JP2001139962A - Thermal decomposition of inflammable waste material - Google Patents

Thermal decomposition of inflammable waste material

Info

Publication number
JP2001139962A
JP2001139962A JP32185199A JP32185199A JP2001139962A JP 2001139962 A JP2001139962 A JP 2001139962A JP 32185199 A JP32185199 A JP 32185199A JP 32185199 A JP32185199 A JP 32185199A JP 2001139962 A JP2001139962 A JP 2001139962A
Authority
JP
Japan
Prior art keywords
waste material
tar
zeolite
waste
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32185199A
Other languages
Japanese (ja)
Inventor
Satoshi Kawanaka
聡 川中
Katsuyuki Mukai
克之 向井
Tomohito Nagano
智史 永野
Seiichiro Enatsu
政一郎 江夏
Takeshi Iwata
剛 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Kurimoto Ltd
Toray Engineering Co Ltd
Unitika Ltd
Original Assignee
Sanki Engineering Co Ltd
Kurimoto Ltd
Toray Engineering Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Kurimoto Ltd, Toray Engineering Co Ltd, Unitika Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP32185199A priority Critical patent/JP2001139962A/en
Publication of JP2001139962A publication Critical patent/JP2001139962A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing an inflammable waste material, capable of suppressing the generation of a tar component, enabling the stable operation of a thermal decomposition unit such as a fluidized bed type gasification furnace and also maintaining or improving the amount of heat generation of the thermally decomposed gas to reuse the energy of the waste material effectively in its thermally decomposition by bringing the inflammable waste material into contact with a heated powder fluidized medium. SOLUTION: This method for decomposing the inflammable waste material by bringing the inflammable waste material into contact with the powder fluidized medium, comprises performing the thermal decomposition by using a zeolite having 3.0-100 molar ratio of silica to alumina (SiO2/Al2O3) and 400-800 m2/l specific surface area as at least a part of it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可燃性廃棄物の熱
分解方法に関し、詳しくは都市固形ごみ廃棄物や廃プラ
スチック、廃油などの産業廃棄物、RDF(Refuse Der
ived Fuel:ごみ固形化燃料)、下水汚泥などの流動床型
ガス化溶融システムによる処理に好適な可燃性廃棄物の
熱分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pyrolyzing combustible waste, and more particularly to industrial waste such as municipal solid waste, waste plastic, waste oil, and RDF (Refuse Der).
The present invention relates to a method for pyrolyzing combustible waste suitable for treatment of ived fuel, sewage sludge, and the like by a fluidized-bed gasification and melting system.

【0002】[0002]

【従来の技術】近年、可燃性廃棄物の焼却処理に代わる
新たな廃棄物処理技術として、ガス化溶融処理が開発さ
れている。ガス化溶融処理とは、例えば、流動床型のガ
ス化炉を用いて可燃性廃棄物を還元性雰囲気下で、40
0〜700℃で熱分解・ガス化して、メタンやエタン、
アセチレンなどの揮発性可燃性ガス成分と可燃性固形分
であるチャーとを発生させ、これらを溶融炉において1
200〜1450℃で完全燃焼させて灰分を溶融させ、
スラグとして排出する方法である。この方法は、ダイオ
キシン類がほとんど発生せず、廃棄物中の灰分を無害な
スラグとして回収でき、ガス化炉で生成するガス、ター
ル等のエネルギーを灰の溶融に再利用できるなどの特長
を有している。
2. Description of the Related Art In recent years, gasification melting treatment has been developed as a new waste treatment technology that replaces incineration treatment of combustible waste. The gasification and melting treatment is, for example, using a fluidized-bed gasification furnace to convert combustible waste into a reducing atmosphere under a reducing atmosphere.
Pyrolysis and gasification at 0-700 ° C, methane and ethane,
Volatile combustible gas components such as acetylene and char, which is a combustible solid, are generated, and these are mixed in a melting furnace.
Completely burn at 200-1450 ° C. to melt ash,
It is a method of discharging as slag. This method has the advantages that almost no dioxins are generated, the ash in the waste can be recovered as harmless slag, and the energy generated by the gasification furnace, such as gas and tar, can be reused for melting the ash. are doing.

【0003】しかし、流動床型のガス化溶融炉において
は、可燃性廃棄物の熱分解・ガス化の際に発生するター
ルやすす成分がガス化炉のフリーボード部分やガス化炉
と溶融炉とを結ぶ配管中に付着・固化し、フリーボード
部の容積を狭めたり、配管を閉塞させることがあり、そ
の結果、ガス化炉の内圧が上昇したり、安定運転ができ
ないなどの問題があった。このため、流動床ガス化炉の
フリーボード部やガス化炉と溶融炉とを結ぶ配管へのタ
ールの付着防止又は除去のための提案が種々なされてい
る。例えば、特開平9−196337号公報には、ガス
化炉と溶融炉とを結ぶの配管中で可燃性ガス成分の一部
を燃焼させて配管内面へのタールの付着を防止する方法
が提案されている。
[0003] However, in the fluidized-bed gasification and melting furnace, tar and soot components generated during the pyrolysis and gasification of combustible waste are generated by the freeboard portion of the gasification furnace and the gasification and melting furnaces. May adhere to and solidify in the pipes connecting the pipes, reducing the volume of the freeboard section or blocking the pipes, resulting in problems such as an increase in the internal pressure of the gasification furnace and inability to operate stably. Was. For this reason, various proposals have been made for preventing or removing tar from adhering to a free board portion of a fluidized-bed gasification furnace or a pipe connecting the gasification furnace and the melting furnace. For example, Japanese Patent Application Laid-Open No. 9-196337 proposes a method of burning a part of combustible gas components in a pipe connecting a gasification furnace and a melting furnace to prevent tar from adhering to the inner surface of the pipe. ing.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、ガス化溶融システムを運転中に配管のクリーニング
を行うと、ガス化炉からの分解ガスが高速で配管内を流
れているので、燃焼用空気を導入した箇所よりも上流部
ではクリーニングされない。配管中のクリーニングが必
要とされる各箇所に空気導入管を設置すればこの問題は
解消されるが、その場合には多量の空気を導入すること
が必要になるので、空気導入による分解ガスの温度低下
のおそれがあり、さらに、間欠的な空気の導入により溶
融炉内の温度が低下し、システム全体の制御が困難にな
るおそれがあった。
However, in this method, if the pipes are cleaned while the gasification and melting system is operating, the decomposition gas from the gasification furnace flows through the pipes at a high speed. It is not cleaned upstream of the location where air was introduced. This problem can be solved by installing air introduction pipes at each location in the pipe where cleaning is required, but in that case, it is necessary to introduce a large amount of air. The temperature may decrease, and the temperature in the melting furnace may decrease due to intermittent introduction of air, which may make it difficult to control the entire system.

【0005】そこで、本発明はこのような課題を解決す
るものであって、可燃性廃棄物を加熱された粉体流動媒
体と接触させて熱分解する際に、タール成分の発生を抑
制し、流動床型ガス化炉などの熱分解装置の安定運転を
可能にするとともに、熱分解ガスの発熱量を維持又は向
上させて廃棄物の保有するエネルギーを有効に再利用す
る可燃性廃棄物の熱分解方法を提供することを課題とす
る。
Accordingly, the present invention is to solve such a problem, and suppresses the generation of tar components when a combustible waste is thermally decomposed by contact with a heated powder flowing medium, In addition to enabling stable operation of pyrolyzers such as fluidized-bed gasifiers, the heat generated by combustible waste that effectively reuses the energy held by the waste by maintaining or improving the calorific value of the pyrolysis gas It is an object to provide a decomposition method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意検討の結果、流動床型ガス
化炉などの熱分解装置で可燃性廃棄物を熱分解する際の
粉末流動媒体の一部又は全部に特定のシリカとアルミナ
とのモル比SiO2/Al2O3及び特定の比表面積を有するゼオ
ライトを用いることにより、タールの発生を抑制するこ
とができ、熱分解ガスの発熱量を維持又は向上させ、熱
分解装置を安定に運転できることを見出し、本発明に到
達した。
Means for Solving the Problems The present inventors have made intensive studies to solve such problems, and as a result, have found that when pyrolyzing combustible waste with a pyrolysis apparatus such as a fluidized-bed gasifier, etc. By using a zeolite having a specific silica / alumina molar ratio of SiO 2 / Al 2 O 3 and a specific specific surface area for part or all of the powder fluidized medium, the generation of tar can be suppressed, The inventors have found that the calorific value of the cracked gas can be maintained or improved, and the thermal cracking device can be operated stably, and have reached the present invention.

【0007】すなわち、このような課題を解決するため
の本発明は、可燃性廃棄物を加熱された粉体流動媒体と
接触させて熱分解するに際し、粉体流動媒体の少なくと
も一部にシリカとアルミナとのモル比SiO2/Al2O3が3.
0〜100で比表面積が400〜800m2/lである
ゼオライトを用いて熱分解することを特徴とする可燃性
廃棄物の熱分解方法を要旨とする。
[0007] That is, the present invention for solving the above-mentioned problem is that, when the flammable waste is brought into contact with a heated powder flowing medium and thermally decomposed, at least a part of the powder flowing medium contains silica. 2. The molar ratio of SiO 2 / Al 2 O 3 to alumina is 3.
The gist of the present invention is a method for thermally decomposing flammable waste, wherein the pyrolysis is performed using zeolite having a specific surface area of 0 to 100 and a specific surface area of 400 to 800 m 2 / l.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において処理対象とする可燃性廃棄物としては、
特に限定されるものではなく、都市固形ごみ廃棄物、廃
プラスチックや廃油などの産業廃棄物、RDF、下水汚
泥などの可燃性廃棄物又はこれらの可燃性廃棄物を含む
混合物が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
As the combustible waste to be treated in the present invention,
There is no particular limitation, and examples thereof include municipal solid waste, industrial waste such as waste plastic and waste oil, combustible waste such as RDF and sewage sludge, and a mixture containing these combustible wastes.

【0009】また、粉末流動媒体として使用されるゼオ
ライトとは、シリカとアルミナから構成され、強い酸性
を示す固体酸である。ちなみに、ゼオライトはその酸と
しての性質を利用して重質油のクラッキング(分解)処
理などに使用されている。本発明において粉末流動媒体
として使用されるゼオライトは、シリカとアルミナとの
モル比SiO2/Al2O3が3.0〜100で、比表面積が40
0〜800m2/lであることが必要であり、特にシリ
カとアルミナとのモル比SiO2/Al2O3が4.0〜50で、
比表面積が500〜700m2/lであることが好まし
い。ゼオライトのシリカとアルミナとのモル比SiO2/Al2
O3及び比表面積が上記の範囲から外れると、可燃性廃棄
物の熱分解が十分に進まず、多量のタールが発生するお
それがある。
[0009] Zeolite used as a powder flowing medium is a solid acid which is composed of silica and alumina and has strong acidity. Incidentally, zeolite is used for cracking (decomposing) heavy oil, etc., utilizing its acid properties. The zeolite used as a powder flowing medium in the present invention has a silica / alumina molar ratio of SiO 2 / Al 2 O 3 of 3.0 to 100 and a specific surface area of 40.
0 to 800 m 2 / l, and especially the molar ratio of silica to alumina SiO 2 / Al 2 O 3 is 4.0 to 50,
The specific surface area is preferably from 500 to 700 m 2 / l. Molar ratio of silica to alumina of zeolite SiO 2 / Al 2
When O 3 and the specific surface area are out of the above ranges, thermal decomposition of combustible waste does not sufficiently proceed, and a large amount of tar may be generated.

【0010】なお、本発明でいう比表面積とは、BET
法で測定したBET比表面積をいう。また、ゼオライト
の平均粒径は、特に限定されるものではないが、50〜
1000μmであることが好ましく、特に100〜50
0μmであることが好ましい。平均粒径が50μm未満
の場合は、ガス化炉などの熱分解装置で生じた熱分解ガ
スとともにその後段の処理システム(例えば溶融炉)へ
導出され易く、ガス化炉内での触媒活性を維持するため
にゼオライトを追加して添加することが必要になること
がある。一方、平均粒径が1000μmを超える場合に
は、流動層の運動状態を活発化させるために、過剰の空
気を供給することが必要になることがある。さらに、ゼ
オライトの細孔径は、0.2〜1.5nmであることが
好ましく、0.5〜0.8nmであることがより好まし
い。上記ゼオライトにおけるシリカ・アルミナのカウン
ターイオン種としては、Na+タイプ、H+タイプのどち
らのタイプであってもよい。
The specific surface area referred to in the present invention is BET.
BET specific surface area measured by the method. Further, the average particle size of the zeolite is not particularly limited,
Preferably it is 1000 μm, especially 100 to 50
It is preferably 0 μm. When the average particle size is less than 50 μm, it is easily led to a subsequent processing system (for example, a melting furnace) together with a pyrolysis gas generated in a pyrolysis apparatus such as a gasification furnace, and maintains catalytic activity in the gasification furnace. It may be necessary to add additional zeolite to achieve this. On the other hand, when the average particle size exceeds 1000 μm, it may be necessary to supply excess air in order to activate the motion state of the fluidized bed. Further, the zeolite preferably has a pore diameter of 0.2 to 1.5 nm, more preferably 0.5 to 0.8 nm. As the counter ion species of silica / alumina in the zeolite, either of Na + type and H + type may be used.

【0011】このような性状を有するゼオライトは市販
のものを入手することができる。本発明においては、粉
体流動媒体の全てを上記ゼオライトとしてもよいが、コ
ストを勘案すれば、上記ゼオライトが0.1〜20重量
%となるように他の粉体流動媒体と混合して用いること
が好ましく、1〜10重量%となるように混合して用い
ることがさらに好ましい。
[0011] Commercially available zeolites having such properties can be obtained. In the present invention, all of the powder flowing medium may be the above-mentioned zeolite, but if cost is taken into account, the zeolite is mixed with another powder flowing medium so as to be 0.1 to 20% by weight and used. It is more preferable to mix and use 1 to 10% by weight.

【0012】上記ゼオライトと混合して使用する他の粉
体流動媒体としては、ゼオライトによるタール成分の発
生抑制作用を妨害しない限り特に限定されるものではな
く、公知の粉体流動媒体、例えばケイ砂、オリビアン砂
等の砂、シリカ、アルミナ、ドロマイト、又は公知の触
媒粉体、例えば石灰粉などが挙げられる。本発明に適用
できる可燃性廃棄物を加熱された粉体流動媒体と接触さ
せて熱分解する装置としては、可燃性廃棄物を炉内の高
温の粉体流動媒体と流動層で還元性雰囲気下で接触させ
て熱分解し、可燃性ガス、可燃性固形物などを発生させ
る装置であれば、ガス化炉の形状などは特に限定される
ものではなく、具体的には、流動床型ガス化炉が挙げら
れる。
The other powder flowing medium used by mixing with the above zeolite is not particularly limited as long as it does not hinder the action of suppressing the generation of tar components by the zeolite. , Sand such as olivian sand, silica, alumina, dolomite, or a known catalyst powder such as lime powder. As an apparatus for applying the present invention to thermally decompose flammable waste by contacting the same with a heated powder fluidized medium, the flammable waste is heated under a reducing atmosphere using a high temperature powder fluidized medium and a fluidized bed in a furnace. The shape of the gasification furnace is not particularly limited as long as it is a device that generates flammable gas, flammable solids, etc. by contacting with heat and generating a combustible gas, specifically, fluidized bed gasification. Furnaces.

【0013】可燃性廃棄物を熱分解する際の流動層の温
度は、300〜700℃が好ましく、450〜650℃
がさらに好ましい。また、流動層において、粉体流動媒
体が活発に流動運動するように炉内の底部から供給する
気体としては、空気、酸素ガス富化空気、加熱空気、排
ガス、窒素ガス、酸素ガス、二酸化炭素ガスなどの1つ
又は2つ以上から構成される気体が挙げられる。
The temperature of the fluidized bed at the time of pyrolyzing the combustible waste is preferably 300 to 700 ° C., and more preferably 450 to 650 ° C.
Is more preferred. In the fluidized bed, the gas supplied from the bottom of the furnace such that the powder fluidized medium actively moves and moves is air, oxygen-gas-enriched air, heated air, exhaust gas, nitrogen gas, oxygen gas, carbon dioxide. A gas composed of one or two or more such as gas.

【0014】また、このような可燃性廃棄物を熱分解す
る装置は、それ自体が単独の廃棄物処理システムであっ
てもよいし、熱分解装置の前段又は後段にシステムが付
随したものであってもよい。前段に付随するシステムの
例としては、廃棄物の混合、乾燥、破砕、成形、投入シ
ステムなどが挙げられる。また、後段に付随するシステ
ムの例としては、サイクロン分級器、溶融炉、排ガス処
理設備(ガス冷却装置、除塵装置、脱硝、脱硫、ダイオ
キシン分解又は除去システムなどのうち、1つ又は2つ
以上の組み合わせ)、熱回収システム(ボイラー、熱交
換器などのうち1つ又は2つ以上の組み合わせ)などが
挙げられる。特に後段に溶融炉を設けたガス化溶融炉に
使用すれば、ガス化炉と溶融炉とを結ぶ配管中へのター
ル分の付着がなく、タール分が低分子ガス成分に変換さ
れるため、溶融炉に送られる可燃性ガス成分の発熱量の
増加が計れ、その結果重油などの助燃燃料の低減及び安
定なガス化溶融運転が可能となる。
Further, the apparatus for thermally decomposing such combustible waste may be a single waste treatment system itself, or may be a system in which a system is attached before or after the thermal decomposition apparatus. You may. Examples of systems associated with the preceding stage include waste mixing, drying, crushing, molding, dosing systems, and the like. In addition, examples of a system attached to the subsequent stage include a cyclone classifier, a melting furnace, an exhaust gas treatment facility (a gas cooling device, a dust removal device, a denitration, a desulfurization, a dioxin decomposition or removal system, and the like. Combinations), heat recovery systems (combinations of one or more of boilers, heat exchangers, etc.). In particular, if used in a gasification and melting furnace provided with a melting furnace in the subsequent stage, there is no adhesion of tar components in the pipe connecting the gasification furnace and the melting furnace, and the tar components are converted to low molecular gas components, The calorific value of the combustible gas component sent to the melting furnace can be increased, and as a result, the amount of auxiliary fuel such as heavy oil can be reduced and stable gasification and melting operation can be performed.

【0015】本発明においては、粉体流動媒体として上
記のような特定の性状を有するゼオライトを用いること
により、ベンゼン、トルエン、キシレン等の単環芳香族
炭化水素類、ナフタレン、フェナントレン、アントラセ
ン、ピレン、クリセン等の多環縮合芳香族炭化水素類、
フェノール、クレゾール、キシレノール等のタール酸
類、又はピリジン、ピコリン、ルチジン、キノリン等の
タール塩基類などのタール成分が上記ゼオライトの触媒
活性により低分子化されて、メタン、エタン、アセチレ
ンなどの低分子揮発性物質に分解されるため、ガス化炉
のフリーボード部やガス化炉と溶融炉とを結ぶ配管中に
タール分が付着することがなく、安定な運転状態を維持
することが可能となる。
In the present invention, a monocyclic aromatic hydrocarbon such as benzene, toluene and xylene, naphthalene, phenanthrene, anthracene and pyrene can be obtained by using a zeolite having the above-mentioned specific properties as a powder fluidizing medium. , Polycyclic fused aromatic hydrocarbons such as chrysene,
Tar components such as phenol, cresol, and xylenol, or tar bases such as pyridine, picoline, lutidine, and quinoline are reduced in molecular weight by the catalytic activity of the zeolite, and are volatilized in low molecular weight such as methane, ethane, and acetylene. Since it is decomposed into volatile substances, tar does not adhere to the freeboard portion of the gasification furnace or the pipe connecting the gasification furnace and the melting furnace, and a stable operation state can be maintained.

【0016】(実施例)次に、本発明を実施例により具
体的に説明する。以下の実施例において、タール発生量
及びタール中の炭化水素の炭素数割合は次のようにして
測定した。 (1)タール発生量(mg) 発生したガス中のタール分を捕集ビンに捕集し、捕集ビ
ンに付着したタール分をジエチルエーテルに溶解して捕
集ビンから回収した。回収したタール溶解ジエチルエー
トル液をロータリーエバポレーターを用いて、濃縮・乾
固させ、得られたタールを微量電子天秤により秤量し、
タール発生量とした。 (2)タール中の炭化水素の炭素数割合(炭化水素の炭
素数毎の割合)(%) 上記(1)において回収したタール溶解ジエチルエーテ
ル液を試料としてガスクロマトグラフィーで測定した。
ガスクロマトグラフィーはカラムをTC−1(GLサイ
エンス社製:0.25mm×60m)とし、40℃で試
料を注入して2分間保持させた後、20℃/分で昇温
し、300℃で5分間保持させ、FIDで検出した。
(Examples) Next, the present invention will be specifically described with reference to examples. In the following examples, the amount of generated tar and the carbon number ratio of hydrocarbons in the tar were measured as follows. (1) Amount of tar generation (mg) The tar component in the generated gas was collected in a collection bin, and the tar component attached to the collection bin was dissolved in diethyl ether and collected from the collection bin. Using a rotary evaporator, the collected tar-dissolved diethyl ether solution was concentrated and dried, and the obtained tar was weighed with a microelectronic balance.
The amount of tar generation was used. (2) Carbon number ratio of hydrocarbons in tar (proportion for each carbon number of hydrocarbons) (%) The tar-dissolved diethyl ether solution collected in (1) above was used as a sample and measured by gas chromatography.
In the gas chromatography, the column was set to TC-1 (manufactured by GL Sciences: 0.25 mm × 60 m), the sample was injected at 40 ° C., kept for 2 minutes, and then heated at a rate of 20 ° C./min. It was kept for 5 minutes and detected by FID.

【0017】なお、試薬類は全てナカライテスク社のも
のを使用した。 実施例1〜5、比較例1〜5 プラスチックの種類が異なる廃プラスチックの混合微粉
末10gをケイ砂(平均粒径500μm)10g及び表
1に示す各種性状(シリカとアルミナとのモル比SiO2/A
l2O3:1.5〜150、比表面積:100〜900m2
/l)を有するゼオライト粉末(平均粒径500μm)
1gとを混合し、5容量%の酸素ガス存在下で500℃
の温度に保たれた電気炉において15分間、熱分解を行
った。
All reagents used were those manufactured by Nacalai Tesque. Examples 1 to 5 and Comparative Examples 1 to 5 10 g of a mixed fine powder of waste plastic having different types of plastics was mixed with 10 g of silica sand (average particle diameter 500 μm) and various properties shown in Table 1 (molar ratio SiO 2 of silica and alumina). / A
l 2 O 3 : 1.5 to 150, specific surface area: 100 to 900 m 2
/ L) (average particle size 500 µm)
1 g and 500 ° C. in the presence of 5% by volume of oxygen gas.
Was thermally decomposed for 15 minutes in an electric furnace maintained at a temperature of.

【0018】タールの発生量及びタール中の炭化水素の
炭素数割合を測定した結果を表1に示す。
Table 1 shows the measurement results of the amount of tar generated and the carbon number ratio of hydrocarbons in the tar.

【0019】[0019]

【表1】 表1から、シリカとアルミナとのモル比SiO2/Al2O3
3.0〜100で、比表面積が400〜800m2/l
のゼオライトを含む粉体流動媒体を用いた実施例1〜5
においては、タールの発生量を顕著に減少させることが
でき、また、発生したタール中の炭化水素も低分子化し
ていることが分かる。一方、上記の条件を満足しないゼ
オライトを含む粉体流動媒体を用いた比較例1〜5にお
いてはタールの発生量が多く、また、発生したタール中
の炭化水素の炭素数も多いことが分かる。
[Table 1] From Table 1, the molar ratio of silica to alumina is SiO 2 / Al 2 O 3 of 3.0 to 100, and the specific surface area is 400 to 800 m 2 / l.
Examples 1 to 5 using powdered fluid media containing zeolite
In Table 1, it can be seen that the amount of tar generated can be significantly reduced, and that the hydrocarbons in the generated tar are also reduced in molecular weight. On the other hand, in Comparative Examples 1 to 5 using the powdered fluid medium containing zeolite that does not satisfy the above conditions, it can be seen that the amount of generated tar is large and the carbon number of the hydrocarbon in the generated tar is large.

【0020】[0020]

【発明の効果】以上のとおり、本発明によれば、可燃性
廃棄物を熱分解する際に粉体流動媒体としてシリカとア
ルミナとの特定のモル比と特定の比表面積を有するゼオ
ライトを用いるので、発生するタール成分が低分子化し
て揮発性の高い化合物に変換され、タールの発生量を減
少させることができ、熱分解装置のフリーボード部や後
段の処理装置と結ぶ配管中へのタールの付着を防止する
ことができ、しかも、熱分解ガスの発熱量を維持又は向
上させ、その結果として熱分解装置を含む可燃性廃棄物
の処理システムを安定して運転することができる。
As described above, according to the present invention, zeolite having a specific molar ratio of silica and alumina and a specific specific surface area is used as a powder fluidizing medium when pyrolyzing combustible waste. The generated tar components are converted to low-molecular compounds with low molecular weight, and the amount of tar generated can be reduced, and tar generated in the freeboard part of the thermal decomposition unit and the piping connected to the subsequent processing unit Adhesion can be prevented, and the calorific value of the pyrolysis gas can be maintained or improved. As a result, the combustible waste treatment system including the pyrolysis device can be operated stably.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B01J 29/00 F23G 5/027 ZABB F23G 5/027 ZAB 5/30 ZABR 5/30 ZAB B09B 3/00 303G 303K (71)出願人 000001834 三機工業株式会社 東京都千代田区有楽町1丁目4番1号 (72)発明者 川中 聡 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 向井 克之 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 永野 智史 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐡工所内 (72)発明者 江夏 政一郎 滋賀県大津市園山1丁目1番1号 東レエ ンジニアリング株式会社内 (72)発明者 岩田 剛 東京都千代田区有楽町1丁目4番1号 三 機工業株式会社内 Fターム(参考) 3K061 AA11 AB02 AC20 BA01 BA07 BA09 BA10 EB18 4D004 AA02 AA07 AA46 BA03 CA27 CA29 CC11 4G069 AA02 BA07A BA07B BC16A BC16B BD05A BD05B CA04 CA10 CA11 DA08 EA01Y EC03X EC04X ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B01J 29/00 F23G 5/027 ZABB F23G 5/027 ZAB 5/30 ZABR 5/30 ZAB B09B 3 / 00 303G 303K (71) Applicant 000001834 Sanki Kogyo Co., Ltd. 1-4-1, Yurakucho, Chiyoda-ku, Tokyo (72) Inventor Satoshi Kawanaka 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Central Research Laboratory (72) Inventor Katsuyuki Mukai 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Central Research Laboratory (72) Inventor Satoshi Nagano 1-12-19 Kitahorie, Nishi-ku, Osaka City, Osaka Prefecture Kurimoto Iron Works Co., Ltd. (72) Inventor Seikaichiro Enatsu 1-1-1 Sonoyama, Otsu City, Shiga Prefecture Toray Engineering Co., Ltd. (72) Inventor Tsuyoshi Iwata Higashi 3-4-1, Yurakucho, Chiyoda-ku, Kyoto Sanki Industries Co., Ltd. F-term (reference) 3K061 AA11 AB02 AC20 BA01 BA07 BA09 BA10 EB18 4D004 AA02 AA07 AA46 BA03 CA27 CA29 CC11 4G069 AA02 BA07A BA07B BC16A BC16B BD05A BD05 CA04 EA01Y EC03X EC04X

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可燃性廃棄物を加熱された粉体流動媒体
と接触させて熱分解するに際し、粉体流動媒体の少なく
とも一部にシリカとアルミナとのモル比SiO2/Al2O3
3.0〜100で比表面積が400〜800m2/lで
あるゼオライトを用いて熱分解することを特徴とする可
燃性廃棄物の熱分解方法。
When the combustible waste is thermally decomposed by contact with a heated powder fluid medium, at least a part of the powder fluid medium has a silica / alumina molar ratio of SiO 2 / Al 2 O 3. A pyrolysis method for combustible waste, comprising pyrolyzing a zeolite having a specific surface area of 3.0 to 100 and a specific surface area of 400 to 800 m 2 / l.
JP32185199A 1999-11-12 1999-11-12 Thermal decomposition of inflammable waste material Pending JP2001139962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32185199A JP2001139962A (en) 1999-11-12 1999-11-12 Thermal decomposition of inflammable waste material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32185199A JP2001139962A (en) 1999-11-12 1999-11-12 Thermal decomposition of inflammable waste material

Publications (1)

Publication Number Publication Date
JP2001139962A true JP2001139962A (en) 2001-05-22

Family

ID=18137139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32185199A Pending JP2001139962A (en) 1999-11-12 1999-11-12 Thermal decomposition of inflammable waste material

Country Status (1)

Country Link
JP (1) JP2001139962A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348154A (en) * 2001-05-29 2002-12-04 Mitsubishi Materials Corp Treating method of sludge and combustible waste
JP2006122841A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Biomass gasification catalyst and hydrogen production method from biomass using the catalyst
JP2010223564A (en) * 2009-03-25 2010-10-07 Mitsui Eng & Shipbuild Co Ltd Method of operating fluidized bed gasification furnace, and fluidized bed gasification furnace
CN103104920A (en) * 2013-02-01 2013-05-15 东南大学 Heavy metal and ultrathin particles gathering method in solid waste burning process
CN103374417A (en) * 2012-04-27 2013-10-30 王庆 Fluidized bed gasification method of sludge and pulverized coal
JP2015218929A (en) * 2014-05-15 2015-12-07 株式会社神鋼環境ソリューション Operational method for fluidized bed furnace and fluidized bed

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348154A (en) * 2001-05-29 2002-12-04 Mitsubishi Materials Corp Treating method of sludge and combustible waste
JP2006122841A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Biomass gasification catalyst and hydrogen production method from biomass using the catalyst
JP4528945B2 (en) * 2004-10-29 2010-08-25 独立行政法人産業技術総合研究所 Biomass gasification catalyst and method for producing hydrogen from biomass using this catalyst
JP2010223564A (en) * 2009-03-25 2010-10-07 Mitsui Eng & Shipbuild Co Ltd Method of operating fluidized bed gasification furnace, and fluidized bed gasification furnace
CN103374417A (en) * 2012-04-27 2013-10-30 王庆 Fluidized bed gasification method of sludge and pulverized coal
CN103104920A (en) * 2013-02-01 2013-05-15 东南大学 Heavy metal and ultrathin particles gathering method in solid waste burning process
JP2015218929A (en) * 2014-05-15 2015-12-07 株式会社神鋼環境ソリューション Operational method for fluidized bed furnace and fluidized bed

Similar Documents

Publication Publication Date Title
Holder et al. Nanomaterial disposal by incineration
Choi et al. Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil
Mastellone et al. Olivine as a tar removal catalyst during fluidized bed gasification of plastic waste
US5744117A (en) Feed processing employing dispersed molten droplets
Luo et al. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag
Fjellerup et al. Formation, decomposition and cracking of biomass tars in gasification
WO2005093014A1 (en) Method for removing tar in fluidized layer furnace
JP6419388B2 (en) Method and system for removal of particulate matter (PARTICULATE MATTER) from a process (exhaust gas) stream
Li et al. Advances in rigid porous high temperature filters
JP2008106270A (en) Method for manufacturing solid feedstock and fuel
Jeong et al. Three-stage air gasification of waste polyethylene: In-situ regeneration of active carbon used as a tar removal additive
JP2001139962A (en) Thermal decomposition of inflammable waste material
TW396063B (en) Method for recovering phosphorus from organic sludge
JPH09241666A (en) Use of residue, waste and low-heating value fuel in terms of energy in steam power generating plant
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
JP2001327950A (en) Incineration method and apparatus for solid waste
CN114350387A (en) Method for treating and recycling oily sludge
JP2005154722A (en) Dry purification method of thermally cracked gas
JP2003160789A (en) Method and apparatus for producing fuel gas
JP2007269905A (en) Gasification device
JP2001165426A (en) Method and equipment for reducing dioxin and related compound in refuse gasification melting apparatus of char separation system
Osipovs et al. Determination of Pollutants in Industrial Water Used for Cooling Gases in Waste Pyrolysis Process
WO2023013163A1 (en) Processing apparatus and processing method for recovering decomposition oil from pyrolysis gas
JP2002130628A (en) Thermal gas decomposition gas rectifying apparatus for thermal decomposition/melting combustion apparatus
CN107858167B (en) High-alkali coal and sludge combined pyrolysis device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331