to be surrounded at a position close to the optical fiber 3 being drawn.

【0025】前記外径振動測定器11と該測定器11か
らの振動信号が導入される張力測定器14とを組み合わ
せて張力測定装置が形成されている。この張力測定装置
が本発明の実施の形態に係る線引き張力測定装置を構成
していて、外径振動測定器11が、光ファイバ3の振動
を光学的に測定する例えばレーザ式になる非接触式の振
動測定手段に対応し、一方、張力測定器14が、測定し
た振動波形のスペクトルから最大エントロピー法に基づ
きピークの周波数を求めてこれを固有振動数ピークと判
断する振動数ピーク演算手段と、前記固有振動数ピーク
から目的の張力を求める張力演算手段とからなる演算手
段に対応している。
A tension measuring device is formed by combining the outer diameter vibration measuring device 11 and a tension measuring device 14 into which a vibration signal from the measuring device 11 is introduced. This tension measuring device constitutes a drawing tension measuring device according to the embodiment of the present invention, and the outer diameter vibration measuring device 11 optically measures the vibration of the optical fiber 3 by a non-contact type, for example, a laser type. On the other hand, the tension measuring device 14 calculates a peak frequency from the spectrum of the measured vibration waveform based on the maximum entropy method and determines the peak frequency as a natural frequency peak, It corresponds to a calculating means including a tension calculating means for obtaining a target tension from the natural frequency peak.

【0026】前記外径振動測定器12とこの測定器12
からの振動信号が導入される張力測定器15とを組み合
わせて張力測定装置が形成され、また、前記外径振動測
定器13とこの測定器13からの振動信号が導入される
張力測定器16とを組み合わせて張力測定装置が形成さ
れ、それらの張力測定装置は、外径振動測定器11と張
力測定器14とからなる張力測定装置に類似した構成を
備えている。
The outer diameter vibration measuring device 12 and the measuring device 12
A tension measuring device is formed by combining with a tension measuring device 15 to which a vibration signal from is introduced, and the outer diameter vibration measuring device 13 and a tension measuring device 16 to which a vibration signal from the measuring device 13 are introduced. Are combined to form a tension measuring device, and the tension measuring device has a configuration similar to the tension measuring device including the outer diameter vibration measuring device 11 and the tension measuring device 14.

【0027】このような線引き装置は、母材送り装置1
0に取付けられた光ファイバ母材1が、線引き炉2に送
られて所定温度下で過熱溶融され、引取りキャプスタン
9によって線引きされることにより光ファイバ3が製造
される。この場合、光ファイバ3は、外径振動測定器1
1によって外径及び振動が測定され、計測した外径が所
定径になるように引取りキャプスタン9の回転速度が制
御されるようになっている。
Such a drawing apparatus is composed of a base material feeder 1
The optical fiber preform 1 attached to the optical fiber 3 is sent to a drawing furnace 2 where it is superheated and melted at a predetermined temperature, and is drawn by a take-up capstan 9 to produce the optical fiber 3. In this case, the optical fiber 3 is the outer diameter vibration measuring device 1
The outer diameter and vibration are measured by 1 and the rotational speed of the take-off capstan 9 is controlled so that the measured outer diameter becomes a predetermined diameter.

【0028】線引き炉2から繰り出された光ファイバ3
は、外径振動測定器11で外径が測定された後に冷却管
4に送られて、ここで冷風により冷却され、その後、第
1被覆ダイス5でプライマリーと称される第1層目の樹
脂が被覆され、次いで、第1樹脂硬化装置6で被覆樹脂
が硬化される。そして、外径振動測定器12で第1層目
の被覆径が計測される。同様にして、セカンダリーと称
される第2層目の樹脂被覆が行われるとともに、第2層
目の被覆径が計測された後、引取りキャプスタン9で引
取られる。
Optical fiber 3 unreeled from drawing furnace 2
Is sent to the cooling pipe 4 after the outer diameter is measured by the outer diameter vibration measuring device 11, where it is cooled by the cool air, and then the first coating resin 5 is used as the primary resin in the first coating die 5. Is coated, and then the coating resin is cured by the first resin curing device 6. Then, the outer diameter vibration measuring device 12 measures the coating diameter of the first layer. Similarly, the second layer of resin coating called secondary is performed, and the diameter of the second layer coating is measured.

【0029】外径振動測定器11、12、13は、前述
したように従来の機能である「外径計測センサ」に加え
て「ファイバ振動計測センサ」の機能を併せ持ってい
る。光ファイバの径及び振動の測定説明図が示される図
4を参照すると、光ファイバ3にレーザ平行光を照射さ
せて、基準点に対する光ファイバ3の最近側表面の距離
1 及び最遠側表面の距離x2 を算出し、この算出結果
から、D=x2 −x1 により光ファイバ3の外径Dを求
め、また、O=(x2 +x1 )/2により光ファイバ3
中心が基準点に対する距離の変化、すなわち、光ファイ
バ3の振動を求めることが可能である。
The outer diameter vibration measuring devices 11, 12, and 13 have the function of the "fiber vibration measuring sensor" in addition to the conventional function of the "outer diameter measuring sensor" as described above. Referring to FIG. 4 showing an explanatory diagram of the measurement of the diameter and the vibration of the optical fiber, the laser beam is irradiated to the optical fiber 3 so that the distance x 1 of the nearest surface of the optical fiber 3 to the reference point and the farthest surface calculating the distance x 2, from the calculation result, determine the outer diameter D of the optical fiber 3 by D = x 2 -x 1, also, O = (x 2 + x 1) / 2 by the optical fiber 3
It is possible to obtain a change in the distance between the center and the reference point, that is, the vibration of the optical fiber 3.

【0030】このようにして検出した各振動信号は、対
応する張力測定器14、15、16に導入され、ここ
で、MEMに基づいて固有振動数ピーク値を求めた後、
下記式(I)で張力を算出する。 T=μ [fL+(f2 2 +v2 1/2]2 …………(I) 但し、T:張力、f:固有振動数、v:線引き速度、 L:線引き炉2から第1被覆ダイス5までの(両端の非
自由点間の)長さ(スパン)、 μ:単位長さ当たりの光ファイバ3の質量、
Each of the vibration signals detected in this way is introduced into the corresponding tension measuring devices 14, 15, and 16. Here, after the natural frequency peak value is obtained based on the MEM,
The tension is calculated by the following equation (I). T = μ [fL + (f 2 L 2 + v 2 ) 1/2 ] 2 (I) where T: tension, f: natural frequency, v: drawing speed, L: first from drawing furnace 2 Length (span) up to the coating die 5 (between non-free points at both ends), μ: mass of the optical fiber 3 per unit length,

【0031】張力の算出に際して、線引き速度vを種々
変更して計測することにより得られた、各線速度につい
てサンプリング周波数100Hzで2分間の振動データ
(=12000点)を例えば4秒(400点)毎にME
M解析及びFFT解析を試みた。そのときの計30個の
張力算出結果は、図5に張力変動幅の比較線図で示され
る。図5によると、何れの線速度においてもMEM法に
よる変動幅は、FFT法によるそれよりも小さい結果が
得られ、従って、MEM法によるものの方が固有振動数
周波数の検出精度において優れていることが判る。
At the time of calculating the tension, vibration data (= 12000 points) at a sampling frequency of 100 Hz for 2 minutes obtained for each linear velocity obtained by variously changing the drawing speed v was measured, for example, every 4 seconds (400 points). ME
M analysis and FFT analysis were attempted. FIG. 5 shows a comparison diagram of the tension fluctuation width in FIG. According to FIG. 5, the variation width obtained by the MEM method at any linear velocity is smaller than that obtained by the FFT method. Therefore, the result obtained by the MEM method is superior in the detection accuracy of the natural frequency. I understand.

【0032】更に図2図示の線引き装置には、本発明の
実施の形態に係る線引き張力制御装置が設けられる。こ
の線引き張力制御装置は、外径振動測定器11及び張力
測定器14からなる線引き張力測定装置と、線引き炉2
の出力(加熱源出力)調節を行わせる線引き炉電源盤1
7及びマイクロコンピュータ等の演算・制御要素部材を
備える制御部18からなる線引き炉出力調節手段と、線
引き中の光ファイバ3に対する目標張力を設定するため
の張力設定器20で実現される張力設定手段と、測定張
力と設定張力とを比較演算する比較器19とを含んで構
成される。
Further, the drawing apparatus shown in FIG. 2 is provided with a drawing tension control apparatus according to the embodiment of the present invention. The drawing tension control device includes a drawing tension measuring device including an outer diameter vibration measuring device 11 and a tension measuring device 14, and a drawing furnace 2.
Drawer power panel 1 for adjusting the output (heating source output) of the furnace
7, a drawing furnace output adjusting means comprising a control unit 18 having an operation / control element member such as a microcomputer, and a tension setting means realized by a tension setting device 20 for setting a target tension for the optical fiber 3 being drawn. And a comparator 19 for comparing and calculating the measured tension and the set tension.

【0033】上記線引き張力制御装置は、線引き運転時
において張力調整を自動的に行って高品質光ファィバを
安定して製造するための自動制御装置であり、その制御
態様について、図3に図示のフローチャートを併せ参照
しながら以下に説明する。
The above-described drawing tension control device is an automatic control device for automatically performing tension adjustment during the drawing operation and stably producing a high-quality optical fiber. The control mode is shown in FIG. This will be described below with reference to a flowchart.

【0034】stepS1 において、目標張力値を張力設定
器20で予め設定した後に、線引き運転を開始(stepS
2)する。この場合、張力値は線引きの速度に比例して大
きくなる。低速で光ファイバ3の走行を安定化させるた
め、低速域では母材であるガラスの温度は低く(ガラス
は硬い)、速度が上がると共にガラス温度を上げて、特
定の線速、例えば300〜600 m/minで所定温度にな
るように手動又は自動にて運転するのが一般的である。
stepS3 で母材送り装置10等に増速指令が与えられて
増速し、stepS4 において目標線速の定常速度に達した
ことが判断されると、stepS5 に移行して線速及び張力
が安定したかどうかチェックする。このチェックに当た
って、線引き炉2内においてガラスの状態が安定すれば
線速、張力共に略一定になる筈である。
[0034] In STEPS 1, after a preset target tension value at a tension setting device 20, starting the drawing operation (STEPS
2 ) Do it. In this case, the tension value increases in proportion to the drawing speed. In order to stabilize the running of the optical fiber 3 at a low speed, the temperature of the glass as the base material is low (the glass is hard) in the low speed range, and the glass temperature is increased as the speed increases, and a specific linear speed, for example, 300 to 600 It is common to operate manually or automatically so as to reach a predetermined temperature at m / min.
Hayashi increase in speed increase command is given to the preform feeder 10 or the like in STEPS 3, when it is determined that reached a steady speed of the target linear velocity at STEPS 4, linear velocity and tension proceeds to STEPS 5 Check if is stable. In this check, if the state of the glass in the drawing furnace 2 becomes stable, both the linear velocity and the tension should be substantially constant.

【0035】安定になった状態でstepS7 に移って張力
を計測し(ΔT≡目標張力−実測張力)、次のstepS8
で目標張力と比べて実測張力の方が高ければ(ガラスが
硬い状態)、線引き炉2の設定温度を上げて電源出力を
増加させる(stepS10) 。逆に低ければ(ガラスが軟ら
かい状態)、設定温度を下げて電源出力を絞らせる(st
epS9)。通常、線引き炉2の温度を変更すれば、ガラス
の溶融状態は変わり、不安定状態となって線速、張力共
に変化する。そこで、再度安定状態になるまで待った
後、stepS5 からstepS10までの間の同様な制御を繰り
返させて、実測張力を目標張力に合致させるように制御
する。
[0035] Turning to STEPS 7 in a state became stable measured tension (DerutaT≡ target tension - measured tension), the following STEPS 8
In The higher towards the actual tension as compared with the target tension (glass hard state), increasing the power output by increasing the set temperature of the drawing furnace 2 (STEPS 10). Conversely, if the temperature is low (the glass is soft), lower the set temperature and reduce the power output (st
epS 9 ). Usually, if the temperature of the drawing furnace 2 is changed, the melting state of the glass changes, and the glass becomes unstable, and both the linear velocity and the tension change. Accordingly, after waiting until the re-stable state, by repeated similar control between the STEPS 5 to STEPS 10, is controlled so as to match the measured tension to the target tension.

【0036】このように線引き張力の自動制御が連続的
に行われることによって高品質の光ファィバを安定して
製造することが可能である。
As described above, since the automatic control of the drawing tension is continuously performed, a high-quality optical fiber can be stably manufactured.

【0037】[0037]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。
The present invention is embodied in the form described above and has the following effects.

【0038】本発明における請求項1、2の発明によれ
ば、線引き中の光ファイバの振動波形の周波数分析を最
大エントロピー法を用いて実行し、卓越してなるピーク
の周波数を固有振動数ピークとするものであるから、短
いデータから分解能の高いスペクトル解析が可能で、外
乱に起因するノイズと光ファイバ固有の振動波形とを明
確に区別することができ、固有振動数周波数の検出精度
を向上し得る。その結果、目的とする張力計算結果の変
動幅も小さくなって、炉出力等の制御対象に対して高精
度で安定した制御用信号を速やかに与えることができ
る。
According to the first and second aspects of the present invention, the frequency analysis of the vibration waveform of the optical fiber being drawn is performed by using the maximum entropy method, and the frequency of the predominant peak is changed to the natural frequency peak. Therefore, high-resolution spectral analysis can be performed from short data, and noise due to disturbance can be clearly distinguished from vibration waveform peculiar to the optical fiber, and the detection accuracy of the natural frequency is improved. I can do it. As a result, the fluctuation range of the target tension calculation result is also reduced, and a highly accurate and stable control signal can be promptly provided to a control target such as a furnace output.

【0039】また、本発明における請求項3の発明によ
れば、非接触式の振動測定手段が、線引き炉から冷却管
に至る間における線引き中の未被覆光ファイバの振動波
形及び外径変化をレーザ光により測定する共用型レーザ
式振動測定器により構成されることから、従来の線引き
装置に必ず具備していた外径測定器を利用して光ファイ
バ振動波形の測定が可能であり、特別な構造のファイバ
振動検出センサを新たに追加使用することなく、既存の
検出用機器を有効活用できて、低コストで高精度の振動
測定装置を提供し得る。
Further, according to the invention of claim 3 of the present invention, the non-contact type vibration measuring means detects the vibration waveform and outer diameter change of the uncoated optical fiber during drawing from the drawing furnace to the cooling pipe. Since it is composed of a common type laser vibration measuring device that measures with laser light, it is possible to measure the optical fiber vibration waveform using the outer diameter measuring device that is always provided in the conventional drawing device, and special An existing detection device can be effectively used without additionally using a fiber vibration detection sensor having a structure, and a low-cost and high-precision vibration measurement device can be provided.

【0040】また、本発明における請求項4の発明によ
れば、前記線引き張力測定装置を要素部材として、測定
した固有振動数ピークに基づく張力値が予め設定した最
適設定値となるように線引き炉の出力(温度)を自動制
御するようにしたから、母材毎に最適な母材温度(張
力)に制御可能であり、高品質の光ファイバを安定して
生産することができる。
According to the invention of claim 4 of the present invention, the drawing furnace is used as an element member so that the tension value based on the measured natural frequency peak becomes the preset optimum set value. Since the output (temperature) is automatically controlled, it is possible to control the base material temperature (tension) optimally for each base material, and it is possible to stably produce a high-quality optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光ファイバ線引き装置での光ファイバの振動信
号の線図であり、(イ)は測定例、(ロ)は同信号の最
大エントロピー法による周波数分析結果、(ハ)は同信
号のフーリエ変換による周波数分析結果である。
FIG. 1 is a diagram of an oscillation signal of an optical fiber in an optical fiber drawing apparatus, (a) is a measurement example, (b) is a frequency analysis result of the same signal by a maximum entropy method, and (c) is a signal of the same signal. It is a frequency analysis result by Fourier transform.

【図2】本発明の実施の形態に係る光ファイバ線引き装
置の略示全体構造図である。
FIG. 2 is a schematic overall structural view of an optical fiber drawing apparatus according to an embodiment of the present invention.

【図3】図2図示の線引き装置における線引き張力制御
装置の制御態様を説明するフローチャートである。
FIG. 3 is a flowchart illustrating a control mode of a drawing tension control device in the drawing device shown in FIG. 2;

【図4】光ファイバの径及び振動の測定説明図である。FIG. 4 is an explanatory diagram of measurement of diameter and vibration of an optical fiber.

【図5】最大エントロピー法とフーリエ変換法との解析
結果に基づく線引き中の光ファイバにおける張力変動幅
の比較線図である。
FIG. 5 is a comparison diagram of a tension fluctuation width in an optical fiber being drawn based on analysis results of a maximum entropy method and a Fourier transform method.

【符号の説明】[Explanation of symbols]

1…光ファイバ母材 2…線引き炉 3
…光ファイバ 4…冷却管 5…第1被覆ダイス 6
…第1樹脂硬化装置 7…第2被覆ダイス 8…第2樹脂硬化装置 9
…引取りキャプスタン 10…母材送り装置 11…外径振動測定器 1
2…外径振動測定器 13…外径振動測定器 14…張力測定器 1
5…張力測定器 16…張力測定器 17…線引き炉電源盤 1
8…制御部 19…比較器 20…張力設定器
1. Optical fiber preform 2. Drawing furnace 3
... Optical fiber 4 ... Cooling pipe 5 ... First coating die 6
... First resin curing device 7 ... Second coating die 8 ... Second resin curing device 9
… Removal capstan 10… Base material feeder 11… Outer diameter vibration measuring instrument 1
2: Outer diameter vibration measuring device 13: Outer diameter vibration measuring device 14: Tension measuring device 1
5 ... Tension measuring device 16 ... Tension measuring device 17 ... Drawing furnace power panel 1
8 ... Control unit 19 ... Comparator 20 ... Tension setting device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 線引き中の光ファイバの振動波形を振動
測定手段によって測定し、その振動波形の固有振動数ピ
ークから前記光ファイバの張力を求める張力測定方法に
おいて、非接触式の振動測定手段により線引き中の光フ
ァイバの振動波形を測定し、その振動波形の周波数分析
を最大エントロピー法を用いて行い、卓越してなるピー
クの周波数を固有振動数ピークとすることを特徴とする
光ファイバの線引き張力測定方法。
1. A tension measuring method for measuring a vibration waveform of an optical fiber during drawing by a vibration measuring means and obtaining a tension of the optical fiber from a natural frequency peak of the vibration waveform. The optical fiber is characterized by measuring the vibration waveform of the optical fiber being drawn, analyzing the frequency of the vibration waveform using the maximum entropy method, and setting the predominant peak frequency as the natural frequency peak. Tension measurement method.
【請求項2】 線引き中の光ファイバに近接して設けら
れ該光ファイバの振動を光学的に測定する非接触式の振
動測定手段と、測定した振動波形のスペクトルから最大
エントロピー法に基づきピークの周波数を求めてこれを
固有振動数ピークと判断する振動数ピーク演算手段と、
線引き中の光ファイバにおける線引き速度、両端の非自
由点間の光ファイバ長さ及び単位長当たりの質量に基づ
き前記固有振動数ピークから目的の張力を求める張力演
算手段とを含むことを特徴とする光ファイバの線引き張
力測定装置。
2. A non-contact type vibration measuring means which is provided close to an optical fiber being drawn and optically measures the vibration of the optical fiber, and a method of measuring a peak from a spectrum of the measured vibration waveform based on a maximum entropy method. Frequency peak calculating means for obtaining a frequency and determining this as a natural frequency peak,
Tension calculating means for obtaining a target tension from the natural frequency peak based on the drawing speed of the optical fiber being drawn, the length of the optical fiber between the non-free points at both ends, and the mass per unit length. Optical fiber drawing tension measuring device.
【請求項3】 振動測定手段が、線引き炉から冷却管に
至る間における線引き中の未被覆光ファイバの振動をレ
ーザ光により測定するレーザ式振動測定器であって、線
引き中の未被覆光ファイバの振動波形及び外径変化を測
定可能な共用型に形成される請求項2記載の光ファイバ
の線引き張力測定装置。
3. A laser vibration measuring device for measuring the vibration of an uncoated optical fiber during drawing from a drawing furnace to a cooling pipe by using a laser beam, wherein the vibration measuring means is an uncoated optical fiber during drawing. 3. The optical fiber drawing tension measuring apparatus according to claim 2, wherein the apparatus is formed as a common type capable of measuring a vibration waveform and a change in outer diameter of the optical fiber.
【請求項4】 請求項2又は3に記載の構成になる光フ
ァイバの線引き張力測定装置と、線引き中の光ファイバ
に対する目標張力を設定する張力設定手段と、前記張力
測定装置による測定張力と張力設定手段による設定張力
とを比較して設定張力が大きいときは線引き炉の出力を
下げ、設定張力が小さいときは出力を上げて測定張力を
設定張力に合致させる線引き炉出力調節手段とを含むこ
とを特徴とする光ファイバの線引き張力制御装置。
4. An apparatus for measuring the drawing tension of an optical fiber according to claim 2 or 3, tension setting means for setting a target tension for an optical fiber being drawn, and a tension and a tension measured by the tension measuring apparatus. When the set tension is compared with the set tension by the setting means, the output of the drawing furnace is reduced when the set tension is large, and when the set tension is small, the output is increased to match the measured tension with the set tension. An optical fiber drawing tension control device.
JP32783299A 1999-11-18 1999-11-18 Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device Pending JP2001141583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32783299A JP2001141583A (en) 1999-11-18 1999-11-18 Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32783299A JP2001141583A (en) 1999-11-18 1999-11-18 Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device

Publications (1)

Publication Number Publication Date
JP2001141583A true JP2001141583A (en) 2001-05-25

Family

ID=18203490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32783299A Pending JP2001141583A (en) 1999-11-18 1999-11-18 Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device

Country Status (1)

Country Link
JP (1) JP2001141583A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068924A1 (en) * 2001-02-28 2002-09-06 The Furukawa Electric Co., Ltd. Method of measuring optical fiber drawing tensile force
US7937971B2 (en) 2006-11-28 2011-05-10 Corning Incorporated Methods for drawing optical fibers using a fluid bearing
US8074474B2 (en) 2007-11-29 2011-12-13 Corning Incorporated Fiber air turn for low attenuation fiber
WO2021064811A1 (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Elevator rope tension measurement system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068924A1 (en) * 2001-02-28 2002-09-06 The Furukawa Electric Co., Ltd. Method of measuring optical fiber drawing tensile force
US6816245B2 (en) 2001-02-28 2004-11-09 The Furukawa Electric Co., Ltd. Method of measuring optical fiber drawing tension
US7937971B2 (en) 2006-11-28 2011-05-10 Corning Incorporated Methods for drawing optical fibers using a fluid bearing
US8074474B2 (en) 2007-11-29 2011-12-13 Corning Incorporated Fiber air turn for low attenuation fiber
WO2021064811A1 (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Elevator rope tension measurement system
JPWO2021064811A1 (en) * 2019-09-30 2021-04-08
JP7188611B2 (en) 2019-09-30 2022-12-13 三菱電機株式会社 Elevator rope tension measurement system

Similar Documents

Publication Publication Date Title
KR100207308B1 (en) Method for monitoring fiber tension
US4692615A (en) Apparatus and method for monitoring tension in a moving fiber by Fourier transform analysis
US4523938A (en) Method of and apparatus for continuously monitoring diameter variations of an optical fiber being drawn
EP0549131B1 (en) Method and apparatus for contactless monitoring of tension in a moving fiber
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JP2001141583A (en) Fiber drawing tension measuring method of optical fiber and its device and fiber drawing tension control device
JPH06239641A (en) Abnormal point detection method of optical fiber and device therefor
JP5136429B2 (en) Temperature measurement system
JP2001153739A (en) Tension measuring method for line material, rod material and streak material and its device
RU2096354C1 (en) Method for controlling optic glass fiber manufacture and method of optic glass fiber manufacture
JPH04248415A (en) Method and device for measuring flow rate of laminar flow of molten material
JP2021045776A (en) Cast slab cut length control method, cast slab cut length control device and cast slab production method
KR100699554B1 (en) Method and device for correcting thickness
JP4101060B2 (en) Measuring method of tensile force of optical fiber
JP4369635B2 (en) Optical fiber drawing method
JPH04351254A (en) Instrument for measuring level in mold in continuous casting
SU1025758A1 (en) Method for controlling forming of chemical fiber
JP2818661B2 (en) Optical fiber manufacturing method
US20060224270A1 (en) A method for determining the fundamental oscillation frequency in an optical fiber and an application of a tensile force thus measured
JP2024027044A (en) Method for manufacturing optical fiber
JPH10316446A (en) Measurement of tension for fiber drawing of optical fiber
JP6500364B2 (en) Optical fiber manufacturing method and manufacturing apparatus
KR100362650B1 (en) The method for diagnosing deformation of continuous casting roll
KR20200132895A (en) How to control the fiber drawing facility
JPH0515201B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208