JP2001141333A - Branch pipe - Google Patents

Branch pipe

Info

Publication number
JP2001141333A
JP2001141333A JP32600299A JP32600299A JP2001141333A JP 2001141333 A JP2001141333 A JP 2001141333A JP 32600299 A JP32600299 A JP 32600299A JP 32600299 A JP32600299 A JP 32600299A JP 2001141333 A JP2001141333 A JP 2001141333A
Authority
JP
Japan
Prior art keywords
branch pipe
branch
refrigerant
pipe
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32600299A
Other languages
Japanese (ja)
Other versions
JP4134465B2 (en
Inventor
Taijo Murakami
泰城 村上
Satoru Koto
悟 古藤
Kunihiko Kaga
邦彦 加賀
Masahiro Nakayama
雅弘 中山
Akira Ishibashi
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32600299A priority Critical patent/JP4134465B2/en
Publication of JP2001141333A publication Critical patent/JP2001141333A/en
Application granted granted Critical
Publication of JP4134465B2 publication Critical patent/JP4134465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a branch pipe for branching refrigerant uniformly at low manufacturing cost. SOLUTION: The branch pipe 1 comprises a fluid inlet section 1a, a branch connecting section 1d for branching fluid from the inlet section 1a to a plurality of channels, and a plurality of outlet sections 1b, 1c for delivering the fluid through the branch connecting section 1d. A barrier wall 5 for splitting the fluid to a plurality of channels is provided in the pipe between the inlet section 1a and the branch connecting section 1d along the gravitational direction fixed with the branch pipe 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気圧縮式冷凍サ
イクルの冷媒分流などに使用される分岐管に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a branch pipe used for dividing a refrigerant in a vapor compression refrigeration cycle.

【0002】[0002]

【従来の技術】近年、冷凍空調機の熱交換器の多パス化
に伴い、分岐管が数多く用いられており、分岐性能の向
上が重要視されている。以下に、図面を参照しながら従
来の分岐管について説明する。
2. Description of the Related Art In recent years, a large number of branch pipes have been used in accordance with the increase in the number of heat exchangers of a refrigeration / air-conditioning apparatus. Hereinafter, a conventional branch pipe will be described with reference to the drawings.

【0003】図19は、従来の分岐管の熱交換器への取
り付け状態を示す斜視図、図20は従来の分岐管の形状
を示す斜視図、図21は熱交換器を冷凍サイクルに接続
して運転した際の従来の分岐管内部における冷媒の流動
状態を示す断面図である。図において、1は分岐管、2
はU字管、3は熱交換器の本体、4は熱交換器を構成し
内部を冷媒が流れる伝熱管、特に4aは分岐管1への入
口配管、4bおよび4cは分岐管1からの出口配管、6
は分岐管1を通過する冷媒の流れ方向を示し、10は重
力方向を示す。ここで、U字管2と伝熱管4および分岐
管1と伝熱管4a、4b、4cはロウ付けによって溶接
される。また、1aは分岐管入口部、1b、1cは分岐
管出口部、8a、8b、8cは冷媒の液相部、8a、7
b、7cは冷媒の気相部、9a、9b、9cは冷媒の液
相部と気相部を合わせた冷媒全体を示す。
FIG. 19 is a perspective view showing a state in which a conventional branch pipe is attached to a heat exchanger, FIG. 20 is a perspective view showing the shape of a conventional branch pipe, and FIG. 21 is a diagram showing a state in which the heat exchanger is connected to a refrigeration cycle. FIG. 4 is a cross-sectional view showing a state of flow of a refrigerant inside a conventional branch pipe when the conventional branch pipe is operated. In the figure, 1 is a branch pipe, 2
Is a U-shaped tube, 3 is a heat exchanger main body, 4 is a heat exchanger tube constituting a heat exchanger and through which a refrigerant flows, particularly 4a is an inlet pipe to the branch pipe 1, 4b and 4c are outlets from the branch pipe 1. Plumbing, 6
Denotes the flow direction of the refrigerant passing through the branch pipe 1, and 10 denotes the direction of gravity. Here, the U-shaped tube 2 and the heat transfer tube 4 and the branch tube 1 and the heat transfer tubes 4a, 4b and 4c are welded by brazing. 1a is a branch pipe inlet, 1b and 1c are branch pipe outlets, 8a, 8b and 8c are liquid phase portions of refrigerant, 8a and 7
Reference numerals b and 7c denote a gas phase portion of the refrigerant, and 9a, 9b and 9c denote the entire refrigerant including the liquid phase portion and the gas phase portion of the refrigerant.

【0004】以上のように構成された分岐管1につい
て、図21を用いてその動作を説明する。冷媒9aは、
冷媒の気相部7aが伝熱管の中央部、冷媒の液相部8a
が伝熱管の内壁面周囲に膜状に流れる環状流に近い状態
で気液分離して、分岐管入口部1aから流入し、分岐管
出口部1bと1cに分流されて流出する。
The operation of the branch pipe 1 configured as described above will be described with reference to FIG. The refrigerant 9a is
The refrigerant gas phase 7a is located at the center of the heat transfer tube, and the refrigerant liquid phase 8a
Is separated into gas and liquid in a state close to an annular flow flowing in the form of a film around the inner wall surface of the heat transfer tube, flows in from the branch pipe inlet 1a, and is diverted to the branch pipe outlets 1b and 1c to flow out.

【0005】また、異なる従来の分岐管として特開平1
−254239号公報に開示されたものがある。図22
は、従来の別の分岐管を示す外観図であり、図23は、
熱交換器を冷凍サイクルに接して運転した際の分岐管内
部における冷媒の流動状態を示す断面図である。図にお
いて、1は分岐管、1aは分岐管入口部、1b、1cは
分岐管出口部、16はらせん板を示す。らせん板16は
分岐管入口部1aの内側に挿入されている。
Another conventional branch pipe is disclosed in
-254239. FIG.
FIG. 23 is an external view showing another conventional branch pipe, and FIG.
It is sectional drawing which shows the flow state of the refrigerant | coolant inside a branch pipe when operating a heat exchanger in contact with the refrigeration cycle. In the figure, 1 is a branch pipe, 1a is a branch pipe inlet, 1b and 1c are branch pipe outlets, and 16 is a spiral plate. The spiral plate 16 is inserted inside the branch pipe inlet 1a.

【0006】以上のように構成された分岐管1につい
て、以下図23を用いてその動作を説明する。冷媒の液
相部8aと冷媒の気相部7aが分岐管入口部1aから流
入する。このとき、冷媒の液相部8aと冷媒の気相部7
aは、環状流に近い状態で気液分離しているが、分岐管
入口部1aを流れる時にらせん板16によって気液が乱
流混合し、その後、分岐管出口部1bと1cに分流され
て流出する。
The operation of the branch pipe 1 configured as described above will be described below with reference to FIG. The liquid phase portion 8a of the refrigerant and the gas phase portion 7a of the refrigerant flow from the branch pipe inlet 1a. At this time, the liquid phase portion 8a of the refrigerant and the gas phase portion 7 of the refrigerant
Although a is gas-liquid separated in a state close to an annular flow, the gas-liquid is turbulently mixed by the spiral plate 16 when flowing through the branch pipe inlet 1a, and is then separated into the branch pipe outlets 1b and 1c. leak.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図2
0、21で説明した従来の分岐管では、分岐時に冷媒の
気相部7aよりも重い冷媒の液相部8aが、重力10の
影響をうけるとともに、分岐部の壁面へ付着するため、
分岐管出口部1cへ多く流れ過ぎてしまい、冷媒9aを
分岐管出口部1bと1cへ均一に分流できず、熱交換器
の冷却性能が低下するという問題があった。また、所望
の分流比に分割することが不可能であった。
However, FIG.
In the conventional branch pipe described in 0 and 21, the liquid phase portion 8a of the refrigerant, which is heavier than the gas phase portion 7a of the refrigerant at the time of branching, is affected by gravity 10 and adheres to the wall surface of the branch portion.
There is a problem that the refrigerant 9a flows too much to the branch pipe outlet 1c, so that the refrigerant 9a cannot be uniformly distributed to the branch pipe outlets 1b and 1c, and the cooling performance of the heat exchanger is reduced. Further, it was impossible to divide the flow into a desired flow ratio.

【0008】また、特開平1−254239号公報に記
載された分岐管では、らせん板16により冷媒8aと
冷媒の気相部7aを気液混合するが、冷媒の気相部7a
よりも重い冷媒の液相部8aが重力10の影響をうける
とともに、混合された冷媒全体9aが分岐部で壁面に衝
突して付着するため、冷媒9aが分岐管出口部1cへ多
く流れ、均一に分流できなかった。
Further, in the branch pipe described in Japanese Patent Application Laid-Open No. 1-254239, the spiral plate 16 is used to connect the refrigerant 8a with the refrigerant 8a.
The gas phase 7a of the refrigerant is gas-liquid mixed, but the gas phase 7a of the refrigerant is mixed.
The liquid phase portion 8a of the heavier refrigerant is affected by the gravity 10 and the whole mixed refrigerant 9a collides with and adheres to the wall surface at the branch portion, so that a large amount of the refrigerant 9a flows to the branch pipe outlet portion 1c and is uniform. Could not be diverted.

【0009】本発明は、上記問題点を解決するためにな
されたものであり、重力の影響をうけず、冷媒の均一分
配、さらには所望の冷媒の分配比を実現できる分岐管を
得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a branch pipe capable of achieving a uniform distribution of refrigerant and a desired refrigerant distribution ratio without being affected by gravity. Aim.

【0010】[0010]

【課題を解決するため手段】この発明に係る分岐管は、
分岐管本体に流体が流入する入口部と、この入口部から
流入した流体を複数の流路へ分岐させる分岐部と、この
分岐部を介して流れる流体を流出させる複数の出口部と
を備えた分岐管において、入口部から分岐部に至る管内
に、分岐管本体の取り付け状態における重力方向に沿っ
て設けられ、複数の流路に分割する隔壁を備えたもので
ある。
A branch pipe according to the present invention comprises:
An inlet portion through which fluid flows into the branch pipe main body, a branch portion for branching the fluid flowing from the inlet portion into a plurality of flow paths, and a plurality of outlet portions for flowing out the fluid flowing through the branch portion. In the branch pipe, a partition wall provided along the direction of gravity when the branch pipe main body is attached and provided in the pipe from the inlet to the branch is provided, and is divided into a plurality of flow paths.

【0011】また、分岐管本体に流体が流入する入口部
と、この入口部から流入した流体を複数の流路へ分岐さ
せる分岐部と、この分岐部を介して流れる流体を流出さ
せる複数の出口部とを備えた分岐管において、入口部付
近においては、分岐管本体の取り付け状態における重力
方向に沿って配置されると共に、分岐部へ近づくにつれ
て捻られ、分岐部付近においては、複数の流路の分岐方
向に対して垂直となるように配置されている隔壁を備え
たものである。
[0011] Further, an inlet portion into which the fluid flows into the branch pipe main body, a branch portion for branching the fluid flowing from the inlet portion into a plurality of flow paths, and a plurality of outlets for discharging the fluid flowing through the branch portion. In the branch pipe provided with the branch part, near the inlet part, it is arranged along the direction of gravity in the attached state of the branch pipe main body, twisted as approaching the branch part, and a plurality of flow paths near the branch part The partition wall is arranged so as to be perpendicular to the branching direction.

【0012】また、隔壁は、入口部から分岐部に至る直
線部分に設けられているものである。
The partition is provided in a straight line from the entrance to the branch.

【0013】また、隔壁の入口部側の端部を、くさび形
状とするものである。
Further, the end of the partition on the side of the entrance is formed in a wedge shape.

【0014】また、隔壁は、管の軸線付近において隙間
を有しているものである。
The partition has a gap near the axis of the tube.

【0015】[0015]

【発明の実施の形態】実施の形態1.以下、本発明の実
施の形態について図面を参照しながら説明する。図1
は、本発明の実施の形態1における分岐管を示す斜視図
である。図において、1aは直管からなる分岐管入口
部、1b、1cは曲がり管からなる分岐管出口部、1d
は分岐管入口部1aに垂直な直管の分岐管接続部で分岐
管の分岐部を構成している。5は隔壁、11は分岐管入
口部1aの中心軸を示す。分岐管1はT字管として分岐
管入口部1aと分岐管接続部1dを形成し、分岐管入口
部1aと分岐管接続部1dからなるT字管の略中央では
ない残りの端部に分岐管出口部1b、1cをロウ付けに
より溶接した形状である。ここで分岐管入口部1a、分
岐管出口部1b、1cはそれぞれ、上記従来例で示した
図19における入口配管4a、出口配管4b、4cと接
続する。また、隔壁5は分岐管入口部1aおよび分岐管
接続部1dの配管内壁にロウ付けにより溶接される。な
お、この分岐管は、上記従来例における図19に示すし
たような熱交換器に用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG.
1 is a perspective view showing a branch pipe according to Embodiment 1 of the present invention. In the figure, 1a is a branch pipe inlet portion formed of a straight pipe, 1b and 1c are branch pipe outlet portions formed of a bent pipe, 1d
Is a branch pipe connection part of a straight pipe perpendicular to the branch pipe inlet part 1a and constitutes a branch part of the branch pipe. Reference numeral 5 denotes a partition wall, and 11 denotes a central axis of the branch pipe inlet 1a. The branch pipe 1 forms a branch pipe inlet 1a and a branch pipe connection 1d as a T-shaped pipe, and branches to the remaining end other than the substantially center of the T-tube consisting of the branch pipe inlet 1a and the branch pipe connection 1d. The pipe outlets 1b, 1c are welded by brazing. Here, the branch pipe inlet 1a and the branch pipe outlets 1b, 1c are respectively connected to the inlet pipe 4a and the outlet pipes 4b, 4c shown in FIG. The partition wall 5 is welded to the inner wall of the pipe at the branch pipe inlet 1a and the branch pipe connection 1d by brazing. This branch pipe is used for a heat exchanger as shown in FIG. 19 in the conventional example.

【0016】ここで、分岐管1の取り付け姿勢について
説明をわかりやすくするため図2を用いて座標軸を決定
する。図2において、12はX軸、13はY軸、14は
Z軸、15は原点を示す。原点15は分岐出口部1b、
1c端部の管断面の中心を結ぶ線分の中点とする。X軸
は分岐管入口部1aの中心軸11に平行かつ原点15を
通る直線、Y軸13は原点15と分岐管入口部1a端部
の管断面の中心を結ぶ直線、Z軸14は分岐管出口部1
b、1c端部の管断面の中心を結ぶ直線とする。また、
X軸方向を分岐管入口部1aの冷媒流入方向にとり、Y
軸方向、Z軸方向を右手系となるように決定する。上記
図1はZ軸を鉛直とした場合の分岐管1の取り付け姿勢
を一例として示したものである。
Here, coordinate axes are determined with reference to FIG. 2 in order to make the description of the mounting posture of the branch pipe 1 easy to understand. In FIG. 2, 12 indicates the X axis, 13 indicates the Y axis, 14 indicates the Z axis, and 15 indicates the origin. The origin 15 is the branch outlet 1b,
The midpoint of the line connecting the centers of the pipe sections at the end 1c. The X axis is a straight line parallel to the central axis 11 of the branch pipe inlet 1a and passing through the origin 15, the Y axis 13 is a straight line connecting the origin 15 and the center of the pipe cross section at the end of the branch pipe inlet 1a, and the Z axis 14 is a branch pipe. Exit 1
b, 1c are straight lines connecting the centers of the pipe sections at the ends. Also,
The X-axis direction is set to the refrigerant inflow direction of the branch pipe inlet 1a, and Y
The axial direction and the Z-axis direction are determined to be a right-handed system. FIG. 1 shows an example of the mounting posture of the branch pipe 1 when the Z axis is vertical.

【0017】次に、図3を用いて隔壁5の取り付けの様
子を説明する。図3は、上記図1の分岐管1を−Y軸方
向からみた断面図である。図において、隔壁5は、分岐
管入口部1a付近においては、分岐管1の取り付け状態
における重力方向10に沿って管中心を通るように配置
され、分岐部へ近づくにつれて90度捻られ、分岐部付
近においては、分岐接続部1dの分岐方向に対して垂直
となるようににロウづけされている。
Next, how the partition 5 is attached will be described with reference to FIG. FIG. 3 is a cross-sectional view of the branch pipe 1 of FIG. 1 viewed from the −Y axis direction. In the figure, the partition wall 5 is arranged near the branch pipe inlet 1a so as to pass through the center of the pipe along the direction of gravity 10 in the attached state of the branch pipe 1, and is twisted 90 degrees as approaching the branch. In the vicinity, it is brazed so as to be perpendicular to the branch direction of the branch connection part 1d.

【0018】以上のように構成された分岐管1につい
て、以下にその動作を説明する。まず分岐管1に流入す
る冷媒の様子について、図4、図5を用いて説明する。
図4、図5は、上記従来例における図19に示した入口
配管4aを−X軸方向からみた断面図である。図4にお
いて、7aは冷媒の気相部、8aは冷媒の液相部、9a
は冷媒の気相部7aと冷媒の液相部8aを合わせた冷媒
全体、20は管中心を通る鉛直軸を示す。
The operation of the branch pipe 1 configured as described above will be described below. First, the state of the refrigerant flowing into the branch pipe 1 will be described with reference to FIGS.
4 and 5 are cross-sectional views of the conventional inlet pipe 4a shown in FIG. In FIG. 4, 7a is a gas phase portion of the refrigerant, 8a is a liquid phase portion of the refrigerant, 9a
Denotes a whole refrigerant including the gas phase portion 7a of the refrigerant and the liquid phase portion 8a of the refrigerant, and 20 denotes a vertical axis passing through the center of the pipe.

【0019】入口配管4aにおける冷媒9aの配管断面
分布の多くは、図4に示すように、冷媒の気相部7aが
入口配管4aの中央部を流れ、冷媒の液相部8aが入口
配管4aの内面にそって環状となるような分布、もしく
は図5に示すように、比重の大きな冷媒の液相部8aが
重力の影響を受けて入口配管4aの下側に多く流れ、比
重の小さな冷媒の気相部7aが入口配管4aの上側に多
く流れるような分布となる。図4、図5の分布からも明
らかなように、入口配管4aの断面内における冷媒の気
相部7aおよび冷媒の液相部8aの分布は、鉛直軸20
に対してほぼ軸対称となる。
As shown in FIG. 4, most of the distribution of the cross section of the refrigerant 9a in the inlet pipe 4a is such that the gas phase 7a of the refrigerant flows through the center of the inlet pipe 4a and the liquid phase 8a of the refrigerant flows in the inlet pipe 4a. 5, or the liquid phase portion 8a of the refrigerant having a large specific gravity flows under the inlet pipe 4a under the influence of gravity, as shown in FIG. Is distributed such that a large amount of the gas phase portion 7a flows above the inlet pipe 4a. 4 and 5, the distribution of the gas phase portion 7a of the refrigerant and the liquid phase portion 8a of the refrigerant in the cross section of the inlet pipe 4a are different from those of the vertical axis 20.
Is almost axially symmetric with respect to.

【0020】次に、分岐管入口部1aに流入した直後の
冷媒9aの様子を、図6、図7を用いて説明する。図
6、図7は分岐管入口部1aの端部を−X軸方向からみ
た断面図である。図6、図7において、7b、7cは冷
媒の気相部、8b、8cは冷媒の液相部、9b、9cは
冷媒の気相部7b、7cと冷媒の液相部8b、8cのそ
れぞれを合わせた冷媒全体を示す。分岐管入口部1aに
流入した冷媒9aは隔壁5により、冷媒9bと冷媒9c
に分流される。ここで、分岐管入口部1a付近において
隔壁5は、分岐管1の取り付け状態における重力方向1
0と同等である鉛直軸20と重なるように配置されてい
るため、隔壁5により分流された後の冷媒の気相部7b
と8b、冷媒の液相部7cと8cの流量はおおむね等し
くなり、冷媒の気相部7b、7cと冷媒の液相部8b、
8cのそれぞれの和である冷媒全体9bと9cの流量も
おおむね等しくなる。
Next, the state of the refrigerant 9a immediately after flowing into the branch pipe inlet 1a will be described with reference to FIGS. 6 and 7 are cross-sectional views of the end of the branch pipe inlet 1a as viewed from the -X axis direction. 6 and 7, reference numerals 7b and 7c denote gas phase portions of the refrigerant, 8b and 8c denote liquid phase portions of the refrigerant, and 9b and 9c denote gas phase portions 7b and 7c of the refrigerant and liquid phase portions 8b and 8c of the refrigerant, respectively. Shows the entire refrigerant combined with. The refrigerant 9a flowing into the branch pipe inlet 1a is separated by the partition 5 into the refrigerant 9b and the refrigerant 9c.
Shunted. Here, in the vicinity of the branch pipe inlet 1a, the partition wall 5 is connected to the gravitational direction 1 with the branch pipe 1 attached.
0, the gas phase portion 7b of the refrigerant after being divided by the partition wall 5
And 8b, the flow rates of the liquid phase portions 7c and 8c of the refrigerant are substantially equal, and the gas phase portions 7b and 7c of the refrigerant and the liquid phase portions 8b and
The flow rates of the entire refrigerants 9b and 9c, which are the sums of the respective refrigerants 8c, are also substantially equal.

【0021】さらに、分岐管入口部1aを通過して分岐
管出口1b、1cへ進む冷媒の流れを図8を用いて説明
する。図8は、分岐管1を−Y軸方向からみた断面図で
ある。図8において、斜線の領域は配管内を流れる冷媒
9cを示し、点部は配管内を流れる冷媒9bを示す。こ
こで、隔壁5が分岐管入口部1aおよび分岐管接続部1
dの配管内壁にロウづけされているため、分岐管入口部
1aの入口で隔壁5により分流された冷媒9b、9c
は、隔壁5の捻れに沿って合流することなくそれぞれ分
岐管出口部1bおよび1cより流出する。
The flow of the refrigerant passing through the branch pipe inlet 1a and proceeding to the branch pipe outlets 1b and 1c will be described with reference to FIG. FIG. 8 is a cross-sectional view of the branch pipe 1 as viewed from the −Y axis direction. In FIG. 8, a hatched area indicates the refrigerant 9c flowing in the pipe, and a dotted portion indicates the refrigerant 9b flowing in the pipe. Here, the partition wall 5 is composed of the branch pipe inlet 1a and the branch pipe connection 1
d, the refrigerants 9b, 9c diverted by the partition wall 5 at the entrance of the branch pipe entrance 1a.
Flows out of the branch pipe outlets 1b and 1c without merging along the twist of the partition wall 5, respectively.

【0022】以上のように、本実施の形態によれば、伝
熱管4の直管部において鉛直軸20に対してほぼ軸対称
な分布となる冷媒9aを効果的に均一に分流することが
可能となる。また、分岐管1は伝熱管4の直管部終端に
取り付けられるとともに、直管部である分岐管入口部1
aにおいて冷媒を分岐するため、曲がり管を通過した後
に冷媒を分流する従来の分岐管よりも安定した状態で冷
媒を分流することができ、より均一分流性能を向上でき
るという効果を奏する。さらに、分岐管入口部1aの直
管部で隔壁5をねじるような構造をとるため、曲がり管
内で隔壁5を溶接するよりも、隔壁5の加工および溶接
が容易となり、製造コストを低減することができる。
As described above, according to the present embodiment, it is possible to effectively and uniformly divide the refrigerant 9a having a distribution substantially axisymmetric with respect to the vertical axis 20 in the straight pipe portion of the heat transfer tube 4. Becomes Further, the branch pipe 1 is attached to the end of the straight pipe part of the heat transfer pipe 4 and the branch pipe inlet 1 which is a straight pipe part.
Since the refrigerant is branched at a, the refrigerant can be divided in a more stable state than a conventional branch pipe that divides the refrigerant after passing through a curved pipe, and the effect of improving the uniform branching performance can be obtained. Furthermore, since the partition wall 5 is twisted at the straight pipe portion of the branch pipe inlet 1a, the processing and welding of the partition wall 5 are easier than welding the partition wall 5 in a bent pipe, and the manufacturing cost is reduced. Can be.

【0023】なお、上記実施の形態1では、分岐管1の
Z軸14は鉛直方向上向きに正であり、分岐管1は直管
の分岐管入口部1aと直管の分岐管接続部1dをT字管
により形成し、曲がり管の分岐管出口部1bと1cを、
分岐管入口部1aと分岐管接続部1dからなるT字管の
略中央でない残りの端部に溶接し、隔壁5は分岐管1の
入口で鉛直軸20と重なるように取り付けた構造を例に
挙げた。しかしながら、分岐管1の取り付け姿勢や、分
岐管1の構造および加工方法、隔壁の構造および加工方
法、取り付け方法、取り付け姿勢は任意であり、少なく
とも隔壁5が、入口配管4aと接続する分岐管入口部1
aにあり、分岐管1の取り付け状態における重力方向1
0に沿って設けられ、分流された冷媒9bと9cが分岐
管1内で合流することなく分岐管出口部1bと1cから
流出するような構造であればよい。
In the first embodiment, the Z-axis 14 of the branch pipe 1 is positive upward in the vertical direction, and the branch pipe 1 connects the branch pipe inlet 1a of the straight pipe and the branch pipe connection 1d of the straight pipe. The branch pipe outlets 1b and 1c of the bent pipe are formed by a T-shaped pipe.
An example of a structure in which a T-tube consisting of a branch pipe inlet portion 1a and a branch pipe connection portion 1d is welded to the other end that is not substantially at the center, and the partition wall 5 is attached so as to overlap the vertical axis 20 at the branch pipe 1 inlet. Listed. However, the mounting posture of the branch pipe 1, the structure and processing method of the branch pipe 1, the structure and processing method of the partition wall, the mounting method, and the mounting posture are arbitrary, and at least the partition wall 5 is connected to the inlet pipe 4 a to be connected to the inlet pipe 4 a. Part 1
a, the gravitational direction 1 when the branch pipe 1 is attached.
It is sufficient that the refrigerants 9b and 9c are provided along 0 and flow out of the branch pipe outlets 1b and 1c without being merged in the branch pipe 1.

【0024】以下に図を用いて変形例を列挙する。ま
ず、分岐管1の姿勢と構造についての変形例を示す。図
9(a)は、Y軸を鉛直上向き方向とした場合の分岐管
の斜視図である。この場合、隔壁5のねじれはなくても
よい。図9(b)は、分岐管接続部1d、分岐管出口部
1b、1cを配管の曲げ加工により形成し、それに分岐
管入口部1aを溶接した場合の分岐管の斜視図である。
図9(c)は分岐管入口部1aに分岐管出口部1b、1
cを溶接した場合の分岐管の斜視図である。
Hereinafter, modified examples will be listed with reference to the drawings. First, a modified example of the posture and structure of the branch pipe 1 will be described. FIG. 9A is a perspective view of a branch pipe in a case where the Y axis is set in a vertically upward direction. In this case, the partition wall 5 need not be twisted. FIG. 9B is a perspective view of the branch pipe when the branch pipe connection part 1d and the branch pipe outlet parts 1b and 1c are formed by bending pipes, and the branch pipe inlet part 1a is welded thereto.
FIG. 9 (c) shows a branch pipe outlet 1b and a branch pipe outlet 1b,
It is a perspective view of the branch pipe when c is welded.

【0025】次に、隔壁5の構造についての変形例を示
す。図10(a)は、隔壁5が分岐管入口部1a端部よ
りも長い場合である。図10(b)は、隔壁5が分岐管
入口部1a端部よりも短い場合である。図11(a)は
隔壁5の端部をYZ平面に対して傾けた場合、図11
(b)は隔壁5端部をくさび形状とした場合、図11
(c)は隔壁5をくの字に曲げて取り付けた場合であ
る。ここで、図11(b)のように隔壁5の先端をくさ
び形状とした場合、分流時の隔壁の厚みをより薄くする
ことができるとともに、隔壁5の圧損がより小さくなる
ため、より冷媒を均一に分流することができる。図11
(c)では所望の分配比を得ることも可能である。
Next, a modification of the structure of the partition 5 will be described. FIG. 10A shows the case where the partition wall 5 is longer than the end of the branch pipe inlet 1a. FIG. 10B shows a case where the partition wall 5 is shorter than the end of the branch pipe inlet 1a. FIG. 11A shows a case where the end of the partition 5 is inclined with respect to the YZ plane.
FIG. 11B shows a case where the end of the partition wall 5 has a wedge shape.
(C) shows a case where the partition wall 5 is attached in a bent shape. Here, when the tip of the partition wall 5 is formed in a wedge shape as shown in FIG. 11B, the thickness of the partition wall at the time of branching can be made smaller, and the pressure loss of the partition wall 5 becomes smaller. It can be evenly divided. FIG.
In (c), a desired distribution ratio can be obtained.

【0026】さらに、図12(a)は隔壁5の端部を上
側と下側で切り分けた場合であり、図12(b)は−X
軸方向から見た隔壁5の様子、図12(c)はY軸から
見た隔壁5の様子を示す図である。図12(d)は内壁
にらせん溝を持つ伝熱管4aを示す図である。図12
(e)は内壁にらせん溝を持つ伝熱管4aに図12
(a)に示す分岐管1を取り付け、中心軸11から伝熱
管4aおよび分岐管入口部1aの壁内側を見た図であ
る。
FIG. 12A shows a case where the end of the partition wall 5 is cut on the upper side and the lower side, and FIG.
FIG. 12C is a diagram illustrating the state of the partition wall 5 viewed from the axial direction, and FIG. 12C is a diagram illustrating the state of the partition wall 5 viewed from the Y axis. FIG. 12D is a diagram showing the heat transfer tube 4a having a spiral groove on the inner wall. FIG.
(E) shows a heat transfer tube 4a having a spiral groove on the inner wall as shown in FIG.
FIG. 3A is a view in which the branch pipe 1 shown in FIG. 1A is attached, and the inside of the wall of the heat transfer pipe 4a and the branch pipe inlet 1a is viewed from the central shaft 11.

【0027】図において、16はらせん溝、17はらせ
ん溝16間を通過する冷媒液相部の流れ方向、18は隔
壁5の中心軸11に対する開き角、19はらせん溝の中
心軸11に対する傾き角であり、ここで、らせん溝16
の傾き角19と隔壁5の開き角18の大きさは等しい。
図12(e)を用いて冷媒の流れを説明する。伝熱管4
aの内側にらせん溝16がある場合、らせん溝16の間
を流れる冷媒の液相部の流れ方向17は、らせん溝の傾
き角19と等しくなる。また、隔壁5の開き角18は、
らせん溝の傾き角19と等しいため、らせん溝内を流れ
る冷媒の液相部の流れ方向17と隔壁5は平行となる。
よって、冷媒が隔壁5から受ける抵抗は小さくなり、冷
媒側の圧力上昇を高めることなく分流できるという効果
を奏する。
In the drawing, 16 is a spiral groove, 17 is the flow direction of the refrigerant liquid phase passing between the spiral grooves 16, 18 is the opening angle of the partition wall 5 with respect to the central axis 11, and 19 is the inclination of the spiral groove with respect to the central axis 11. Corner, where the spiral groove 16
Is equal to the opening angle 18 of the partition 5.
The flow of the refrigerant will be described with reference to FIG. Heat transfer tube 4
In the case where the spiral groove 16 is present inside a, the flow direction 17 of the liquid phase portion of the refrigerant flowing between the spiral grooves 16 is equal to the inclination angle 19 of the spiral groove. The opening angle 18 of the partition 5 is
Since it is equal to the inclination angle 19 of the spiral groove, the flow direction 17 of the liquid phase portion of the refrigerant flowing in the spiral groove is parallel to the partition wall 5.
Therefore, the resistance that the refrigerant receives from the partition wall 5 is reduced, and the effect that the refrigerant can be divided without increasing the pressure increase on the refrigerant side is exerted.

【0028】また図13は、従来例として説明した上記
図19の分岐管に、本発明における隔壁5を取り付けた
場合である。図13の分岐管1では、曲がり部に隔壁5
を取り付けるため、隔壁の製造および取り付け加工が困
難となるが、その反面、従来の分岐管1を流用できるた
め、分岐管1を製造するための金型代を節約できるとと
もに従来の製造技術を活用でき、製造コストを低減でき
るという効果を奏する。
FIG. 13 shows a case where the partition wall 5 of the present invention is attached to the branch pipe of FIG. 19 described as a conventional example. In the branch pipe 1 shown in FIG.
This makes it difficult to manufacture and attach the partition walls, but on the other hand, because the conventional branch pipe 1 can be used, the die cost for manufacturing the branch pipe 1 can be saved and the conventional manufacturing technology is utilized. Thus, there is an effect that the manufacturing cost can be reduced.

【0029】実施の形態2.以下、本発明の実施の形態
2について図面を参照しながら説明する。図14(a)
は、本発明の実施の形態2における分岐管1を示す斜視
図である。分岐管1の説明は実施の形態1と共通するた
めに省略する。また、図14(b)は分岐管入口部1a
の端部を−X軸方向からみた断面図である。ここで、隔
壁5は一枚の板を溶接して構成するのではなく、フィン
を分岐管入口部1aの内部に加工することで構成する。
図14(b)において、上下の隔壁5は、分岐管入口部
1aの端部において、分岐管本体の取り付け状態におけ
る重力方向に沿って配置され、図14(a)のように、
分岐管入口部1a内で冷媒の流れ方向6に進みながら9
0度ねじれ、分岐管接続部1d内側で、分岐管接続部1
dの分岐方向に対して垂直な状態となる。
Embodiment 2 Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIG. 14 (a)
Is a perspective view showing a branch pipe 1 according to Embodiment 2 of the present invention. The description of the branch pipe 1 is omitted because it is common to the first embodiment. FIG. 14B shows a branch pipe inlet 1a.
FIG. 4 is a cross-sectional view of the end portion viewed from the −X axis direction. Here, the partition 5 is not formed by welding a single plate, but is formed by processing fins inside the branch pipe inlet 1a.
In FIG. 14 (b), the upper and lower partitions 5 are arranged at the end of the branch pipe inlet 1a along the direction of gravity in the state where the branch pipe main body is attached, as shown in FIG. 14 (a).
While moving in the flow direction 6 of the refrigerant in the branch pipe inlet 1a, 9
0 degree twist, branch pipe connection 1d inside branch pipe connection 1d
The state is perpendicular to the branching direction of d.

【0030】以上のように構成された分岐管1につい
て、以下にその動作を説明する。伝熱管4内を流れる冷
媒は、上記実施の形態1の図4で示したように冷媒の気
相部7aが伝熱管4aの中央部を流れ、冷媒の液相部8
aが伝熱管4aの内壁面周囲にそって環状となるような
分布か、もしくは図5に示すように、比重の大きな冷媒
の液相部8aが重力の影響を受けて伝熱管4aの下側に
多く流れ、比重の小さな冷媒の気相部7aが伝熱管4a
の上側に多く流れるような分布となる。
The operation of the branch pipe 1 configured as described above will be described below. As shown in FIG. 4 of the first embodiment, the refrigerant flowing in the heat transfer tube 4 is such that the gas phase portion 7a of the refrigerant flows through the central portion of the heat transfer tube 4a and the liquid phase portion 8 of the refrigerant.
is distributed such that a is annular along the inner wall surface of the heat transfer tube 4a, or as shown in FIG. 5, the liquid phase portion 8a of the refrigerant having a large specific gravity is under the influence of gravity to be below the heat transfer tube 4a. Flows into the heat transfer tube 4a.
It becomes a distribution that flows more on the upper side of.

【0031】次に、分岐管入口部1aを通過した直後の
冷媒の様子を図15および図16を用いて説明する。図
15および図16に示すように、分岐管入口部1aに流
入した冷媒の液相部8aは隔壁5により、冷媒8bと冷
媒8cに分流される。一方、冷媒の気相部7aは隔壁5
により完全に分岐されない。その後、冷媒の液相部8b
および8cは分岐管入口部1aを進むが、図15および
図16のように冷媒の気相部7aが配管中央を通過する
分布となるため、冷媒の液相部8bと8cはわずかに合
流するのみで分岐管接続部1dに到達し、その後、各々
が分岐管出口1bおよび1cより流出する。これにより
冷媒の液相部9bと9cの流量がほぼ等しくなる。一
方、冷媒の気相部7aは重力の影響を強く受けないとと
もに、冷媒の液相部9bと9cがほぼ均一に分流され
て、冷媒の気相部が流れる分岐管出口1b、1cの流路
断面積がほぼ等しくなるため、冷媒の気相部もほぼ均一
に分流される。
Next, the state of the refrigerant immediately after passing through the branch pipe inlet 1a will be described with reference to FIGS. As shown in FIGS. 15 and 16, the liquid phase portion 8a of the refrigerant flowing into the branch pipe inlet 1a is divided by the partition wall 5 into the refrigerant 8b and the refrigerant 8c. On the other hand, the gas phase portion 7a of the refrigerant
Does not branch completely. Thereafter, the liquid phase portion 8b of the refrigerant
And 8c proceed through the branch pipe inlet 1a, but as shown in FIGS. 15 and 16, the distribution of the refrigerant gas phase 7a passes through the center of the pipe, so that the refrigerant liquid phases 8b and 8c merge slightly. Only reaches the branch pipe connection part 1d only after that, each flows out from the branch pipe outlets 1b and 1c. Thereby, the flow rates of the liquid phase portions 9b and 9c of the refrigerant become substantially equal. On the other hand, the refrigerant gas phase portion 7a is not strongly affected by gravity, and the refrigerant liquid phase portions 9b and 9c are almost uniformly diverted so that the refrigerant gas phase portion flows through the branch pipe outlets 1b and 1c. Since the cross-sectional areas are substantially equal, the gas phase of the refrigerant is also substantially uniformly diverted.

【0032】以上のように、本実施の形態2によれば、
上記実施の形態1と同様に、伝熱管4の直管部において
鉛直軸20に対してほぼ軸対称な分布となる冷媒9aを
効果的に均一に分流することが可能となる。また、分岐
管1は伝熱管4の直管部終端に取り付けられるととも
に、直管部である分岐管入口部1aにおいて冷媒を分岐
するため、曲がり管を通過した後に冷媒を分流する従来
の分岐管よりも安定した状態で冷媒を分配、より等分配
を実現できるという効果を奏する。さらに、分岐管入口
部1aの直管部で隔壁5をねじるような構造をとるた
め、曲がり管内で隔壁5を溶接するよりも、明らかに隔
壁5の加工および溶接が容易となる。さらに、隔壁5を
フィンとして加工することにより、隔壁5の製造方法の
自由度が増すとともに、製造コストの低減も期待できる
という効果を奏する。
As described above, according to the second embodiment,
As in the first embodiment, it is possible to effectively and uniformly divide the refrigerant 9a having a distribution substantially axisymmetric with respect to the vertical axis 20 in the straight pipe portion of the heat transfer tube 4. Further, the branch pipe 1 is attached to the end of the straight pipe part of the heat transfer pipe 4 and branches the refrigerant at the branch pipe inlet 1a which is a straight pipe part. There is an effect that the refrigerant can be distributed in a more stable state and equal distribution can be realized. Further, since the partition wall 5 is twisted at the straight pipe portion of the branch pipe inlet 1a, the processing and welding of the partition wall 5 are clearly easier than welding the partition wall 5 in a bent pipe. Further, by processing the partition walls 5 as fins, it is possible to increase the degree of freedom of the method of manufacturing the partition walls 5 and to expect a reduction in manufacturing cost.

【0033】なお、本実施の形態では、分岐管1のZ軸
14は鉛直方向上向きに正であり、分岐管1は直管の分
岐管入口部1aと直管の分岐管接続部1dをT字管によ
り形成し、曲がり管の分岐管出口部1bと1cを略中央
でない残りの端部に溶接し、分岐管入口部1aの壁面に
フィンを加工することで隔壁5を構成する構造を例に挙
げたが、分岐管1の取り付け姿勢や、分岐管1の構造お
よび加工方法、隔壁の構造および加工方法、取り付け方
法、取り付け姿勢は任意である。
In the present embodiment, the Z-axis 14 of the branch pipe 1 is positive upward in the vertical direction, and the branch pipe 1 connects the branch pipe inlet 1a of the straight pipe and the branch pipe connection 1d of the straight pipe to T. An example of a structure in which the partition wall 5 is formed by forming a bent pipe by welding the branch pipe outlets 1b and 1c of the bent pipe to the remaining end which is not substantially at the center and processing fins on the wall surface of the branch pipe inlet 1a. However, the mounting posture of the branch pipe 1, the structure and processing method of the branch pipe 1, the structure and processing method of the partition wall, the mounting method, and the mounting posture are arbitrary.

【0034】以下に図を用いて隔壁5の変形例を列挙す
る。図17、図18(a)、図18(b)は−X軸方向
から隔壁5を見た断面図である。図17は、ほぼ直管内
径に等しい高さのフィンを隔壁5とした場合、図18
(a)は鈍い先端形状の隔壁5とした場合、図18
(b)は背の低いフィンを隔壁5とした場合である。図
17の分岐管1では、冷媒の液相部8b、8cが分岐管
入口部1a内の底部に多く分布するような場合、図18
(a)、(b)の分岐管1では、冷媒の液相部8b、8
cが分岐管入口部1aの内壁面周囲に沿って薄い膜状に
分布するような場合に、上記各実施の形態で示した内容
と同様の効果を奏することは言及するまでもない。ここ
で、図17の分岐管1では、隔壁5がひとつで済むた
め、部品点数を削減できるという効果を奏する。一方、
図18(a)の分岐管1では、管外からプレス加工を施
すことにより分岐管入口部1a内に隔壁5を製造するこ
とができる。さらに、図18(b)の分岐管1では、銅
板に隔壁5をプレス加工した後に管状とする電縫管方式
を用いて、分岐管入口部1a内に隔壁5を製造すること
ができるため、隔壁5の加工が容易となり、より製造コ
ストを低減できるという効果を奏する。
Hereinafter, modified examples of the partition wall 5 will be described with reference to the drawings. FIGS. 17, 18A and 18B are cross-sectional views of the partition wall 5 viewed from the −X axis direction. FIG. 17 shows a case where a fin having a height substantially equal to the inner diameter of a straight pipe is used as the partition wall 5.
FIG. 18A shows a case where the partition wall 5 has a blunt tip shape.
(B) shows a case where a short fin is used as the partition wall 5. In the branch pipe 1 shown in FIG. 17, when the liquid phase portions 8b and 8c of the refrigerant are largely distributed at the bottom inside the branch pipe inlet 1a, FIG.
In the branch pipe 1 of (a), (b), the liquid phase portions 8b, 8
It is needless to mention that when c is distributed in a thin film shape around the inner wall surface of the branch pipe inlet 1a, the same effects as those described in the above embodiments can be obtained. Here, in the branch pipe 1 of FIG. 17, since only one partition wall 5 is required, an effect that the number of parts can be reduced is produced. on the other hand,
In the branch pipe 1 shown in FIG. 18A, the partition wall 5 can be manufactured in the branch pipe inlet 1a by performing press working from outside the pipe. Further, in the branch pipe 1 of FIG. 18B, the partition wall 5 can be manufactured in the branch pipe inlet portion 1a by using an ERW pipe method in which the partition wall 5 is formed by pressing the copper plate into a tubular shape and then formed into a tubular shape. There is an effect that the processing of the partition wall 5 becomes easy, and the manufacturing cost can be further reduced.

【0035】[0035]

【発明の効果】以上のように、請求項1記載の発明によ
れば、入口部から分岐部に至る管内に、分岐管本体の取
り付け状態における重力方向に沿って設けられ、複数の
流路に分割する隔壁を備えたので、冷媒を均一に分流で
きる効果が得られる。
As described above, according to the first aspect of the present invention, a plurality of flow paths are provided in a pipe from an inlet to a branch along the direction of gravity when the branch pipe main body is mounted. Since the partition wall is provided, an effect of uniformly dividing the refrigerant can be obtained.

【0036】また、請求項2記載の発明によれば、入口
部付近においては、分岐管本体の取り付け状態における
重力方向に沿って配置されると共に、分岐部へ近づくに
つれて捻られ、分岐部付近においては、複数の流路の分
岐方向に対して垂直となるように配置されている隔壁を
備えたので、冷媒を均一に分流できる効果が得られる。
According to the second aspect of the invention, in the vicinity of the inlet, the branch pipe body is arranged along the direction of gravity when the branch pipe main body is attached, and is twisted as approaching the branch. Has a partition wall arranged so as to be perpendicular to the branching direction of the plurality of flow paths, so that the effect of uniformly dividing the refrigerant can be obtained.

【0037】また、請求項3記載の発明によれば、隔壁
は、入口部から分岐部に至る直線部分に設けられている
ので、製造コストを低減できる効果が得られる。
According to the third aspect of the present invention, since the partition wall is provided in the linear portion from the entrance to the branch, the effect of reducing the manufacturing cost can be obtained.

【0038】また、請求項4記載の発明によれば、隔壁
の入口部側の端部を、くさび形状とするので、冷媒側の
圧力損失上昇を高めることなく冷媒を均一に分流できる
効果が得られる。
According to the fourth aspect of the present invention, since the end of the partition on the inlet side is formed in a wedge shape, the effect of uniformly dividing the refrigerant without increasing the pressure loss on the refrigerant side is obtained. Can be

【0039】また、請求項5記載の発明によれば、隔壁
は、管の軸線付近において隙間を有しているので、製造
コストを低減できる効果が得られる。
According to the fifth aspect of the present invention, since the partition wall has a gap near the axis of the pipe, the effect of reducing the manufacturing cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による分岐管を示す
斜視図である。
FIG. 1 is a perspective view showing a branch pipe according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1による分岐管の座標
軸を示す図である。
FIG. 2 is a diagram showing coordinate axes of a branch pipe according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1による分岐管を示す
断面図である。
FIG. 3 is a sectional view showing a branch pipe according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1による分岐管を接続
する伝熱管内を流れる冷媒の配管断面分布を示す図であ
る。
FIG. 4 is a diagram showing a pipe cross-sectional distribution of a refrigerant flowing in a heat transfer pipe connecting a branch pipe according to Embodiment 1 of the present invention.

【図5】 この発明の実施の形態1による分岐管を接続
する伝熱管内を流れる冷媒の別の配管断面分布を示す図
である。
FIG. 5 is a diagram showing another pipe cross-sectional distribution of the refrigerant flowing in the heat transfer pipe connecting the branch pipe according to Embodiment 1 of the present invention.

【図6】 この発明の実施の形態1による分岐管の分岐
管入口部における冷媒の配管断面分布を示す図である。
FIG. 6 is a diagram showing a pipe cross-sectional distribution of a refrigerant at a branch pipe inlet portion of the branch pipe according to the first embodiment of the present invention.

【図7】 この発明の実施の形態1によるおける分岐管
の分岐管入口部における冷媒の別の配管断面分布を示す
図である。
FIG. 7 is a diagram showing another pipe cross-sectional distribution of the refrigerant at the branch pipe inlet of the branch pipe according to Embodiment 1 of the present invention.

【図8】 この発明の実施の形態1による分岐管内の冷
媒分布を示す図である。
FIG. 8 is a diagram showing a refrigerant distribution in a branch pipe according to the first embodiment of the present invention.

【図9】 この発明の実施の形態1による別の分岐管を
示す斜視図である。
FIG. 9 is a perspective view showing another branch pipe according to the first embodiment of the present invention.

【図10】 この発明の実施の形態1による別の分岐管
を示す斜視図である。
FIG. 10 is a perspective view showing another branch pipe according to the first embodiment of the present invention.

【図11】 この発明の実施の形態1による別の分岐管
を示す斜視図である。
FIG. 11 is a perspective view showing another branch pipe according to the first embodiment of the present invention.

【図12】 この発明の実施の形態1による別の分岐管
を示す斜視図及び断面図である。
FIG. 12 is a perspective view and a sectional view showing another branch pipe according to the first embodiment of the present invention.

【図13】 この発明の実施の形態1による別の分岐管
を示す斜視図である。
FIG. 13 is a perspective view showing another branch pipe according to the first embodiment of the present invention.

【図14】 この発明の実施の形態2による分岐管を示
す斜視図及び断面図である。
FIG. 14 is a perspective view and a sectional view showing a branch pipe according to a second embodiment of the present invention.

【図15】 この発明の実施の形態2による分岐管の分
岐管入口部における冷媒の別の配管断面分布を示す図で
ある。
FIG. 15 is a diagram showing another pipe cross-sectional distribution of the refrigerant at the branch pipe inlet of the branch pipe according to the second embodiment of the present invention.

【図16】 この発明の実施の形態2による分岐管の分
岐管入口部における冷媒の別の配管断面分布を示す図で
ある。
FIG. 16 is a diagram showing another pipe cross-sectional distribution of refrigerant at a branch pipe inlet of a branch pipe according to Embodiment 2 of the present invention.

【図17】 この発明の実施の形態2による別の分岐管
を示す断面図である。
FIG. 17 is a sectional view showing another branch pipe according to the second embodiment of the present invention.

【図18】 この発明の実施の形態2による別の分岐管
を示す断面図である。
FIG. 18 is a sectional view showing another branch pipe according to the second embodiment of the present invention.

【図19】 従来の分岐管が接続されている熱交換器を
示す斜視図である。
FIG. 19 is a perspective view showing a heat exchanger to which a conventional branch pipe is connected.

【図20】 従来の分岐管を示す斜視図である。FIG. 20 is a perspective view showing a conventional branch pipe.

【図21】 従来の分岐管の管内を流れる冷媒の様子を
示す図である。
FIG. 21 is a view showing a state of a refrigerant flowing in a conventional branch pipe.

【図22】 従来の別の分岐管を示す斜視図である。FIG. 22 is a perspective view showing another conventional branch pipe.

【図23】 従来の別の分岐管の管内を流れる冷媒の様
子を示す図である。
FIG. 23 is a diagram showing a state of a refrigerant flowing in another conventional branch pipe.

【符号の説明】[Explanation of symbols]

1 分岐管、1a 分岐管入口部、1b、1c 分岐管
出口部、1d 分岐管接続部、2 U字管、3 熱交換
器、4 伝熱管、4a 入口配管、4b、4c出口配
管、5 隔壁、6 冷媒の流れ方向、7a、7b、7c
冷媒の気相部、8a、8b、8c 冷媒の液相部、9
a、9b、9c 冷媒、10 重力方向、11 分岐管
入口部中心軸、12 X軸、13 Y軸、14 Z軸、
15 原点、16 らせん板、20 管中心を通る鉛直
Reference Signs List 1 branch pipe, 1a branch pipe inlet, 1b, 1c branch pipe outlet, 1d branch pipe connection, 2 U-shaped pipe, 3 heat exchanger, 4 heat transfer pipe, 4a inlet pipe, 4b, 4c outlet pipe, 5 partition , 6 refrigerant flow direction, 7a, 7b, 7c
Gas phase of refrigerant, 8a, 8b, 8c Liquid phase of refrigerant, 9
a, 9b, 9c Refrigerant, 10 Gravity direction, 11 Branch pipe inlet central axis, 12 X axis, 13 Y axis, 14 Z axis,
15 origin, 16 spiral plate, 20 vertical axis passing through pipe center

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加賀 邦彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中山 雅弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 石橋 晃 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3H019 BA02 BC00  ──────────────────────────────────────────────────続 き Continued on the front page (72) Kunihiko Kaga, 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Masahiro Nakayama 2-3-2, Marunouchi, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd. (72) Inventor Akira Ishibashi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 3H019 BA02 BC00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 分岐管本体に流体が流入する入口部と、
この入口部から流入した流体を複数の流路へ分岐させる
分岐部と、この分岐部を介して流れる流体を流出させる
複数の出口部とを備えた分岐管において、上記入口部か
ら上記分岐部に至る管内に、上記分岐管本体の取り付け
状態における重力方向に沿って設けられ、複数の流路に
分割する隔壁を備えたことを特徴とする分岐管。
1. An inlet section through which a fluid flows into a branch pipe main body;
In the branch pipe provided with a branch part for branching the fluid flowing from the inlet part to a plurality of flow paths and a plurality of outlet parts for flowing out the fluid flowing through the branch part, the branch part from the inlet part to the branch part A branch pipe provided in a leading pipe along a direction of gravity in a state where the branch pipe main body is attached and divided into a plurality of flow paths.
【請求項2】 分岐管本体に流体が流入する入口部と、
この入口部から流入した流体を複数の流路へ分岐させる
分岐部と、この分岐部を介して流れる流体を流出させる
複数の出口部とを備えた分岐管において、上記入口部付
近においては、上記分岐管本体の取り付け状態における
重力方向に沿って配置されると共に、上記分岐部へ近づ
くにつれて捻られ、上記分岐部付近においては、上記複
数の流路の分岐方向に対して垂直となるように配置され
ている隔壁を備えたことを特徴とする分岐管。
2. An inlet section through which fluid flows into the branch pipe main body;
In a branch pipe provided with a branch part for branching the fluid flowing from the inlet part into a plurality of flow paths and a plurality of outlet parts for discharging the fluid flowing through the branch part, in the vicinity of the inlet part, The branch pipe body is arranged along the direction of gravity in the attached state, and is twisted as approaching the branch section, and is arranged near the branch section so as to be perpendicular to the branch direction of the plurality of flow paths. A branch pipe comprising a partition wall as described above.
【請求項3】 隔壁は、入口部から分岐部に至る直線部
分に設けられていることを特徴とする請求項1または2
記載の分岐管。
3. The partition according to claim 1, wherein the partition is provided in a straight line from the entrance to the branch.
The described branch pipe.
【請求項4】 隔壁の入口部側の端部を、くさび形状と
することを特徴とする請求項1または2記載の分岐管。
4. The branch pipe according to claim 1, wherein an end of the partition wall on the inlet side side has a wedge shape.
【請求項5】 隔壁は、管の軸線付近において隙間を有
していることを特徴とする請求項1または2記載の分岐
管。
5. The branch pipe according to claim 1, wherein the partition has a gap near the axis of the pipe.
JP32600299A 1999-11-16 1999-11-16 Branch pipe and heat exchanger Expired - Lifetime JP4134465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32600299A JP4134465B2 (en) 1999-11-16 1999-11-16 Branch pipe and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32600299A JP4134465B2 (en) 1999-11-16 1999-11-16 Branch pipe and heat exchanger

Publications (2)

Publication Number Publication Date
JP2001141333A true JP2001141333A (en) 2001-05-25
JP4134465B2 JP4134465B2 (en) 2008-08-20

Family

ID=18183007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32600299A Expired - Lifetime JP4134465B2 (en) 1999-11-16 1999-11-16 Branch pipe and heat exchanger

Country Status (1)

Country Link
JP (1) JP4134465B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293809A (en) * 2008-06-02 2009-12-17 Denso Corp Heat exchanger
CN103512285A (en) * 2012-06-15 2014-01-15 珠海格力电器股份有限公司 liquid cyclone, manufacturing method of liquid cyclone, heat exchanger comprising liquid cyclone and air conditioner comprising liquid cyclone
WO2019234836A1 (en) * 2018-06-05 2019-12-12 三菱電機株式会社 Distributor and refrigeration cycle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293809A (en) * 2008-06-02 2009-12-17 Denso Corp Heat exchanger
JP4720855B2 (en) * 2008-06-02 2011-07-13 株式会社デンソー Heat exchanger
US8661845B2 (en) 2008-06-02 2014-03-04 Denso Corporation Heat exchanger
CN103512285A (en) * 2012-06-15 2014-01-15 珠海格力电器股份有限公司 liquid cyclone, manufacturing method of liquid cyclone, heat exchanger comprising liquid cyclone and air conditioner comprising liquid cyclone
WO2019234836A1 (en) * 2018-06-05 2019-12-12 三菱電機株式会社 Distributor and refrigeration cycle device
JPWO2019234836A1 (en) * 2018-06-05 2021-04-08 三菱電機株式会社 Distributor and refrigeration cycle equipment
JP7023355B2 (en) 2018-06-05 2022-02-21 三菱電機株式会社 Distributor and refrigeration cycle equipment

Also Published As

Publication number Publication date
JP4134465B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
US20030010485A1 (en) Flattened tube cold plate for liquid cooling electrical components
WO2014171095A1 (en) Heat exchanger
JP2002022313A (en) Distributor
JPWO2019058540A1 (en) Refrigerant distributor and air conditioner
JPH0571884A (en) Heat exchanger with small core depth
US5022464A (en) Condenser
JP2001141333A (en) Branch pipe
JP7068574B2 (en) Heat exchanger with heat transfer tube unit
JPH11325784A (en) Heat exchanger
JP4164146B2 (en) Heat exchanger and car air conditioner using the same
JPH11325656A (en) Header flow divider
JP2000266484A (en) Heat exchanger
JP5193630B2 (en) Heat exchanger
JP4164145B2 (en) Heat exchanger and car air conditioner using the same
CN215412186U (en) Capillary tube, distributor, heat exchanger assembly and air conditioner
CN216114646U (en) Heat exchanger
JPS6321494A (en) Lamination type heat exchanger
JPS6314093A (en) Laminated type heat exchanger
JPH06254623A (en) Manufacture of refrigerant shunt device and refrigerant shunt device
JPH11230686A (en) Heat exchanger
US20230304749A1 (en) Fluid distributor for a microchannel heat exchanger
JP3318096B2 (en) Heat transfer tube manufacturing method
JPH0682125A (en) Refrigrant distributor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R151 Written notification of patent or utility model registration

Ref document number: 4134465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term