JP2001140864A - Fluid dynamic pressure bearing and spindle motor - Google Patents

Fluid dynamic pressure bearing and spindle motor

Info

Publication number
JP2001140864A
JP2001140864A JP32725399A JP32725399A JP2001140864A JP 2001140864 A JP2001140864 A JP 2001140864A JP 32725399 A JP32725399 A JP 32725399A JP 32725399 A JP32725399 A JP 32725399A JP 2001140864 A JP2001140864 A JP 2001140864A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
ring member
fluid dynamic
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32725399A
Other languages
Japanese (ja)
Inventor
Takafumi Suzuki
隆文 鈴木
Tadao Iwaki
岩城  忠雄
Hiromitsu Goto
廣光 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP32725399A priority Critical patent/JP2001140864A/en
Publication of JP2001140864A publication Critical patent/JP2001140864A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve the proper distribution and smooth flow of a lubricant and to prevent accidents such as seizure in a fluid dynamic pressure bearing having a flanged shaft constituted of a ring member formed with thrust dynamic pressure grooves on the upper face and the lower face and radial dynamic pressure grooves on the outer periphery respectively and a columnar member pressed into the ring member. SOLUTION: This fluid dynamic pressure bearing comprises the flanged shaft 1 constituted of the ring member 3 formed with the thrust dynamic pressure grooves G2 on the upper face and the lower face and the radial dynamic pressure grooves G1 on the outer periphery respectively and a columnar member 2 pressed into the ring member 3, a sleeve 4 rotatably coupled with the flanged shaft 1, and an annular cover member 5 functioning as a thrust pressing member. Three pairs or more vertical through-holes Q for lubricant reservoir are formed at uniform intervals in the peripheral direction on the inner periphery of the ring member 3 or on the outer periphery of the columnar member 2 kept in contact with the inner periphery of the ring member 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スラスト動圧溝が
その上面と下面に且つラジアル動圧溝がその外周面にそ
れぞれ形成されたリング部材とこのリング部材に圧入さ
れた円柱部材とからなるフランジ付シャフトと、このフ
ランジ付シャフトが回転自在に嵌合するスリーブとを基
本構成部材とする流体動圧軸受、換言すれば1個のリン
グ部材をスラスト動圧軸受部材とラジアル動圧軸受部材
に兼用した流体動圧軸受であって、薄形の小型スピンド
ルモータに適した流体動圧軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a ring member having thrust dynamic pressure grooves formed on its upper and lower surfaces and a radial dynamic pressure groove formed on its outer peripheral surface, respectively, and a cylindrical member press-fitted into the ring member. A fluid dynamic pressure bearing having a flanged shaft and a sleeve into which the flanged shaft is rotatably fitted, in other words, one ring member is used as a thrust dynamic pressure bearing member and a radial dynamic pressure bearing member. The present invention relates to a fluid dynamic pressure bearing that is also used as a fluid dynamic pressure bearing suitable for a thin small spindle motor.

【0002】[0002]

【従来の技術】図6に示す従来の流体動圧軸受は、フラ
ンジ付シャフトを有する流体動圧軸受であって、円柱部
材2にスラスト部材であるリング部材3が圧入されて形
成されたフランジ付シャフト1と、このフランジ付シャ
フト1が回転自在に嵌合する段付円筒状スリーブ4と、
スラスト押さえ部材としても機能する環状蓋部材5とか
ら構成されている。これらの軸受構成部材間に形成され
た円盤状微小隙間RS1、RS2、RV2、及び環状隙
間RR、RV1には潤滑油が充填されている。円柱部材
2の上側の外周面と環状蓋部材5の内周面との間に形成
されたテーパー状微小隙間Sは、毛細管現象と表面張力
を利用して潤滑油が外部に漏出しないように機能するキ
ャピラリーシールである。円柱部材2の下側の外周面に
はヘリングボーン溝の如きラジアル動圧溝G1が形成さ
れ、リング部材3の上面と下面にはヘリングボーン溝の
如きスパイラルのスラスト動圧溝G2がそれぞれ形成さ
れている。
2. Description of the Related Art A conventional fluid dynamic pressure bearing shown in FIG. 6 is a fluid dynamic pressure bearing having a flanged shaft, and has a flange formed by press-fitting a ring member 3 as a thrust member into a cylindrical member 2. A shaft 1, a stepped cylindrical sleeve 4 into which the flanged shaft 1 is rotatably fitted,
And an annular lid member 5 which also functions as a thrust holding member. The disk-shaped minute gaps RS1, RS2, RV2 and the annular gaps RR, RV1 formed between these bearing components are filled with lubricating oil. The tapered minute gap S formed between the outer peripheral surface on the upper side of the cylindrical member 2 and the inner peripheral surface of the annular lid member 5 functions so as to prevent the lubricating oil from leaking to the outside by utilizing capillary action and surface tension. Capillary seal A radial dynamic pressure groove G1 such as a herringbone groove is formed on the lower outer peripheral surface of the cylindrical member 2, and a spiral thrust dynamic pressure groove G2 such as a herringbone groove is formed on the upper and lower surfaces of the ring member 3, respectively. ing.

【0003】円盤状微小隙間RS1とRS2は第1スラ
スト軸受隙間と第2スラスト軸受隙間としてそれぞれ機
能し、且つ環状微小隙間RRはラジアル軸受隙間として
機能する。これらの軸受隙間の間隔は、流体動圧軸受の
サイズ、回転数及び潤滑油の粘性係数にもよるが、数μ
mから数100μmである。また、潤滑油溜として機能
する環状微小隙間RV1と円盤状微小隙間RV2の間隔
は、軸受隙間の数倍程度である。
The disc-shaped minute gaps RS1 and RS2 function as a first thrust bearing gap and a second thrust bearing gap, respectively, and the annular minute gap RR functions as a radial bearing gap. The distance between these bearing gaps depends on the size of the hydrodynamic bearing, the number of revolutions, and the viscosity coefficient of the lubricating oil.
m to several hundred μm. The interval between the annular minute gap RV1 functioning as a lubricating oil reservoir and the disc-shaped minute gap RV2 is about several times the bearing gap.

【0004】図6に示す従来の流体動圧軸受は、スラス
ト動圧軸受部とラジアル動圧軸受部は隣接しているが、
回転軸方向に上下に分かれている。このため、スラスト
動圧軸受部の潤滑油溜は環状微小隙間RV1が、ラジア
ル動圧軸受部の潤滑油溜は円盤状微小隙間RV2がそれ
ぞれ担うことになる。従って、軸受の回転中は潤滑油は
矢印の方向に流れ、潤滑油の分配と流動は理論的には適
正に行われている。しかしながら、実際の装置では必ず
しも適正ではない。
In the conventional fluid dynamic pressure bearing shown in FIG. 6, the thrust dynamic pressure bearing portion and the radial dynamic pressure bearing portion are adjacent to each other.
It is divided up and down in the direction of the rotation axis. Therefore, the lubricating oil reservoir in the thrust dynamic pressure bearing portion is occupied by the annular minute gap RV1, and the lubricating oil reservoir in the radial dynamic pressure bearing portion is occupied by the disk-shaped minute gap RV2. Therefore, during rotation of the bearing, the lubricating oil flows in the direction of the arrow, and the distribution and flow of the lubricating oil are theoretically properly performed. However, it is not always appropriate in an actual device.

【0005】携帯型電子機器の急速な普及に伴って、そ
の回転駆動源であるスピンドルモータに小型化と軽量化
の要求がなされてきた。その結果、スピンドルモータの
軸受に広く採用されている流体動圧軸受には更なる小型
化と軽量化が要求されるようになった。そこで、図5に
示す如く、リング部材3の外周面と対応するスリーブ4
の内周面との間の微小隙間RRをラジアル軸受隙間と
し、円柱部材2の下側を大幅に短くした流体動圧軸受、
換言すればリング部材3にスラスト動圧軸受部とラジア
ル動圧軸受部の両方の軸受部材として機能させる流体動
圧軸受が提案された。
[0005] With the rapid spread of portable electronic devices, there has been a demand for downsizing and weight reduction of a spindle motor as a rotary drive source thereof. As a result, fluid dynamic pressure bearings widely used for spindle motor bearings have been required to be further reduced in size and weight. Therefore, as shown in FIG.
A fluid dynamic pressure bearing in which the minute gap RR between the inner peripheral surface of the cylindrical member 2 and the inner peripheral surface of the
In other words, a fluid dynamic bearing has been proposed in which the ring member 3 functions as both a thrust dynamic pressure bearing portion and a radial dynamic pressure bearing portion.

【0006】ところが、図5に示す流体動圧軸受におい
ては、円柱部材2の下端面とスリーブ4の底面との間に
形成された円盤状微小隙間RRが潤滑油溜となる。従っ
て、唯一の共用の潤滑油溜である円盤状微小隙間RRか
ら、スラスト動圧軸受部とラジアル動圧軸受部に潤滑油
を適正に分配して供給しなければならないが、潤滑油溜
の容量が十分でないために、動圧発生に必要な潤滑油を
供給することが極めて困難であるという問題がある。
However, in the fluid dynamic pressure bearing shown in FIG. 5, the disc-shaped minute gap RR formed between the lower end surface of the cylindrical member 2 and the bottom surface of the sleeve 4 serves as a lubricating oil reservoir. Therefore, it is necessary to appropriately distribute and supply the lubricating oil to the thrust dynamic pressure bearing portion and the radial dynamic pressure bearing portion from the disk-shaped minute gap RR, which is the only shared lubricating oil reservoir, Therefore, it is very difficult to supply the lubricating oil necessary for generating the dynamic pressure.

【0007】また、図5に示す流体動圧軸受において
は、その動圧分布は図9の如くリング部材3の上面と下
面にスラスト動圧がそれぞれ発生すると共に、リング部
材3の外周面にラジアル動圧が発生する。このため、第
1スラスト軸受隙間RS1とラジアル軸受隙間RRとの
境界部C1と、第1スラスト軸受隙間RS2とラジアル
軸受隙間RRとの境界部C2、及び円盤状微小隙間RV
において、負圧(大気圧以下)を生じ、気泡が発生し易
い。この気泡が潤滑油の円滑な流動を阻害するという問
題もある。即ち、小さな気泡が集まれば大きな気泡とな
る。微小隙間の間隔を超えるような、そうでなくてもそ
れに近い大きさに気泡が育ってしまえば、潤滑油の流動
が妨げられ、動圧軸受として機能しなくなってしまい、
場合によっては焼き付き等の事故となってしまう。
Further, in the fluid dynamic pressure bearing shown in FIG. 5, the dynamic pressure distribution is such that thrust dynamic pressure is generated on the upper and lower surfaces of the ring member 3 as shown in FIG. Dynamic pressure is generated. For this reason, the boundary C1 between the first thrust bearing gap RS1 and the radial bearing gap RR, the boundary C2 between the first thrust bearing gap RS2 and the radial bearing gap RR, and the disc-shaped minute gap RV
In this case, a negative pressure (atmospheric pressure or lower) is generated, and bubbles are easily generated. There is also a problem that these bubbles hinder the smooth flow of the lubricating oil. That is, if small bubbles collect, they become large bubbles. If the bubbles grow to a size that exceeds the gap of the minute gap, or otherwise close to it, the flow of lubricating oil will be hindered and will not function as a dynamic pressure bearing,
In some cases, an accident such as burn-in may occur.

【0008】そこで、従来の流体動圧軸受では、この気
泡に関わる問題を解決する様々な方法が開発ないし提案
されている。例えば特開平10−339320号公報に
開示されている方法は、これを図6の従来の流体動圧軸
受に適用すれば、潤滑油溜である環状微小隙間RV1を
その軸方向中央部を大きな空間(第1の潤滑油溜)とし
且つ隣接する上下の部分を相対的に小さな空間(第2の
潤滑油溜)として形成し、これによって気泡を第1の潤
滑油溜に滞留させるようにしたものである。しかしなが
ら、この方法は環状微小隙間RRがラジアル軸受隙間と
なる図5の流体動圧軸受には適用できない。
Therefore, in the conventional fluid dynamic pressure bearing, various methods for solving the problem relating to the bubble have been developed or proposed. For example, if the method disclosed in Japanese Patent Application Laid-Open No. H10-339320 is applied to the conventional fluid dynamic pressure bearing shown in FIG. 6, an annular minute gap RV1 which is a lubricating oil reservoir is provided with a large space in the axial center. (First lubricating oil reservoir) and adjacent upper and lower portions are formed as relatively small spaces (second lubricating oil reservoir), whereby air bubbles are retained in the first lubricating oil reservoir. It is. However, this method cannot be applied to the fluid dynamic pressure bearing of FIG. 5 in which the annular minute gap RR becomes a radial bearing gap.

【0009】[0009]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、スラスト動圧溝が上面と下面に且つラジア
ル動圧溝が外周面にそれぞれ形成されたリング部材とこ
のリング部材に圧入された円柱部材とからなるフランジ
付シャフトと、このフランジ付シャフトが回転自在に嵌
合するスリーブとを基本構成部材とする流体動圧軸受、
換言すれば1個のリング部材をスラスト動圧軸受部材と
ラジアル動圧軸受部材に兼用した流体動圧軸受におい
て、潤滑油の適正な分配と円滑な流動を行わせ、焼き付
き等の事故を防止することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ring member having thrust dynamic pressure grooves formed on the upper and lower surfaces and a radial dynamic pressure groove formed on the outer peripheral surface, respectively. A fluid dynamic pressure bearing having, as basic constituent members, a flanged shaft composed of a cylindrical member and a sleeve in which the flanged shaft is rotatably fitted;
In other words, in a fluid dynamic bearing in which one ring member is used as both a thrust dynamic bearing member and a radial dynamic bearing member, proper distribution and smooth flow of lubricating oil are performed to prevent accidents such as seizure. That is.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、スラスト動圧溝がその上面と下面に且つラジアル動
圧溝がその外周面にそれぞれ形成されたリング部材とこ
のリング部材に圧入された円柱部材とからなるフランジ
付シャフトと、このフランジ付シャフトが回転自在に嵌
合するスリーブとを基本構成部材として構成された流体
動圧軸受において、前記リング部材の内周面若しくはそ
の近傍、又は前記リングの内周面に接する前記円柱部材
の外周面に、3対以上の潤滑油溜用の縦貫通孔を周方向
に等間隔に形成した。
In order to solve the above-mentioned problems, a thrust dynamic pressure groove is formed on an upper surface and a lower surface thereof, and a radial dynamic pressure groove is formed on an outer peripheral surface of the ring member. In a fluid dynamic pressure bearing having a flanged shaft made of a cylindrical member and a sleeve on which the flanged shaft is rotatably fitted as a basic constituent member, the inner peripheral surface of the ring member or its vicinity, or Three or more pairs of longitudinal through holes for lubricating oil storage were formed at equal intervals in the circumferential direction on the outer peripheral surface of the cylindrical member that was in contact with the inner peripheral surface of the ring.

【0011】[0011]

【発明の実施の形態】本発明の一実施例の流体動圧軸受
は、微小隙間を誇張して示した図1の縦断面図に示す通
り、リング部材3と円柱部材2とからなるフランジ付シ
ャフト1と、このフランジ付シャフト1を受けるスリー
ブ4と、スラスト押さえ部材としても機能する環状蓋部
材5とから構成されている。リング部材3の上面と下面
には図8に示すヘリングボーン溝の如きスパイラルのス
ラスト動圧溝G2がプレスやエッチング等により形成さ
れ、且つ円柱部材2の外周面には図7に示すヘリングボ
ーン溝の如きラジアル動圧溝G1が転造等により形成さ
れている。更にこれらの軸受構成部材間に形成された円
盤状微小隙間RS1、RS2、略円盤状微小隙間RV、
環状微小隙間RR、及び複数対の縦貫通孔Qには潤滑油
が真空注入法により注入され、充填されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A fluid dynamic pressure bearing according to an embodiment of the present invention has a flange including a ring member 3 and a cylindrical member 2 as shown in a longitudinal sectional view of FIG. It comprises a shaft 1, a sleeve 4 for receiving the flanged shaft 1, and an annular lid member 5 which also functions as a thrust holding member. A spiral thrust dynamic pressure groove G2 such as a herringbone groove shown in FIG. 8 is formed on the upper and lower surfaces of the ring member 3 by pressing or etching, and a herringbone groove shown in FIG. Is formed by rolling or the like. Further, disc-shaped minute gaps RS1 and RS2 formed between these bearing components, substantially disc-shaped minute gaps RV,
Lubricating oil is injected and filled into the annular minute gap RR and the plurality of pairs of vertical through holes Q by a vacuum injection method.

【0012】円盤状微小隙間RS1とRS2は第1スラ
スト軸受隙間と第2スラスト軸受としてそれぞれ機能
し、且つ環状微小隙間RRはラジアル軸受隙間として機
能する。これらの軸受隙間の間隔は、流体動圧軸受のサ
イズ、回転数及び潤滑油の粘性係数にもよるが、数μm
から数100μmである。また、潤滑油溜として機能す
る環状微小隙間RRと略円盤状微小隙間RVの間隔は、
軸受隙間の数倍程度である。
The disc-shaped minute gaps RS1 and RS2 function as a first thrust bearing gap and a second thrust bearing, respectively, and the annular minute gap RR functions as a radial bearing gap. The spacing between these bearing gaps depends on the size of the fluid dynamic pressure bearing, the number of revolutions, and the viscosity coefficient of the lubricating oil.
To several hundred μm. The interval between the annular minute gap RR functioning as a lubricating oil reservoir and the substantially disc-shaped minute gap RV is:
It is about several times the bearing clearance.

【0013】複数対の縦貫通孔Qはスラスト動圧軸受部
とラジアル動圧軸受部の両方に潤滑油を供給する潤滑油
溜として機能する。これらの縦貫通孔Qの内径は流体動
圧軸受のサイズ、回転数及び潤滑油の粘性係数にもよる
が、数100μmから数mmである。
The plurality of pairs of vertical through holes Q function as lubricating oil reservoirs for supplying lubricating oil to both the thrust dynamic pressure bearing portion and the radial dynamic pressure bearing portion. The inner diameter of these vertical through-holes Q is several hundred μm to several mm, depending on the size of the fluid dynamic pressure bearing, the number of rotations, and the viscosity coefficient of the lubricating oil.

【0014】複数対の縦貫通孔Qは、図3に示す如くリ
ング部材3の内周面(内周面の近傍を含む)、又は図4
に示す如くリング部材3に接する円柱部材2の外周面に
周方向に等間隔に形成されている。縦貫通孔Qは、図3
及び図4では、3対6個の縦貫通孔Qがドリル等によっ
て形成されている。
A plurality of pairs of vertical through holes Q are formed in the inner peripheral surface (including the vicinity of the inner peripheral surface) of the ring member 3 as shown in FIG.
As shown in (1), they are formed at equal intervals in the circumferential direction on the outer peripheral surface of the cylindrical member 2 which is in contact with the ring member 3. The vertical through hole Q is shown in FIG.
In FIG. 4, three to six vertical through holes Q are formed by a drill or the like.

【0015】形成される縦貫通孔Qの数は、潤滑油溜の
容量と流動を考慮して決定されるが、更に回転数も考慮
しなければならない。即ち、縦貫通孔Qを設けたことに
より、フランジ付シャフト1は円周方向の重心が縦貫通
孔Qの数に対応して周期的に変化する。この変化が、流
体動圧軸受の回転数に基づいて発生する高調波と一致す
ると、流体動圧軸受が好ましくない振動を起こすことに
なる。この好ましくない振動を防止するために、縦貫通
孔Qの数は3対以上とした。
The number of formed vertical through holes Q is determined in consideration of the capacity and flow of the lubricating oil reservoir, but the number of rotations must also be considered. That is, by providing the vertical through holes Q, the center of gravity of the flanged shaft 1 in the circumferential direction changes periodically according to the number of the vertical through holes Q. If this change coincides with a harmonic generated based on the rotational speed of the fluid dynamic bearing, the fluid dynamic bearing will cause undesirable vibration. In order to prevent this undesired vibration, the number of the vertical through holes Q is set to three or more.

【0016】上述の如く構成された図1の流体動圧軸受
において、縦貫通孔Qに充填された潤滑油は、回転によ
り発生したスラスト動圧とラジアル動圧によって引っ張
られ、矢印の方向に移動し、スラスト軸受隙間とラジア
ル軸受隙間に潤滑油を供給する。同様に、略円盤状軸受
隙間RVに充填されている潤滑油も、回転により発生し
たスラスト動圧とラジアル動圧によって引っ張られ、矢
印の方向に移動し、スラスト軸受隙間とラジアル軸受隙
間に潤滑油を供給する。
In the fluid dynamic bearing of FIG. 1 configured as described above, the lubricating oil filled in the vertical through hole Q is pulled by the thrust dynamic pressure generated by rotation and the radial dynamic pressure, and moves in the direction of the arrow. Then, lubricating oil is supplied to the thrust bearing gap and the radial bearing gap. Similarly, the lubricating oil filled in the substantially disk-shaped bearing gap RV is also pulled by the thrust dynamic pressure and the radial dynamic pressure generated by the rotation and moves in the direction of the arrow, and the lubricating oil fills the thrust bearing gap and the radial bearing gap. Supply.

【0017】このようにして、複数対の縦貫通孔Qと略
円盤状軸受隙間RVに充填された潤滑油は、回転中はス
ラスト軸受隙間RS1とRS2及びラジアル軸受隙間R
Rに、必要量の潤滑油を供給し続ける。従って、負圧が
発生し易い第1スラスト軸受隙間RS1とラジアル軸受
隙間RRとの境界部C1と、第1スラスト軸受隙間RS
2とラジアル軸受隙間RRとの境界部C2においても潤
滑油が途切れることがないから、負圧は発生しなくなっ
た。このため、微小隙間RS1、RS2、RR、RVと
縦貫通孔Qのいずれにも気泡が発生しなくなった。
As described above, the lubricating oil filled in the plurality of pairs of the vertical through holes Q and the substantially disk-shaped bearing gaps RV provides the thrust bearing gaps RS1 and RS2 and the radial bearing gaps R during rotation.
Continue to supply the required amount of lubricating oil to R. Therefore, the boundary portion C1 between the first thrust bearing gap RS1 and the radial bearing gap RR where a negative pressure is easily generated, and the first thrust bearing gap RS
No negative pressure was generated because the lubricating oil was not interrupted even at the boundary C2 between the radial bearing clearance RR and the radial bearing gap RR. For this reason, no bubbles are generated in any of the minute gaps RS1, RS2, RR, RV and the vertical through hole Q.

【0018】次に、本発明に係るスピンドルモータは、
上述の流体動圧軸受によってロータをステータに回転自
在に支持したものである。即ち、図2の一実施例の縦断
面図を参照して説明すると、本発明に係るスピンドルモ
ータは、モータ基板9に立設されている請求項1に記載
した流体動圧軸受によって、カップ状ハブ6が回転自在
に支持されているものである。より具体的には、ロータ
構成部材であるカップ状ハブ6は円柱部材2の端部に同
軸にして固着されている。同じくロータ構成部材である
ロータ磁石7は、カップ状ハブ6の内周面に取り付けら
れている。ロータ磁石7は、多極着磁された環状の永久
磁石からなるものである。ステータ構成部材であるステ
ータコイル8は、流体動圧軸受のスリーブ4の外周面
に、ロータ磁石7と対向し且つ近接して環状に取り付け
られている。モータ基板9もステータ構成部材の一部を
なしている。
Next, the spindle motor according to the present invention comprises:
The rotor is rotatably supported on the stator by the fluid dynamic bearing described above. That is, with reference to the longitudinal sectional view of one embodiment of FIG. 2, the spindle motor according to the present invention is cup-shaped by the fluid dynamic pressure bearing according to claim 1 which is erected on the motor substrate 9. The hub 6 is rotatably supported. More specifically, the cup-shaped hub 6 as the rotor component is coaxially fixed to the end of the columnar member 2. A rotor magnet 7, which is also a rotor component, is attached to the inner peripheral surface of the cup-shaped hub 6. The rotor magnet 7 is a multi-pole magnetized annular permanent magnet. A stator coil 8, which is a stator constituent member, is annularly mounted on the outer peripheral surface of the sleeve 4 of the fluid dynamic bearing, facing and close to the rotor magnet 7. The motor board 9 also forms a part of the stator component.

【0019】[0019]

【発明の効果】本発明は、1個のリング部材をスラスト
動圧軸受部材とラジアル動圧軸受部材の両方に用いた流
体動圧軸受において、前記リング部材の内周面又は前記
リング部材の内周面に接する前記円柱部材の外周面に3
対以上の潤滑油溜用の縦貫通孔を周方向に等間隔に形成
したので、スラスト動圧軸受部とラジアル動圧軸受部に
潤滑油は適正に分配され、軸受隙間を含む微小隙間及び
潤滑油溜を含む流路を円滑に流動するようになった。従
って、気泡の発生を阻止して焼き付き等の事故が防止さ
れ、流体動圧軸受は円滑な回転を維持でき、且つ長寿命
化を図ることができた。
The present invention relates to a fluid dynamic bearing in which one ring member is used for both a thrust dynamic pressure bearing member and a radial dynamic pressure bearing member, wherein an inner peripheral surface of the ring member or an inner surface of the ring member is provided. 3 on the outer peripheral surface of the cylindrical member contacting the peripheral surface
More than one pair of longitudinal through holes for lubricating oil reservoirs are formed at equal intervals in the circumferential direction, so that the lubricating oil is properly distributed to the thrust dynamic pressure bearing and radial dynamic pressure bearing, and the minute gap including the bearing gap and the lubrication The fluid including the oil reservoir flows smoothly. Accordingly, the occurrence of air bubbles was prevented to prevent an accident such as seizure, and the fluid dynamic bearing was able to maintain smooth rotation and extend the life.

【0020】本発明によって、1個のリング部材をスラ
スト動圧軸受部材とラジアル動圧軸受部材の両方に用い
た流体動圧軸受、及びこの流体動圧軸受を軸受に採用し
て構成したスピンドルモータの小型化と薄型化を実現で
きた。
According to the present invention, a fluid dynamic bearing using one ring member as both a thrust dynamic pressure bearing member and a radial dynamic pressure bearing member, and a spindle motor employing the fluid dynamic pressure bearing as a bearing The size and thickness of the device could be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微小隙間を誇張して示した本発明に係る流体動
圧軸受の一実施例の縦断面図である。
FIG. 1 is a longitudinal sectional view of one embodiment of a fluid dynamic bearing according to the present invention, in which a minute gap is exaggerated.

【図2】本発明に係るスピンドルモータの一実施例の縦
断面図である。
FIG. 2 is a longitudinal sectional view of one embodiment of a spindle motor according to the present invention.

【図3】リング部材3に縦貫通孔が形成されたシャフト
1の横断面図である。
FIG. 3 is a cross-sectional view of a shaft 1 in which a vertical through hole is formed in a ring member 3;

【図4】円柱部材2に縦貫通孔が形成されたシャフト1
の横断面図である。
FIG. 4 is a shaft 1 in which a vertical through hole is formed in a cylindrical member 2.
FIG.

【図5】微小隙間を誇張して示した従来の流体動圧軸受
の一例の縦断面図である。
FIG. 5 is a longitudinal sectional view of an example of a conventional fluid dynamic bearing in which a minute gap is exaggeratedly shown.

【図6】微小隙間を誇張して示した従来の流体動圧軸受
の他の一例の縦断面図である。
FIG. 6 is a longitudinal sectional view of another example of a conventional fluid dynamic bearing in which a minute gap is exaggeratedly shown.

【図7】ラジアル動圧溝の一例を示した斜視図である。FIG. 7 is a perspective view showing an example of a radial dynamic pressure groove.

【図8】スラスト動圧溝の一例を示した平面図である。FIG. 8 is a plan view showing an example of a thrust dynamic pressure groove.

【図9】スラスト動圧溝とラジアル動圧溝が共にリング
部材に形成された流体動圧軸受の動圧分布を示す圧力分
布図である。
FIG. 9 is a pressure distribution diagram showing a dynamic pressure distribution of a fluid dynamic bearing in which both a thrust dynamic pressure groove and a radial dynamic pressure groove are formed on a ring member.

【符号の説明】[Explanation of symbols]

1 フランジ付シャフト 2 円柱部材 3 リング部材 4 スリーブ 5 環状蓋部材 6 カップ状ハブ 7 ロータ磁石 8 ステータコイル 9 モータ基板 G1 ラジアル動圧溝 G2 スラスト動圧溝 Q 縦貫通孔 RS1、RS2 スラスト軸受隙間として機能する微小
隙間 RR ラジアル軸受隙間として機能する微小隙間 RV、RV1、RV2 潤滑油溜として機能する微小隙
間 S テーパー状微小隙間(キャピラリーシール)
DESCRIPTION OF SYMBOLS 1 Shaft with flange 2 Column member 3 Ring member 4 Sleeve 5 Annular lid member 6 Cup-shaped hub 7 Rotor magnet 8 Stator coil 9 Motor board G1 Radial dynamic pressure groove G2 Thrust dynamic pressure groove Q Vertical through hole RS1, RS2 As a thrust bearing gap Micro gaps that function RR Micro gaps that function as radial bearing gaps RV, RV1, RV2 Micro gaps that function as lubricating oil reservoirs S Tapered micro gaps (capillary seals)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 廣光 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 3J011 AA06 BA02 BA06 CA02 JA02 KA04 LA05 5H607 AA02 BB01 BB17 BB25 CC01 DD01 DD02 DD03 DD16 GG01 GG03 GG12 GG15 KK10  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiromitsu Goto 1-8-8 Nakase, Mihama-ku, Chiba-shi, Chiba F-term (reference) in Seiko Instruments Inc. DD01 DD02 DD03 DD16 GG01 GG03 GG12 GG15 KK10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラスト動圧溝がその上面と下面に且つ
ラジアル動圧溝がその外周面にそれぞれ形成されたリン
グ部材とこのリング部材に圧入された円柱部材とからな
るフランジ付シャフトと、このフランジ付シャフトが回
転自在に嵌合するスリーブとを基本構成部材として構成
された流体動圧軸受において、前記リング部材の内周面
又は前記リング部材の内周面に接する前記円柱部材の外
周面に3対以上の潤滑油溜用の縦貫通孔を周方向に等間
隔に形成したことを特徴とする流体動圧軸受。
1. A flanged shaft comprising: a ring member having thrust dynamic pressure grooves formed on its upper and lower surfaces and radial dynamic pressure grooves formed on its outer peripheral surface; and a cylindrical member press-fitted into the ring member. In a fluid dynamic pressure bearing configured with a sleeve on which a flanged shaft is rotatably fitted as a basic constituent member, an inner peripheral surface of the ring member or an outer peripheral surface of the cylindrical member contacting an inner peripheral surface of the ring member. A fluid dynamic bearing in which three or more pairs of longitudinal through holes for a lubricating oil reservoir are formed at equal intervals in a circumferential direction.
【請求項2】請求項1の流体動圧軸受によってロータが
ステータに回転自在に支持されたスピンドルモータ。
2. A spindle motor in which a rotor is rotatably supported on a stator by the fluid dynamic bearing of claim 1.
JP32725399A 1999-11-17 1999-11-17 Fluid dynamic pressure bearing and spindle motor Pending JP2001140864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32725399A JP2001140864A (en) 1999-11-17 1999-11-17 Fluid dynamic pressure bearing and spindle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32725399A JP2001140864A (en) 1999-11-17 1999-11-17 Fluid dynamic pressure bearing and spindle motor

Publications (1)

Publication Number Publication Date
JP2001140864A true JP2001140864A (en) 2001-05-22

Family

ID=18197054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32725399A Pending JP2001140864A (en) 1999-11-17 1999-11-17 Fluid dynamic pressure bearing and spindle motor

Country Status (1)

Country Link
JP (1) JP2001140864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036111A1 (en) * 2001-10-24 2003-05-01 Sony Corporation Bearing unit, and motor using this bearing unit
JP2011007336A (en) * 2010-09-07 2011-01-13 Ntn Corp Dynamic pressure bearing device and motor
WO2014148179A1 (en) * 2013-03-19 2014-09-25 Ntn株式会社 Fluid dynamic bearing device and motor provided with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036111A1 (en) * 2001-10-24 2003-05-01 Sony Corporation Bearing unit, and motor using this bearing unit
US7029179B2 (en) 2001-10-24 2006-04-18 Sony Corporation Bearing unit, and motor using same
JP2011007336A (en) * 2010-09-07 2011-01-13 Ntn Corp Dynamic pressure bearing device and motor
WO2014148179A1 (en) * 2013-03-19 2014-09-25 Ntn株式会社 Fluid dynamic bearing device and motor provided with same
JP2014181750A (en) * 2013-03-19 2014-09-29 Ntn Corp Fluid dynamic pressure bearing device and motor including the same
US9989091B2 (en) 2013-03-19 2018-06-05 Ntn Corporation Fluid dynamic bearing device and motor provided with same

Similar Documents

Publication Publication Date Title
JP3184794B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP3578948B2 (en) motor
JP3955949B2 (en) Spindle motor and disk drive device having the same
US5358339A (en) Hydrodynamic fluid bearing with liquid-radial bearing and gas-thrust bearing
JP3652875B2 (en) motor
JP4959078B2 (en) Hydrodynamic bearing spindle motor
JP2005114165A (en) Fluid dynamic pressure bearing, spindle motor, and hard disk drive device
JP2007252168A (en) Fluid-bearing type rotary device
JP2007292107A (en) Fluid bearing type rotating device
JPH09303398A (en) Oil retaining bearing unit and motor equipped therewith
JP3930762B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE SAME
JP2001140864A (en) Fluid dynamic pressure bearing and spindle motor
KR100618371B1 (en) Dynamic pressure fluid bearing motor and disc driving device having thereof
JP3184795B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP2001140862A (en) Fluid dynamic pressure bearing and spindle motor
JP3760128B2 (en) Spindle motor and disk drive device using this spindle motor
JPH046667A (en) Rotary equipment and motor or its bearing component
JP2002165407A (en) Motor
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP2007333134A (en) Fluid bearing type rotary device
JP3884599B2 (en) motor
KR100753491B1 (en) A fluid dynamic bearing motor
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JPH09196060A (en) Bearing device
JPH0328517A (en) Dynamic pressure bearing unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060222