JP2001138075A - Method for welding solid - Google Patents

Method for welding solid

Info

Publication number
JP2001138075A
JP2001138075A JP32393199A JP32393199A JP2001138075A JP 2001138075 A JP2001138075 A JP 2001138075A JP 32393199 A JP32393199 A JP 32393199A JP 32393199 A JP32393199 A JP 32393199A JP 2001138075 A JP2001138075 A JP 2001138075A
Authority
JP
Japan
Prior art keywords
vapor
copper
solid
treatment
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32393199A
Other languages
Japanese (ja)
Inventor
Katsuhiro Takahashi
克弘 高橋
Yoshiaki Mori
義明 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32393199A priority Critical patent/JP2001138075A/en
Publication of JP2001138075A publication Critical patent/JP2001138075A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/8509Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85095Temperature settings
    • H01L2224/85099Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Abstract

PROBLEM TO BE SOLVED: To weld various kinds of metals in a solid state without using a brazing filler material. SOLUTION: In a chlorination processing part 10, a hydrochloric acid vapor blowoff part 18 is arranged above a transfer device 12. By the hydrochloric acid vapor blowoff part 18, hydrochloric acid vapor 22 is sprayed on members 14 to be welded which consist of metal transferred by the transfer device 12, and the surfaces of the members 14 are chlorinated. Chlorinated members 14A, 14B to be welded are stacked on a welding table 36 provided in the chamber 34 of a welding processing part 30. These members 14 are pressed to one another by a welding cylinder 40, are heated by heaters 38, 46, and are welded in the solid-object state. A nitrogen gas is supplied from a nitrogen gas supply part 48 to the chamber 34 to prevent the oxidation of the heated members 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属と金属とを接
合する固体接合方法に係り、特にフラックスやロウ材を
使用することなく、金属同士を固体状態で直接接合する
固体接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid joining method for joining metals, and more particularly to a solid joining method for joining metals directly in a solid state without using a flux or a brazing material.

【0002】[0002]

【従来の技術】従来、銅と銅、銅と錫などの金属同士の
被接合材を接合する場合、半田などのロウ材(接合材)
を溶融して行なうのが一般的である。一方、半導体装置
の製造分野においては、半導体チップに形成したアルミ
ニウムからなる電極(パッド)と、パッケージ基板の金
メッキされた基板電極部とを、ロウ材を用いずに金の細
線(ワイヤ)によって電気的に接続するようにしてい
る。
2. Description of the Related Art Conventionally, when joining materials to be joined between metals such as copper and copper or copper and tin, a brazing material such as solder (joining material) is used.
Is generally performed. On the other hand, in the semiconductor device manufacturing field, an electrode (pad) made of aluminum formed on a semiconductor chip and a gold-plated substrate electrode portion of a package substrate are electrically connected to each other by a fine gold wire (wire) without using a brazing material. It is trying to connect.

【0003】[0003]

【発明が解決しようとする課題】ロウ材を用いて金属か
らなる被接合材を接合する方法は、ロウ材を溶融して接
合するために被接合材相互の位置ずれを生じやく、微細
な加工に適していない。また、ロウ材を溶融するため、
ロウ材の一部が接合部の周囲に食み出し、美観を損ね
る。一方、半導体装置の製造分野においては、ロウ材を
用いずに金ワイヤを半導体チップのアルミニウム電極
(アルミパッド)に接続している。この接続は、通常、
金ワイヤの先端部を溶融して溶融ボールを形成し、この
溶融ボールをアルミパッドに接合している。
In the method of joining metal members to be joined using a brazing material, the displacement of the materials to be joined is liable to occur due to melting and joining of the brazing materials, so that fine processing is performed. Not suitable for Also, to melt the brazing material,
A part of the brazing material protrudes around the joint, which impairs the appearance. On the other hand, in the field of manufacturing semiconductor devices, a gold wire is connected to an aluminum electrode (aluminum pad) of a semiconductor chip without using a brazing material. This connection is usually
The tip of the gold wire is melted to form a molten ball, and the molten ball is joined to an aluminum pad.

【0004】しかし、ロウ材を使用せずに金属同士を直
接接合する場合、接合できる金属が非常に限定される。
すなわち、近年、半導体チップは、高集積化によるパタ
ーンの微細化に伴って、導電性に優れた銅配線が使用さ
れるようになっている。ところが、銅は、非常に酸化し
やすく、加熱されると容易に酸化するため、フラックス
やロウ材などを用いずに金ワイヤを直接接続することが
できない。
However, when metals are directly joined without using a brazing material, the metals that can be joined are very limited.
In other words, in recent years, with the miniaturization of patterns due to high integration, copper wiring having excellent conductivity has been used. However, copper is very easily oxidized and easily oxidized when heated, so that a gold wire cannot be directly connected without using a flux, a brazing material, or the like.

【0005】本発明は、前記従来技術の欠点を解消する
ためになされたもので、ロウ材を使用せずに多様な金属
を固体状態で接合することができるようにすることを目
的としている。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to be able to join various metals in a solid state without using a brazing material.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る固体接合方法は、相互に接合される
同種または異種の金属からなる被接合部材の少なくとも
一方を塩素化処理したのち、両者を接触させて接合する
ことを特徴としている。
In order to achieve the above object, in a solid joining method according to the present invention, at least one of members to be joined made of the same or different metals to be joined to each other is chlorinated. Thereafter, the two are brought into contact with each other and joined.

【0007】このように構成した本発明は、金属からな
る被接合部材を塩素化処理し、金属と結合しやすい塩素
を被接合部材の表面に存在させることにより、塩素が被
接合部材の内部に拡散して金属結合を切断し、切断され
た結合手が他方の被接合部材と結合するため、ロウ材を
用いることなく金属からなる2つの被接合部材を、固体
状態で相互に接合することができる。また、塩素は、フ
ッ素ほど反応性が強くないため、塩素化処理の程度を制
御しやすく、接合状態(接合強度)のばらつき小さくす
ることができる。
According to the present invention having the above-described structure, the member to be joined made of metal is subjected to chlorination treatment, and chlorine which is easily bonded to the metal is present on the surface of the member to be joined. Since the metal bond is diffused and cut, and the cut joint is connected to the other member to be joined, the two members to be joined made of metal can be joined to each other in a solid state without using a brazing material. it can. In addition, since chlorine is not as reactive as fluorine, the degree of chlorination can be easily controlled, and variations in the bonding state (bonding strength) can be reduced.

【0008】塩素化処理は、塩素ガスに被接合材を晒し
て行なってもよいし、塩酸の蒸気に被接合部材を晒して
行なうことができる。塩酸は、入手も容易で、塩素ガス
に比較すると取り扱いやすく危険性も少ない。そして、
接合は、被接合部材の接合部を加熱し、加圧して各被接
合部材の接合部を相互に密接させて行なうとよい。加熱
することにより、塩素がより活性化され、接合が容易と
なる。また、加圧して被接合部材を相互に密接させるこ
とにより、接合面積が増大して接合が容易にできるとと
もに、接合強度を大きくすることができる。相互に接合
する被接合部材の一方を金、他方を銅から構成すると、
例えば半導体チップの銅パッドや銅配線に金ワイヤを直
接接続することができ、従来必要としていた銅配線にア
ルミニウムの電極パッドを形成する必要がなくなり、半
導体チップを初めとする半導体装置の大幅なコストの削
減を図ることができる。
The chlorination treatment may be performed by exposing the material to be joined to chlorine gas or by exposing the material to be joined to a vapor of hydrochloric acid. Hydrochloric acid is easily available and easy to handle and less dangerous than chlorine gas. And
The joining may be performed by heating and pressurizing the joints of the members to be joined so that the joints of the members to be joined are brought into close contact with each other. By heating, chlorine is more activated and bonding is facilitated. Further, by bringing the members to be joined into close contact with each other by applying pressure, the joining area can be increased and joining can be facilitated, and the joining strength can be increased. If one of the members to be joined to each other is made of gold and the other is made of copper,
For example, gold wires can be directly connected to copper pads and copper wiring of a semiconductor chip, eliminating the need for forming aluminum electrode pads on copper wiring, which was conventionally required, resulting in a large cost for semiconductor devices such as semiconductor chips. Can be reduced.

【0009】[0009]

【発明の実施の形態】本発明に係る固体接合方法の好ま
しい実施の形態を、添付図面に従って詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the solid joining method according to the present invention will be described in detail with reference to the accompanying drawings.

【0010】図1は、本発明の実施の形態に係る固体接
合方法の説明図である。図1において、塩素化処理部1
0には、コンベヤなどの搬送装置12が設けてある。搬
送装置12は、例えば銅配線を有する半導体チップや実
装基板、銅板、錫板、金や銀の板などの被接合部材14
を矢印16のように、塩素化処理部10に搬入し、塩素
化処理の終わった被接合部材14を塩素化処理部10か
ら搬出する。
FIG. 1 is an explanatory diagram of a solid joining method according to an embodiment of the present invention. In FIG. 1, a chlorination unit 1
0 is provided with a transport device 12 such as a conveyor. The transfer device 12 is a member to be joined 14 such as a semiconductor chip having copper wiring, a mounting board, a copper plate, a tin plate, a gold or silver plate,
Is carried into the chlorination unit 10 as indicated by an arrow 16, and the workpiece 14 after the chlorination treatment is carried out from the chlorination unit 10.

【0011】搬送装置12の上方には、塩酸蒸気吹出し
部18が配設してある。この塩酸蒸気吹出し部18は、
配管を介して塩酸蒸気供給部20に接続してあって、塩
酸蒸気供給部20から供給された塩酸蒸気22を、下方
を通過する被接合部材14に吹き付ける。また、塩酸蒸
気吹付け部18と、この下方の搬送装置12の周囲は、
図示しない囲いによって囲ってあるとともに、囲いに、
内部の余分な塩酸蒸気22を除害装置に導く配管が接続
してある。
Above the transfer device 12, a hydrochloric acid vapor blowing section 18 is provided. This hydrochloric acid vapor blowing section 18
The hydrochloric acid vapor 22 supplied from the hydrochloric acid vapor supply unit 20 is connected to the hydrochloric acid vapor supply unit 20 via a pipe, and is sprayed on the member 14 to pass below. Further, the periphery of the hydrochloric acid vapor spraying section 18 and the transporting device 12 below this section,
While enclosed by a not-shown enclosure,
A pipe for connecting excess hydrochloric acid vapor 22 inside to the abatement apparatus is connected.

【0012】そして、被接合部材14は、塩酸蒸気吹出
し部18の下方を通過する際に、塩酸蒸気22に晒され
て表面が塩素化される。この塩素化処理の時間は、塩酸
蒸気供給部20の塩酸の濃度にもよるが、室温において
数秒以上行なえば充分である。また、被接合部材14を
加熱して塩素化処理を行なうと、処理時間を短縮するこ
とができる。
The member 14 is exposed to hydrochloric acid vapor 22 when passing below the hydrochloric acid vapor blowing section 18 to chlorinate its surface. The chlorination time depends on the concentration of hydrochloric acid in the hydrochloric acid vapor supply section 20, but it is sufficient if the chlorination treatment is performed at room temperature for several seconds or more. Further, when the chlorination treatment is performed by heating the member to be joined 14, the treatment time can be shortened.

【0013】塩素化処理された被接合部材14は、接合
処理部30に搬入される。接合処理部30は、ベース3
2の上にチャンバ34が設けてある。そして、チャンバ
34内のベース32上には、接合テーブル36が設けて
ある。この接合テーブル36の上には、塩素化処理され
た被接合部材14A、14Bが重ねて配置される。ま
た、接合テーブルは、ヒータ38を内蔵していて、上面
に配置された被接合部材14を所定の温度に加熱できる
ようになっている。そして、接合テーブル36の上方に
は、チャンバ34に取り付けた接合シリンダ40が配設
してある。接合シリンダ40は、ロッド42の先端に加
圧板44が取り付けてある。この加圧板44は、ヒータ
46を内蔵していて、被接合部材14Bを加圧した際に
所定の温度に加熱できるようになっている。
The chlorinated workpiece 14 is carried into the bonding section 30. The joining processing unit 30 includes the base 3
A chamber 34 is provided on the top 2. A joining table 36 is provided on the base 32 in the chamber 34. On the joining table 36, the members to be joined 14A and 14B which have been subjected to the chlorination treatment are arranged in an overlapping manner. The joining table has a built-in heater 38 so that the member to be joined 14 disposed on the upper surface can be heated to a predetermined temperature. Above the joining table 36, a joining cylinder 40 attached to the chamber 34 is provided. The joining cylinder 40 has a pressure plate 44 attached to the tip of a rod 42. The pressure plate 44 has a built-in heater 46 so that the member 14B can be heated to a predetermined temperature when the member 14B is pressed.

【0014】さらに、チャンバ34は、窒素ガス供給部
48が接続してあって、窒素ガス供給部48から窒素ガ
スを導入することにより、内部を窒素ガス雰囲気にでき
るようにしてある。これにより、被接合部材14(14
A、14B)が酸化されやすい材質であったとしても、
被接合部材14を加熱した際に酸化されるのを防止し、
固体接合を確実に行なえるようにしている。
Further, the chamber 34 is connected to a nitrogen gas supply unit 48, and by introducing nitrogen gas from the nitrogen gas supply unit 48, the inside can be made to have a nitrogen gas atmosphere. Thereby, the member to be joined 14 (14
A, 14B) is a material that is easily oxidized,
To prevent oxidation when the member to be joined 14 is heated,
Solid joining is ensured.

【0015】接合テーブル36の上に配置された被接合
部材14A、14Bは、少なくともいずれか一方の接合
面が塩素化処理してある。また、被接合部材14A、1
4Bは、接合テーブル36と加圧板44とに内蔵したヒ
ータ38、46によって接合部(接合面)が所定の温度
となるように加熱される。この加熱温度は、被接合部材
14A、14Bの融点のいずれか低い温度より低い温度
である。そして、被接合部材14A、14Bは、加熱さ
れた状態で接合シリンダ40によって加圧され、相互の
接合面が密接させられる。加圧圧力は、被接合部材14
のいずれもが加圧によって変形しない程度の圧力であ
る。また、接合時間(加圧時間)は、被接合部材14の
材質や塩素化処理の程度によって異なるが、数10秒か
ら数分程度である。
At least one of the joining surfaces of the members 14A and 14B arranged on the joining table 36 has been chlorinated. Also, the members to be joined 14A, 1
4B is heated by heaters 38 and 46 incorporated in the joining table 36 and the pressure plate 44 so that the joining portion (joining surface) has a predetermined temperature. The heating temperature is lower than the lower one of the melting points of the members 14A and 14B. Then, the members to be joined 14A and 14B are pressurized by the joining cylinder 40 in a heated state, and the joining surfaces are brought into close contact with each other. The pressurizing pressure is applied to the member 14 to be joined.
Are pressures that do not cause deformation by pressure. The joining time (pressing time) varies depending on the material of the member to be joined 14 and the degree of the chlorination treatment, but is about several tens seconds to several minutes.

【0016】このようにして、金属からなる被接合部材
14A、14Bを塩素化処理したのち、被接合部材14
を加熱しつつ加圧して相互に密接させることにより、固
体状態のまま容易に接合することができる。すなわち、
塩素化処理した被接合部材14を加熱することにより、
被接合部材14の表面に存在する塩素がより活性とな
り、固体接合の時間を短縮することができるとともに、
良好な接合状態が得られて接合強度を高めることができ
る。しかも、加圧して接合しているために、接合面の接
触面積が増大してより容易に接合でいき、接合強度が大
きくなる。
After the members 14A and 14B made of metal are chlorinated in this manner, the members 14A and 14B
Can be easily joined in a solid state by applying pressure while heating. That is,
By heating the chlorinated workpiece 14,
The chlorine existing on the surface of the member 14 to be joined becomes more active, and the time for solid joining can be reduced.
A good bonding state can be obtained and bonding strength can be increased. In addition, since the bonding is performed under pressure, the contact area of the bonding surface increases, so that the bonding can be performed more easily, and the bonding strength increases.

【0017】なお、被接合部材14A、14Bは、銅と
銅、銀と銀などのように同種の金属であってもよいし、
銅と金、銅と銀、銅と錫、錫と銀、金と銀などのように
異なる金属同士であってもよい。そして、2つの被接合
部材のいずれか一方を塩素化処理する場合、仕事関数の
小さい方の金属を塩素化処理することが望ましい。例え
ば、銅と金とを接合する場合、いずれか一方を塩素化処
理するするときは、銅を塩素化処理する方がよい。そし
て、前記実施の形態においては、塩酸蒸気を用いて塩素
化処理を行なった場合について説明したが、塩素ガスに
よって塩素化処理をしてもよい。また、前記実施形態に
おいては、返送装置12によって被接合部材14を搬送
しながら塩素化処理をする場合について説明したが、外
部と区画する処理室を形成し、この処理室内に複数の被
接合部材を配置するとともに塩酸蒸気を導入し、複数の
被接合部材を同時に塩素化処理をしてもよい。
The members 14A and 14B may be made of the same metal such as copper and copper, silver and silver, or the like.
Different metals such as copper and gold, copper and silver, copper and tin, tin and silver, gold and silver, and the like may be used. When chlorinating one of the two members to be joined, it is desirable to chlorinate the metal having the smaller work function. For example, when joining copper and gold, when chlorinating either one, it is better to chlorinate copper. In the above embodiment, the case where the chlorination treatment is performed using hydrochloric acid vapor is described, but the chlorination treatment may be performed using chlorine gas. Further, in the above-described embodiment, the case where the chlorination treatment is performed while the member to be bonded 14 is transported by the return device 12 has been described. And a plurality of members to be joined may be chlorinated simultaneously by introducing hydrochloric acid vapor.

【0018】図2は、本発明に係る固体接合方法を適用
して製造した半導体装置の一部の断面を模式的に示した
図である。図2において、半導体装置である半導体チッ
プ50は、いわゆる多層配線構造となっている。この半
導体チップ50は、単結晶シリコンからなるシリコン基
板52の上部にトランジスタ54や、図示しない抵抗、
コンデンサなどの素子が形成してある。図示されたトラ
ンジスタ54は、シリコン基板52の上方にシリコン酸
化膜からなるゲート酸化膜56を介してゲート電極58
を有し、このゲート電極58の両側にソース60とドレ
イン62とが設けられたMOSトランジスタとなってい
る。そして、トランジスタ54は、周囲に形成されたシ
リコン酸化膜からなる素子分離領域64によって他のト
ランジスタなどから分離されているとともに、上部を第
1層間絶縁膜66によって覆われている。
FIG. 2 is a diagram schematically showing a cross section of a part of a semiconductor device manufactured by applying the solid bonding method according to the present invention. In FIG. 2, a semiconductor chip 50 as a semiconductor device has a so-called multilayer wiring structure. The semiconductor chip 50 includes a transistor 54 and a resistor (not shown) on a silicon substrate 52 made of single crystal silicon.
Elements such as capacitors are formed. The illustrated transistor 54 has a gate electrode 58 above a silicon substrate 52 via a gate oxide film 56 made of a silicon oxide film.
And a MOS transistor in which a source 60 and a drain 62 are provided on both sides of the gate electrode 58. The transistor 54 is isolated from other transistors and the like by an element isolation region 64 formed of a silicon oxide film formed around the transistor 54, and the upper part is covered with a first interlayer insulating film 66.

【0019】第1層間絶縁膜66の上には、複数の金属
配線68(68A、68B、……)からなる第1配線層
70が形成してある。そして、第1配線層70の各金属
配線68には、第1層間絶縁膜66の下部に形成したト
ランジスタ54などの素子が電気的に接続してある。す
なわち、第1層間絶縁膜66には、トランジスタ54の
ゲート電極58、ソース60、ドレイン62や、図示し
ない他の素子と対応した位置に、第1層間絶縁膜66を
貫通したコンタクトホール72が形成してあり(図2に
は、ソース62に対応したコンタクトホール72のみが
示されている)、このコンタクトホール72内に設けた
接続配線74を介して第1層間絶縁膜66の下部の素子
と第1配線層70の金属配線68とが電気的に接続して
ある。
On the first interlayer insulating film 66, a first wiring layer 70 including a plurality of metal wirings 68 (68A, 68B,...) Is formed. Elements such as the transistor 54 formed below the first interlayer insulating film 66 are electrically connected to each metal wiring 68 of the first wiring layer 70. That is, contact holes 72 penetrating the first interlayer insulating film 66 are formed in the first interlayer insulating film 66 at positions corresponding to the gate electrode 58, the source 60, the drain 62 of the transistor 54, and other elements (not shown). (Only the contact hole 72 corresponding to the source 62 is shown in FIG. 2), and the element under the first interlayer insulating film 66 is connected to the element via the connection wiring 74 provided in the contact hole 72. The metal wiring 68 of the first wiring layer 70 is electrically connected.

【0020】第1配線層70は、第2層間絶縁膜76に
よって覆われている。そして、第2層間絶縁膜76に
は、コンタクトホール78が貫通して形成してある。こ
のコンタクトホール78は、内部に接続配線80が設け
てある。接続配線80は、第1絶縁層70の各金属配線
68、第2層間絶縁膜76内に形成された素子(図示せ
ず)を、第2層間絶縁膜76の上に形成された第2配線
層82を構成している金属配線84(84A、84B、
……)に接続している。
The first wiring layer 70 is covered with a second interlayer insulating film 76. Further, a contact hole 78 is formed through the second interlayer insulating film 76. The connection hole 80 is provided inside the contact hole 78. The connection wiring 80 is formed by replacing each metal wiring 68 of the first insulating layer 70 and an element (not shown) formed in the second interlayer insulating film 76 with a second wiring formed on the second interlayer insulating film 76. The metal wiring 84 (84A, 84B,
……).

【0021】第2配線層82は、第3層間絶縁膜86に
よって覆われている。この第3層間絶縁膜86の上に
は、第3配線層88が形成してある。この第3配線層8
8を形成している金属配線90(90A、90B、…
…)の適宜の位置には、外部電極となる電極パッド92
が設けてある。第3配線層88の金属配線90には、第
3層間絶縁膜86を貫通して形成したコンタクトホール
94内に配置した接続配線96を介して、第3層間絶縁
膜86内に設けた素子と第2配線層82の金属配線84
とが接続してある。また、第3配線層88は、半導体チ
ップ50の表面を保護する絶縁体からなるパッシベーシ
ョン膜98によって覆ってある。そして、パッシベーシ
ョン膜98には、電極パッド92と対応した位置に接続
孔100が形成してあって、この接続孔100を介して
金ワイヤ102の一端部が電極パッド92に接続してあ
る。また、金ワイヤ102の他端部は、図示しない実装
基板の導電部に接続される。
The second wiring layer 82 is covered with a third interlayer insulating film 86. On this third interlayer insulating film 86, a third wiring layer 88 is formed. This third wiring layer 8
8 are formed (90A, 90B,...).
)), An electrode pad 92 serving as an external electrode is provided at an appropriate position.
Is provided. The element provided in the third interlayer insulating film 86 is connected to the metal wiring 90 of the third wiring layer 88 via a connection wiring 96 disposed in a contact hole 94 formed through the third interlayer insulating film 86. Metal wiring 84 of second wiring layer 82
And are connected. The third wiring layer 88 is covered with a passivation film 98 made of an insulator for protecting the surface of the semiconductor chip 50. A connection hole 100 is formed in the passivation film 98 at a position corresponding to the electrode pad 92, and one end of the gold wire 102 is connected to the electrode pad 92 via the connection hole 100. The other end of the gold wire 102 is connected to a conductive portion of a mounting board (not shown).

【0022】この半導体チップ50の各配線層70、8
2、88および接続配線74、80、96並びに電極パ
ッド92は、この実施形態の場合、銅からなっていてい
る。そして、各配線層70、82、88の金属配線6
8、84、90、電極パッド92と接続配線74、8
0、96は、各層ごとにコンタクトホールと配線溝とを
形成したのち、これらのコンタクトホールと配線溝とに
無電解メッキなどによって銅を堆積させ、接続配線と金
属配線、電極パッドとを同時に形成するデュアルダマシ
ン法によって形成してある。
Each of the wiring layers 70 and 8 of the semiconductor chip 50
2, 88, the connection wires 74, 80, 96 and the electrode pads 92 are made of copper in this embodiment. Then, the metal wiring 6 of each wiring layer 70, 82, 88
8, 84, 90, electrode pad 92 and connection wiring 74, 8
Nos. 0 and 96 form contact holes and wiring grooves for each layer, deposit copper by electroless plating or the like in these contact holes and wiring grooves, and simultaneously form connection wiring, metal wiring, and electrode pads. Formed by a dual damascene method.

【0023】また、金ワイヤ102は、本発明の固体接
合方法によって電極パッド92と実装基板の導電部とに
接続してある。すなわち、電極パッド92への金ワイヤ
102の接続は次のようにして行なっている。
The gold wire 102 is connected to the electrode pad 92 and the conductive portion of the mounting board by the solid bonding method of the present invention. That is, the connection of the gold wire 102 to the electrode pad 92 is performed as follows.

【0024】まず、図3(1)に示したように、半導体
チップ50のパッシベーション膜98の上面全体を覆っ
てフォトレジストを塗布し、フォトリソグラフィー法に
よって電極パッド92と対応した位置に孔104を設け
たレジスト膜106を形成する。その後、レジスト膜1
06をマスクとしてパッシベーション膜98をエッチン
グし、図3(2)に示したように、電極パッド92の上
方のパッシベーション膜98に接続孔100を形成し、
電極パッド92の一部を露出させたのち、フォトレジス
ト膜106を除去する。
First, as shown in FIG. 3A, a photoresist is applied so as to cover the entire upper surface of the passivation film 98 of the semiconductor chip 50, and a hole 104 is formed at a position corresponding to the electrode pad 92 by a photolithography method. The provided resist film 106 is formed. After that, the resist film 1
The passivation film 98 is etched using the mask 06 as a mask, and a connection hole 100 is formed in the passivation film 98 above the electrode pad 92 as shown in FIG.
After exposing a part of the electrode pad 92, the photoresist film 106 is removed.

【0025】次に、接続孔100を設けた半導体チップ
50を前記のようにして塩酸蒸気に晒し、電極パッド9
2の露出部を塩素化処理する。この塩素化処理は、例え
ば37質量%の塩酸から生じた蒸気に半導体チップ50
を5〜10秒間晒して行なう。その後、塩素化処理した
半導体チップ50を図示しないボンディング工程に搬入
する。さらに、図3(3)に示したように、金ワイヤ1
02を保持させたボンディング装置のキャピラリー10
8の先端を、パッシベーション膜98に形成した接続孔
100内に挿入する。そして、金ワイヤ102をキャピ
ラリー108によって電極パッド92の上面に圧接し、
金ワイヤ102を銅からなる電極パッド92に固体接合
する。
Next, the semiconductor chip 50 provided with the connection holes 100 is exposed to hydrochloric acid vapor as described above, and the electrode pads 9 are formed.
The exposed part 2 is chlorinated. This chlorination treatment is performed, for example, by converting semiconductor chip 50 into vapor generated from 37% by mass of hydrochloric acid.
For 5 to 10 seconds. Thereafter, the chlorinated semiconductor chip 50 is carried into a bonding step (not shown). Further, as shown in FIG.
02 of the bonding apparatus holding 02
8 is inserted into a connection hole 100 formed in the passivation film 98. Then, the gold wire 102 is pressed against the upper surface of the electrode pad 92 by the capillary 108,
The gold wire 102 is solid-bonded to the electrode pad 92 made of copper.

【0026】金ワイヤ102と電極パッド92との接合
を室温において行なう場合、金ワイヤ102を電極パッ
ド92に圧接するとともに、超音波振動を与えるとよ
い。超音波振動を与えることにより、金ワイヤ102と
電極パッド92との接触部が発熱し、接合を容易、確実
に行なうことができる。また、半導体チップ50を加熱
して接合を行なう場合、窒素雰囲気や真空状態などの銅
からなる電極パッド92が酸化しない雰囲気で行なうよ
うにする。勿論、加熱しないで接合する場合において
も、銅が酸化しない雰囲気で行なうことが望ましい。
When bonding the gold wire 102 and the electrode pad 92 at room temperature, the gold wire 102 is preferably pressed against the electrode pad 92 and ultrasonic vibration is applied. By applying the ultrasonic vibration, the contact portion between the gold wire 102 and the electrode pad 92 generates heat, and the bonding can be performed easily and reliably. When the bonding is performed by heating the semiconductor chip 50, the bonding is performed in an atmosphere in which the electrode pad 92 made of copper is not oxidized, such as a nitrogen atmosphere or a vacuum state. Of course, even in the case where the bonding is performed without heating, it is preferable to perform the bonding in an atmosphere where copper is not oxidized.

【0027】[0027]

【実施例】《実施例1》各種金属を塩素化処理して固体
接合の実験を行ない、固体接合の強度をせん断強度とし
て求めた。また、比較のために、処理をしなかった場
合、フラックスを塗布した場合、フッ化処理をした場合
における固体接合の実験を行なった。
EXAMPLES Example 1 Solid bonding experiments were carried out by chlorinating various metals, and the strength of the solid bonding was determined as the shear strength. For comparison, solid bonding experiments were performed when no treatment was performed, when flux was applied, and when fluorination was performed.

【0028】使用した試料は、金、錫、銅のペレット
と、金、銀、銅、アルミニウムの基板を使用し、これら
ペレットと基板との間で固体接合を行なった。ただし、
金のペレットは直径が2mm、厚さが2mmの銅ペレッ
トにニッケルをメッキしたのち、金を3.2μm厚メッ
キしたものを使用した。そして、錫ペレットは直径が2
mm、厚さが1mmの純錫、銅のペレットは直径が2m
m、厚さが2mmの純銅を使用した。また、金基板は長
さおよび幅が10mm、厚さが0.5mmの銅板にニッ
ケルとメッキしたのち、金を3.2μm厚メッキしたも
のを使用した。銀基板は長さおよび幅が10mm、厚さ
が0.5mmの純銀の板、銅基板は長さおよび幅が10
mm、厚さが0.5mmの純銅の板、アルミニウム基板
は長さおよび幅が10mm、厚さが1.0mmの純アル
ミニウムの板を使用した。
The samples used were pellets of gold, tin, and copper, and substrates of gold, silver, copper, and aluminum, and solid bonding was performed between these pellets and the substrate. However,
The gold pellet used was a copper pellet having a diameter of 2 mm and a thickness of 2 mm, which was plated with nickel and then plated with gold to a thickness of 3.2 μm. And the tin pellet has a diameter of 2
mm, pure tin and copper pellets with a thickness of 1 mm have a diameter of 2 m
m, pure copper having a thickness of 2 mm was used. The gold substrate used was a copper plate having a length and width of 10 mm and a thickness of 0.5 mm, plated with nickel, and then plated with gold to a thickness of 3.2 μm. A silver substrate is a pure silver plate having a length and width of 10 mm and a thickness of 0.5 mm. A copper substrate has a length and width of 10 mm.
mm, a pure copper plate having a thickness of 0.5 mm, and an aluminum substrate having a length and width of 10 mm and a thickness of 1.0 mm were used.

【0029】フッ素化処理は、図4(1)に示したよう
な方法により行なった。すなわち、容積が1000mL
のフッ素樹脂性容器110の内部に50質量%のフッ化
水素酸(HF)溶液112を入れる。その後、試料(ペ
レットと基板)を入れた表面処理容器114を支持台1
16に載せ、この支持台116を吊り具118によって
フッ素樹脂容器110内に吊り下し、表面処理容器11
4がフッ化水素酸112に接触しないように保持する。
さらに、フッ素樹脂容器110の上部開口120をアル
ミ箔122によって覆い、室温においてフッ化水素酸蒸
気(HF蒸気)124に10秒間晒した。なお、表面処
理容器114は、アルミ箔によって図4(2)に示した
ように箱状に形成してあり、その底部に試料126が重
ならないように並べた。
The fluorination treatment was performed by a method as shown in FIG. That is, the volume is 1000 mL
A 50% by mass hydrofluoric acid (HF) solution 112 is placed inside a fluororesin-based container 110. Thereafter, the surface treatment container 114 containing the sample (pellet and substrate) is placed on the support base 1.
16, the support base 116 is suspended in the fluororesin container 110 by the suspender 118, and the surface treatment container 11 is
4 is kept out of contact with hydrofluoric acid 112.
Further, the upper opening 120 of the fluororesin container 110 was covered with an aluminum foil 122 and exposed to hydrofluoric acid vapor (HF vapor) 124 at room temperature for 10 seconds. The surface treatment container 114 was formed in a box shape as shown in FIG. 4 (2) using aluminum foil, and the samples 126 were arranged at the bottom so that the samples 126 did not overlap.

【0030】塩素化処理は、塩酸を用いて図4(1)に
示したた同様にして行なった。ただし、使用した塩酸は
35質量%であり、フッ素樹脂容器110に入れた塩酸
の量は100mLである。また、処理時間(試料126
を塩酸蒸気に晒した時間)は30秒である。
The chlorination treatment was performed using hydrochloric acid in the same manner as shown in FIG. However, the hydrochloric acid used was 35% by mass, and the amount of hydrochloric acid put in the fluororesin container 110 was 100 mL. In addition, the processing time (sample 126
Is exposed to hydrochloric acid vapor) for 30 seconds.

【0031】接合処理は、金ペレットまたは銅ペレット
を基板に接合する場合、図5に示したようにして行なっ
た。ヒータを内蔵したステージ130の上に、基板の熱
酸化を防ぐために中間ステージ132を配置し、この中
間ステージ132の上に基板134をセットした。そし
て、図示しない加圧シリンダに取り付けた上治具136
は、ヒータを内蔵していて、下面に長さ5mm、幅5m
m、厚さ1mmの銅板138を装着し、この銅板138
を上治具136と一体に矢印140のように下降させ、
基板134とペレット142とを銅板138によって間
接的に熱圧着させた。なお、接合部には、ノズル144
によって窒素ガス146を1L/min吹付け、試料の
熱酸化を防いでいる。
The bonding process was performed as shown in FIG. 5 when a gold pellet or a copper pellet was bonded to a substrate. An intermediate stage 132 was disposed on a stage 130 having a built-in heater to prevent thermal oxidation of the substrate, and a substrate 134 was set on the intermediate stage 132. The upper jig 136 attached to a pressure cylinder (not shown)
Has a built-in heater and has a length of 5 mm and a width of 5 m on the lower surface.
m, a copper plate 138 having a thickness of 1 mm is mounted.
Is lowered integrally with the upper jig 136 as shown by an arrow 140,
The substrate 134 and the pellet 142 were indirectly thermocompression-bonded with the copper plate 138. In addition, the nozzle 144
Nitrogen gas 146 is blown at 1 L / min to prevent thermal oxidation of the sample.

【0032】接合の条件は、ペレット142が金ペレッ
トまたは銅ペレットである場合、上下の図示しないヒー
タの設定温度を300℃にした。このときの接合面の最
高温度は247.6℃であった。そして、接合時には、
約31.3N/mm2 の圧力(接合圧力)を上治具1
36によって与え、ペレット142と基板134とを密
接させている。また、接合時間(加圧時間)は、60秒
である。
When the pellet 142 is a gold pellet or a copper pellet, the upper and lower heaters (not shown) were set at 300 ° C. The maximum temperature of the bonding surface at this time was 247.6 ° C. And at the time of joining,
Apply a pressure (joining pressure) of about 31.3 N / mm 2 to the upper jig 1
36, the pellet 142 and the substrate 134 are brought into close contact. The bonding time (pressing time) is 60 seconds.

【0033】錫ペレットを基板に接合する場合、基板1
34は、ステージ130の上に直接セットした。また、
上下のヒータの設定温度は、錫が溶融しないように20
0℃にした。このときの接合面の最高温度は185.9
℃であった。そして、接合圧力は、約6.28N/mm
2 であって、接合時間は60秒である。
When bonding the tin pellet to the substrate, the substrate 1
34 was set directly on the stage 130. Also,
The set temperatures of the upper and lower heaters are set to 20 so that the tin does not melt.
It was brought to 0 ° C. At this time, the maximum temperature of the bonding surface is 185.9.
° C. And the joining pressure is about 6.28 N / mm
2 , and the bonding time is 60 seconds.

【0034】なお、フラックス処理は、図6に示したよ
うに、基板134の表面にフラックス148を直接塗布
し、その上にペレット142を配置している。また、使
用したフラックスは、千住金属(株)製のスーパーフラ
ックスSR−104である。そして、フラックス148
を塗布する際に、塗布部にノズル150から窒素ガスと
空気との混合ガス152を吹き付けている。
In the flux treatment, as shown in FIG. 6, the flux 148 is directly applied to the surface of the substrate 134, and the pellet 142 is disposed thereon. The used flux is Superflux SR-104 manufactured by Senju Metal Co., Ltd. And flux 148
At the time of coating, a mixed gas 152 of nitrogen gas and air is blown from the nozzle 150 to the coating section.

【0035】そして、接合強度となるせん断強度の測定
は、図7のようにして行なった。すなわち、せん断試験
機としてインストロン型の引張試験機を用い、そのテー
ブル154の上に、ペレット142を接合した基板13
4を配置し、固定具156によって基板134をテーブ
ル154に固定する。その後、試験機の押圧具158を
矢印160のように基板134の面と平行に移動し、ペ
レット142に水平方向の力を作用させ、ペレット14
2が基板134から剥がれる力を測定した。なお、押圧
具158の下端と基板134の上面との間の距離は0.
5mm、押圧具158の移動速度は0.5mm/min
である。
The measurement of the shear strength as the joining strength was performed as shown in FIG. That is, an Instron type tensile tester was used as a shear tester, and the substrate 13 on which the pellet 142 was bonded was placed on the table 154.
4 is arranged, and the substrate 134 is fixed to the table 154 by the fixture 156. Thereafter, the pressing tool 158 of the testing machine is moved in parallel with the surface of the substrate 134 as indicated by an arrow 160, and a horizontal force is applied to the pellet 142 to cause the pellet 14 to move.
2 was peeled off from the substrate 134. Note that the distance between the lower end of the pressing tool 158 and the upper surface of the substrate 134 is 0.1 mm.
5 mm, the moving speed of the pressing tool 158 is 0.5 mm / min
It is.

【0036】図8ないし図17は、測定した接合強度
(せん断強度)の結果を示したものである。図8は、金
(Au)ペレットと金(Au)基板とを固体接合したの
ち、各試料の1mm2 当たりのせん断強度の測定結果で
ある。未処理は、ペレットおよび基板のいずれをもフラ
ックスを塗布したり、HF蒸気によるフッ素化処理、H
Cl蒸気による塩素化処理処理をしない状態で固体接合
したときにせん断強度を測定した結果である。
8 to 17 show the results of the measured bonding strength (shear strength). FIG. 8 shows the measurement results of the shear strength per 1 mm 2 of each sample after the gold (Au) pellet and the gold (Au) substrate were solid-bonded. For untreated, flux is applied to both the pellet and the substrate, fluorination treatment with HF vapor, H
It is the result of having measured the shear strength when the solid joining was performed in a state where the chlorination treatment with Cl vapor was not performed.

【0037】金ペレットと金基板との場合、未処理であ
ってもある程度の固体接合が可能である。また、HF蒸
気によるフッ素化処理をした場合、せん断強度の平均値
は大きくなるが、ばらつきが大きく、接合が不安定であ
る。一方、HCl蒸気による塩素化処理をした場合、せ
ん断強度が大きくなるとともに、せん断強度のばらつき
も比較的小さい。従って、HCl蒸気による塩素化処理
は、全体としてHF蒸気によるフッ素化処理より良好な
固体接合をすることができる。ただし、HF蒸気による
処理、HCl蒸気による処理の場合は、ペレットと基板
との両方を処理している。以下の場合も同様である。
In the case of a gold pellet and a gold substrate, solid bonding to some extent is possible even if it is untreated. In the case of fluorination treatment using HF vapor, the average value of the shear strength is large, but the dispersion is large and the bonding is unstable. On the other hand, when chlorination treatment with HCl vapor is performed, the shear strength is increased and the variation in the shear strength is relatively small. Therefore, the chlorination treatment with HCl vapor can provide better solid bonding as a whole than the fluorination treatment with HF vapor. However, in the case of treatment with HF vapor or treatment with HCl vapor, both the pellet and the substrate are treated. The same applies to the following cases.

【0038】図9は、金ペレットと銀(Ag)基板とを
固体接合したときの、各試料の1mm2 当りのせん断強
度の測定結果を示したものである。この組合わせにおい
ては、未処理の場合であってもHF処理、HCl処理し
た場合と同様に、固体接合を良好に行なうことができ
る。これは、Au−Ag合金が形成されることによるも
のと考えられる。そして、この場合においても、HF蒸
気による処理よりHCl蒸気による処理の方がばらつき
が小さい。
FIG. 9 shows the measurement results of the shear strength per 1 mm 2 of each sample when the gold pellet and the silver (Ag) substrate were solid-bonded. In this combination, solid bonding can be performed favorably even in the case of no treatment, as in the case of HF treatment and HCl treatment. This is considered to be due to the formation of the Au-Ag alloy. Also in this case, the variation in the treatment with HCl vapor is smaller than that in the treatment with HF vapor.

【0039】図10は、金ペレットと銅(Cu)基板と
を固体接合したときの、各試料の1mm2 当りのせん断
強度の測定結果を示したものである。金ペレットと銅基
板との組合わせは、未処理の場合、固体接合することが
できなかった。また、HF蒸気によるフッ素化処理をし
た場合、ばらつきが大きく、固体接合が不安定であっ
て、せん断強度もHCl蒸気による塩素化処理よりも劣
った。
FIG. 10 shows the measurement results of the shear strength per 1 mm 2 of each sample when the gold pellet and the copper (Cu) substrate were solid-bonded. Untreated, the combination of the gold pellet and the copper substrate could not be solid-bonded. Further, when the fluorination treatment with HF vapor was performed, the dispersion was large, the solid bonding was unstable, and the shear strength was inferior to that of the chlorination treatment with HCl vapor.

【0040】図11は、錫(Sn)ペレットと金基板と
を固体接合したのちの、各試料の1mm2 当りのせん断
強度の測定結果を示したものである。この組合わせにお
いては、未処理の場合、フラックスを用いた場合、HF
蒸気による処理の場合、HCl蒸気による処理の場合と
の間に大きな差は生じない。ただし、HF蒸気による処
理は、せん断強度が他の場合よりやや低くなった。
FIG. 11 shows the measurement results of the shear strength per 1 mm 2 of each sample after the tin (Sn) pellets and the gold substrate were solid-bonded. In this combination, when untreated, when using flux, HF
There is no significant difference between the treatment with steam and the treatment with HCl vapor. However, the treatment with HF vapor resulted in slightly lower shear strength than in the other cases.

【0041】図12は、錫ペレットと銀基板とを固体接
合したのちの、各試料の1mm2 当りのせん断強度の測
定結果を示している。この組合わせにおいては、未処理
の場合、固体接合できなかった。また、フラックスを用
いた場合、HF蒸気によるフッ素化処理の場合、および
HCl蒸気による塩素化処理の場合との間にほとんど差
がなかった。
FIG. 12 shows the measurement results of the shear strength per 1 mm 2 of each sample after solid bonding of the tin pellet and the silver substrate. In this combination, solid bonding could not be performed when untreated. In addition, there was almost no difference between the case of using the flux, the case of the fluorination treatment with the HF vapor, and the case of the chlorination treatment with the HCl vapor.

【0042】図13は、錫ペレットと銅基板とを固体接
合したのちの、各試料の1mm2 当りのせん断強度の測
定結果を示したものである。この場合においても未処理
の場合、接合することができなかった。また、フラック
スを使用した場合、HF蒸気による処理の場合、および
HCl蒸気による処理の場合との間にほとんど差がなか
った。ただし、錫ペレットと銅基板との組合わせは、H
F蒸気、HCl蒸気による処理をした場合、錫ペレット
と銀基板との組合わせの場合よりせん断強度がやや劣
る。
FIG. 13 shows the measurement results of the shear strength per 1 mm 2 of each sample after solid bonding of the tin pellet and the copper substrate. Even in this case, when untreated, bonding could not be performed. In addition, there was almost no difference between the case using the flux, the case using the HF vapor, and the case using the HCl vapor. However, the combination of the tin pellet and the copper substrate is H
When the treatment with the F vapor and the HCl vapor is performed, the shear strength is slightly inferior to the case of the combination of the tin pellet and the silver substrate.

【0043】図14は、銅(Cu)ペレットと金基板と
を固体接合したときの、各試料の1mm2 当りのせん断
強度の測定結果を示したものである。この組合わせにお
いては、未処理の場合、接合することができない。ま
た、それ以外のフラックスの使用、HF蒸気による処
理、HCl蒸気による処理をした場合、せん断強度の平
均値は、これらの間に大きな差を生じない。
FIG. 14 shows the measurement results of the shear strength per 1 mm 2 of each sample when the copper (Cu) pellet and the gold substrate were solid-bonded. In this combination, if untreated, bonding cannot be performed. Further, when other fluxes are used, treatment with HF vapor, and treatment with HCl vapor, the average value of the shear strength does not cause a large difference between them.

【0044】図15は、銅ペレットと銀基板とを固体接
合した場合における各試料の1mm 2 当りのせん断強度
の測定結果を示したものである。この組合わせにおいて
は、未処理の場合、固体接合をすることができなかっ
た。そして、HF蒸気による処理をした場合、せん断強
度がフラックスを使用した場合や、HCl蒸気による塩
素化処理の場合に比較して低くなり、またばらつきも大
きい。
FIG. 15 shows a solid contact between a copper pellet and a silver substrate.
1mm of each sample when combined Two Shear strength per hit
5 shows the measurement results. In this combination
Can not be solid bonded if untreated
Was. When the treatment with HF vapor is performed,
If flux is used, or if HCl vapor is used
It is lower than in the case of
Good.

【0045】図16は、銅ペレットと銅基板とを固体接
合したときの、各試料の1mm2 当りのせん断強度の測
定結果を示したものである。この組合わせにおいては、
未処理の場合とHF蒸気によるフッ化処理の場合、固体
接合をすることができなかった。そして、HCl蒸気に
よる塩素処理をした場合、固体接合をすることができる
が、フラックスを使用した場合よりせん断強度の平均値
が低く、ばらつきも大きかった。
FIG. 16 shows the measurement results of the shear strength per 1 mm 2 of each sample when the copper pellet and the copper substrate were solid-bonded. In this combination,
In the case of no treatment and the case of fluorination treatment with HF vapor, solid joining could not be performed. When chlorination with HCl vapor was performed, solid bonding could be performed, but the average value of the shear strength was lower and the variation was larger than when flux was used.

【0046】なお、アルミ基板と金ペレット、錫ペレッ
トまたは銅ペレットとの固体接合は、未処理の場合のみ
ならず、フラックスを用いた場合、HF蒸気処理、HC
l蒸気処理のいずれにおいても接合をすることができな
かった。
The solid bonding between the aluminum substrate and the gold pellet, tin pellet or copper pellet is performed not only when untreated but also when a flux is used.
No joining could be made in any of the steam treatments.

【0047】図17は、図8ないし図16に示したせん
断強度の平均値を求めたものである。図17中における
×印は、固体接合をすることができなかったことを示
す。また、符号△は平均のせん断強度が9.807N/
mm2 (1Kgf/mm2 )以下であることを示し、符
号○は平均のせん断強度が9.807〜29.420N
/mm2 (1〜3kgf/mm2 )であることを示し、
符号◎は平均のせん断強度が29.420N/mm2
(3kgf/mm2 )以上であることを示し、符号●は
せん断強度の測定の際に材料が破壊したことを示す。
FIG. 17 shows the average values of the shear strengths shown in FIGS. 8 to 16. The crosses in FIG. 17 indicate that solid joining could not be performed. The symbol △ indicates that the average shear strength is 9.807 N /
mm 2 (1 kgf / mm 2 ) or less, and the symbol “○” indicates that the average shear strength is 9.807 to 29.420 N.
/ Mm 2 (1-3 kgf / mm 2 ),
The symbol ◎ indicates that the average shear strength is 29.420 N / mm 2.
(3 kgf / mm 2 ) or more, and the symbol ● indicates that the material was broken during the measurement of the shear strength.

【0048】以上のことから、HCl蒸気による塩素化
処理をした場合、HF蒸気によるフッ素化処理をした場
合に比較してせん断強度が大きくなるとともに、せん断
強度のばらつきが小さい。従って、HCl蒸気によって
塩素化処理をした金属は、HF蒸気によってフッ素化処
理をした場合に比較してより安定した良好な固体接合を
することができる。
As described above, when the chlorination treatment using HCl vapor is performed, the shear strength is increased and the variation in the shear strength is small as compared with the case where the fluorination treatment is performed using HF vapor. Therefore, a metal that has been chlorinated with HCl vapor can perform more stable and good solid bonding than a fluorination treatment with HF vapor.

【0049】《実施例2》金ペレットと銅基板とを用い
て、HCl蒸気による塩素化処理の時間と、固体接合後
のせん断強度との関係を調べた。金ペレットは、直径2
mm、厚さ2mmの銅ペレットにニッケルメッキをした
のち、金を3.2μm厚メッキしたものを使用し、銅基
板は長さと幅が10mm、厚さが0.5mmの純銅の板
を用いていた。また、比較のために、上記と同様の金ペ
レットと銅基板とを用いてHF蒸気によるフッ素化処理
の時間と、固体接合後のせん断強度との関係を調べた。
Example 2 Using a gold pellet and a copper substrate, the relationship between the time of chlorination treatment with HCl vapor and the shear strength after solid joining was examined. Gold pellets have a diameter of 2
After plating a nickel pellet on a copper pellet having a thickness of 2 mm and a thickness of 2 mm, a gold plate plated with a thickness of 3.2 μm is used. The copper substrate is a pure copper plate having a length and width of 10 mm and a thickness of 0.5 mm. Was. For comparison, the relationship between the time of fluorination treatment with HF vapor and the shear strength after solid bonding was examined using the same gold pellets and copper substrate as described above.

【0050】なお、塩素化処理、フッ素化処理、固体接
合の方法およびせん断強度の測定は、塩素化処理、フッ
素化処理の時間を除き、実施例1と同様である。また、
塩素化処理の時間と塩素化の程度、フッ素化処理の時間
とフッ素化の程度を知るために、上記試料の塩素化処
理、フッ素化処理の際に、銅ペレットと半田メッキ板と
を同時に塩素化処理、フッ素化処理を行ない、これらを
純水で濡らしたpH試験紙に押し当て、pH値を測定し
た。
The chlorination treatment, fluorination treatment, solid joining method and measurement of the shear strength are the same as those in Example 1 except for the chlorination treatment and the fluorination treatment time. Also,
In order to know the chlorination time and the degree of chlorination, and the fluorination time and the degree of fluorination, during the chlorination and fluorination of the sample, the copper pellet and the solder plating plate were simultaneously chlorinated. A fluorination treatment and a fluorination treatment were performed, and these were pressed against a pH test paper wetted with pure water to measure the pH value.

【0051】pH測定用の銅ペレットは、直径が2m
m、厚さが2mmの純銅のペレット、半田メッキ板は、
長さと幅とが5mmの純銅の板に錫80%、鉛20%の
半田(82半田)をメッキしたものを使用した。
The copper pellet for measuring pH has a diameter of 2 m.
m, 2mm thick pure copper pellets, solder plated plate
A pure copper plate having a length and a width of 5 mm plated with a solder (82 solder) of 80% tin and 20% lead was used.

【0052】図18は、金ペレットと銅基板とのHCl
蒸気による塩素化処理の時間と、これを固体接合したと
きの単位面積当たりのせん断強度との関係を示したもの
である。◆は各試料の実測値を示し、○はそれらの平均
値を示している。この図から、金ペレットと銅基板とを
固体接合する場合、HCl蒸気による塩素化処理を5秒
程度以上行なえばよいことがわかる。
FIG. 18 is a graph showing the relationship between HCl in a gold pellet and a copper substrate.
It shows the relationship between the time of chlorination treatment by steam and the shear strength per unit area when the chlorination treatment is solid-bonded. The symbol “実” indicates the measured value of each sample, and the symbol “値” indicates the average value thereof. From this figure, it can be seen that when solid bonding the gold pellet and the copper substrate, the chlorination treatment with HCl vapor should be performed for about 5 seconds or more.

【0053】図19は、HCl蒸気による塩素化処理時
間と塩素化の程度との関係を調べるために、処理した銅
ペレット、82半田メッキ板を濡らしたpH試験紙に処
理した試料を押し当て、銅ペレット、半田メッキ板の表
面に存在する塩素(Cl)量をpH値として測定したも
のである。なお、これらのpH値は、3つの試料の平均
をとったものである。
FIG. 19 is a graph showing the relationship between the chlorination time and the degree of chlorination using HCl vapor. The amount of chlorine (Cl) present on the surfaces of the copper pellet and the solder plating plate was measured as a pH value. These pH values are obtained by averaging three samples.

【0054】この図から、銅ペレットは、半田メッキ板
に比較して塩素化されにくいことがわかる。また、いず
れもHCl蒸気に5秒程度以上晒すことによって充分に
塩素化できることがわかる。なお、平均値を求めた3つ
の試料間におけるpH値にほとんど差がなかった。従っ
て、HCl蒸気による塩素化は、きわめて安定して行な
うことができる。
From this figure, it can be seen that the copper pellet is less likely to be chlorinated as compared with the solder plating plate. In addition, it can be seen that all of them can be sufficiently chlorinated by exposing them to HCl vapor for about 5 seconds or more. In addition, there was almost no difference in the pH value among the three samples for which the average value was obtained. Therefore, chlorination with HCl vapor can be performed very stably.

【0055】図20は、金ペレットと銅基板とのHF蒸
気によるフッ素化処理の時間と、これらを固体接合した
ときの単位面積当たりのせん断強度との関係を示したも
のである。◆は各試料の実測値を示し、○はそれらの平
均値を示している。HF蒸気によるフッ素化の場合、処
理時間が20秒以下であればHCl蒸気による塩素化処
理の場合とあまり差のないせん断強度を得ることができ
る。しかし、HF蒸気によりフッ素化処理して固体接合
した場合、ばらつきがHCl蒸気による塩素化処理の場
合に比較して大きく、接合状態が不安定である。また、
フッ素化の処理時間が20秒をこえると、接合強度が低
下する。従って、HCl蒸気による塩素化処理は、HF
蒸気によるフッ素化処理の場合より、固体接合を容易、
安定して行なうことができる。
FIG. 20 shows the relationship between the fluorination time of the gold pellets and the copper substrate with HF vapor and the shear strength per unit area when they are solid-bonded. The symbol “実” indicates the measured value of each sample, and the symbol “値” indicates the average value thereof. In the case of fluorination with HF vapor, if the treatment time is 20 seconds or less, a shear strength that is not so different from that of chlorination treatment with HCl vapor can be obtained. However, when the solid bonding is performed by the fluorination treatment using the HF vapor, the variation is large compared to the case of the chlorination treatment using the HCl vapor, and the bonding state is unstable. Also,
If the fluorination treatment time exceeds 20 seconds, the bonding strength will decrease. Therefore, the chlorination treatment by HCl vapor is HF treatment.
Solid bonding is easier than in the case of fluorination treatment with steam.
It can be performed stably.

【0056】図21は、HF蒸気によるフッ素化処理時
間とフッ素化の程度との関係を調べるために、処理した
銅ペレット、82半田メッキ板を濡らしたpH試験紙に
処理した試料を押し当て、銅ペレット、半田メッキ板の
表面に存在するフッ素(F)量をpH値として測定した
ものである。なお、これらのpH値は、3つの試料の平
均をとったものである。
FIG. 21 is a graph showing the relationship between the time of fluorination treatment with HF vapor and the degree of fluorination. The amount of fluorine (F) present on the surfaces of the copper pellet and the solder plating plate was measured as a pH value. These pH values are obtained by averaging three samples.

【0057】この図21から、銅ペレットは半田メッキ
板よりフッ素化されにくいことがわかる。また、銅ペレ
ットは、HF蒸気に10秒程度晒しても充分にフッ素化
されないことがわかる。これに対して、半田メッキ板
は、HF蒸気に10秒程度晒せば、フッ素化がほぼ完了
する。なお、HF蒸気によるフッ素化は、フッ素化の程
度にばらつきを生じた。特に、銅ペレットの場合、3つ
の試料の間でpH値が2ほど異なった。従って、HF蒸
気によるフッ素化は、制御がHCl蒸気による塩素化よ
り困難で、固体接合も不安定となる。
FIG. 21 shows that the copper pellet is less fluorinated than the solder plating plate. Further, it can be seen that the copper pellet is not sufficiently fluorinated even when exposed to HF vapor for about 10 seconds. On the other hand, when the solder plating plate is exposed to HF vapor for about 10 seconds, fluorination is almost completed. Note that fluorination with HF vapor caused variations in the degree of fluorination. In particular, in the case of copper pellets, the pH values differed by about 2 between the three samples. Therefore, fluorination with HF vapor is more difficult to control than chlorination with HCl vapor, and solid bonding is also unstable.

【0058】[0058]

【発明の効果】以上に説明したように、本発明によれ
ば、金属からなる被接合部材を塩素化処理し、金属と結
合しやすい塩素を被接合部材の表面に存在させることに
より、塩素が被接合部材の内部に拡散して金属結合を切
断し、切断された結合手が他方の被接合部材と結合する
ため、ロウ材を用いることなく金属からなる2つの被接
合部材を、固体状態で相互に接合することができる。ま
た、塩素は、フッ素ほど反応性が強くないため、塩素化
処理の程度を制御しやすく、接合状態(接合強度)のば
らつき小さくすることができる。
As described above, according to the present invention, a member to be joined made of a metal is subjected to chlorination treatment, and chlorine which easily bonds to the metal is present on the surface of the member to be joined, whereby chlorine is removed. Since the metal bond is diffused inside the member to be joined and cut, and the cut joint is joined to the other member to be joined, the two members to be joined made of metal are used in a solid state without using a brazing material. Can be joined together. In addition, since chlorine is not as reactive as fluorine, the degree of chlorination can be easily controlled, and variations in the bonding state (bonding strength) can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る固体接合方法の説明
図である。
FIG. 1 is an explanatory diagram of a solid joining method according to an embodiment of the present invention.

【図2】本発明の固体接合方法を適用した半導体装置の
一部の断面を模式的に示した図である。
FIG. 2 is a diagram schematically showing a cross section of a part of a semiconductor device to which the solid bonding method of the present invention is applied.

【図3】図2に示した半導体装置の製造方法の要部工程
図である。
FIG. 3 is a main part process view of the method for manufacturing the semiconductor device shown in FIG. 2;

【図4】実施例のフッ素化処理方法と表面処理容器の説
明図である。
FIG. 4 is an explanatory view of a fluorination treatment method and a surface treatment container of an example.

【図5】実施例の接合処理方法の説明図である。FIG. 5 is an explanatory diagram of a joining processing method according to the embodiment.

【図6】実施例のフラックスの塗布方法を説明する図で
ある。
FIG. 6 is a diagram illustrating a method of applying a flux according to an example.

【図7】実施例のせん断強度の測定方法の説明図であ
る。
FIG. 7 is an explanatory diagram of a method for measuring shear strength according to an example.

【図8】金ペレットと金基板とを、未処理の場合、フラ
ックスを用いた場合、HF蒸気によるフッ素化処理をし
た場合、HCl蒸気による塩素化処理をした場合におけ
る固体接合後の単位面積当たりのせん断強度を示す図で
ある。
FIG. 8 shows the unit area after solid bonding of a gold pellet and a gold substrate in the case of untreated, in the case of using flux, in the case of fluorination by HF vapor, and in the case of chlorination by HCl vapor. It is a figure which shows the shear strength of.

【図9】金ペレットと銀基板とを、未処理の場合、フラ
ックスを用いた場合、HF蒸気によるフッ素化処理をし
た場合、HCl蒸気による塩素化処理をした場合におけ
る固体接合後の単位面積当たりのせん断強度を示す図で
ある。
FIG. 9 shows a unit area after solid bonding between a gold pellet and a silver substrate, when untreated, when using a flux, when fluorinated by HF vapor, and when chlorinated by HCl vapor. It is a figure which shows the shear strength of.

【図10】金ペレットと銅基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 10 shows a unit area after solid bonding between a gold pellet and a copper substrate, when untreated, when using a flux, when fluorinated by HF vapor, and when chlorinated by HCl vapor. It is a figure which shows the shear strength of.

【図11】錫ペレットと金基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 11 shows a unit area after solid bonding of a tin pellet and a gold substrate in a case where they are untreated, when a flux is used, when a fluorination treatment is performed with HF vapor, and when a chlorination treatment is performed with HCl vapor. It is a figure which shows the shear strength of.

【図12】錫ペレットと銀基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 12 shows a unit area after solid joining of a tin pellet and a silver substrate after solid bonding in the case of untreated, in the case of using flux, in the case of fluorination by HF vapor, and in the case of chlorination by HCl vapor. It is a figure which shows the shear strength of.

【図13】錫ペレットと銅基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 13 shows a unit area after solid bonding in the case where a tin pellet and a copper substrate are untreated, when a flux is used, when a fluorination treatment is performed with HF vapor, and when a chlorination treatment is performed with HCl vapor. It is a figure which shows the shear strength of.

【図14】銅ペレットと金基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 14 shows a unit area after solid bonding of a copper pellet and a gold substrate after solid bonding in the case of untreated, in the case of using flux, in the case of fluorination by HF vapor, and in the case of chlorination by HCl vapor. It is a figure which shows the shear strength of.

【図15】銅ペレットと銀基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 15 shows a unit area after solid bonding of a copper pellet and a silver substrate in the case of untreated, in the case of using flux, in the case of fluorination by HF vapor, and in the case of chlorination by HCl vapor. It is a figure which shows the shear strength of.

【図16】銅ペレットと銅基板とを、未処理の場合、フ
ラックスを用いた場合、HF蒸気によるフッ素化処理を
した場合、HCl蒸気による塩素化処理をした場合にお
ける固体接合後の単位面積当たりのせん断強度を示す図
である。
FIG. 16 shows a unit area after solid bonding of a copper pellet and a copper substrate in an untreated state, in a case of using a flux, in a case of performing a fluorination treatment with HF vapor, and in a case of performing a chlorination treatment with HCl vapor. It is a figure which shows the shear strength of.

【図17】図8ないし図16に示した単位面積当たりの
せん断強度の平均値を示す図である。
FIG. 17 is a diagram showing an average value of shear strength per unit area shown in FIGS. 8 to 16;

【図18】金ペレットと銅基板とをHCl蒸気によって
塩素化処理して固体接合したときの、塩素化処理の時間
と単位面積当たりのせん断強度との関係を示す図であ
る。
FIG. 18 is a diagram showing a relationship between chlorination time and shear strength per unit area when a gold pellet and a copper substrate are chlorinated with HCl vapor and solid-bonded.

【図19】銅ペレットと半田メッキ板とをHCl蒸気に
よって塩素化処理をしたときの、塩素化処理の時間とp
H値との関係を示す図である。
FIG. 19 shows the chlorination time and p when the copper pellet and the solder plating plate are chlorinated with HCl vapor.
It is a figure showing the relation with H value.

【図20】金ペレットと銅基板とをHF蒸気によってフ
ッ素化処理して固体接合したときの、フッ素化処理の時
間と単位面積当たりのせん断強度との関係を示す図であ
る。
FIG. 20 is a view showing the relationship between the fluorination time and the shear strength per unit area when the gold pellet and the copper substrate are fluorinated by HF vapor and solid-bonded.

【図21】銅ペレットと半田メッキ板とをHF蒸気によ
ってフッ素化処理をしたときの、フッ素化処理の時間と
pH値との関係を示す図である。
FIG. 21 is a diagram showing the relationship between the time of fluorination treatment and the pH value when fluorination treatment is performed on a copper pellet and a solder plating plate with HF vapor.

【符号の説明】[Explanation of symbols]

10 塩素化処理部 14 被接合部材 18 塩酸蒸気吹出し部 20 塩酸蒸気供給部 22 塩酸蒸気 30 接合処理部 34 チャンバ 36 接合テーブル 38、40 ヒータ 40 接合シリンダ 44 加圧板 48 窒素ガス供給部 50 半導体チップ 52 シリコン基板 54 トランジスタ 66 第1層間絶縁膜 70 第1配線層 76 第2層間絶縁膜 82 第2配線層 86 第3層間絶縁膜 88 第3配線層 92 電極パッド 98 パッシベーション膜 102 金ワイヤ DESCRIPTION OF SYMBOLS 10 Chlorination processing part 14 Member to be joined 18 Hydrochloric acid vapor blowing part 20 Hydrochloric acid vapor supply part 22 Hydrochloric acid vapor 30 Bonding processing part 34 Chamber 36 Joining table 38, 40 Heater 40 Joining cylinder 44 Pressure plate 48 Nitrogen gas supply part 50 Semiconductor chip 52 Silicon substrate 54 Transistor 66 First interlayer insulating film 70 First wiring layer 76 Second interlayer insulating film 82 Second wiring layer 86 Third interlayer insulating film 88 Third wiring layer 92 Electrode pad 98 Passivation film 102 Gold wire

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E067 AA07 AA08 BB02 CA02 DA03 DB03 DC01 DC04 DC11 EA05 EB00 5F044 EE04 KK01 KK11 LL00 QQ06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E067 AA07 AA08 BB02 CA02 DA03 DB03 DC01 DC04 DC11 EA05 EB00 5F044 EE04 KK01 KK11 LL00 QQ06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 相互に接合される同種または異種の金属
からなる被接合部材の少なくとも一方を塩素化処理した
のち、両者を接触させて接合することを特徴とする固体
接合方法。
1. A solid joining method comprising: chlorinating at least one of members to be joined made of the same or different metals to be joined to each other;
【請求項2】 前記塩素化処理は、前記被接合部材を塩
酸蒸気に晒して行なうことを特徴とする請求項1に記載
の固体接合方法。
2. The solid joining method according to claim 1, wherein the chlorination treatment is performed by exposing the member to be joined to hydrochloric acid vapor.
【請求項3】 前記接合は、被接合部材の接合部を加熱
し、加圧して各被接合部材の接合部を相互に密接させる
ことを特徴とする請求項1または2に記載の固体接合方
法。
3. The solid joining method according to claim 1, wherein the joining is performed by heating and pressurizing the joints of the members to be joined to each other so as to bring the joints of the members to be joined into close contact with each other. .
【請求項4】 前記相互に接合する被接合部材は、金と
銅とであることを特徴とする請求項1ないし3のいずれ
かに記載の固体接合方法。
4. The solid joining method according to claim 1, wherein the members to be joined to each other are gold and copper.
JP32393199A 1999-11-15 1999-11-15 Method for welding solid Withdrawn JP2001138075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32393199A JP2001138075A (en) 1999-11-15 1999-11-15 Method for welding solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32393199A JP2001138075A (en) 1999-11-15 1999-11-15 Method for welding solid

Publications (1)

Publication Number Publication Date
JP2001138075A true JP2001138075A (en) 2001-05-22

Family

ID=18160237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32393199A Withdrawn JP2001138075A (en) 1999-11-15 1999-11-15 Method for welding solid

Country Status (1)

Country Link
JP (1) JP2001138075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124355A (en) * 2015-04-17 2016-10-27 (주)일지테크 Clad manufacturing apparatus and clad manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124355A (en) * 2015-04-17 2016-10-27 (주)일지테크 Clad manufacturing apparatus and clad manufacturing method
KR102320914B1 (en) * 2015-04-17 2021-11-04 (주)일지테크 Clad manufacturing apparatus and clad manufacturing method

Similar Documents

Publication Publication Date Title
US7021521B2 (en) Bump connection and method and apparatus for forming said connection
JPH02123685A (en) Method of bonding wire containing gold with solder
US6378758B1 (en) Conductive leads with non-wettable surfaces
US6269998B1 (en) Process for manufacturing electronic circuits
SG114520A1 (en) Semiconductor device, manufacturing method and apparatus for the same
JPH04280443A (en) Interconnection of electric parts on substrate
TW200425364A (en) Dual metal stud bumping for flip chip applications
JP2985806B2 (en) Flip chip mounting method
EP0494463B1 (en) Connection method and connection device for electrical connection of small portions
KR20010073192A (en) Soldering of a semiconductor chip to a substrate
US6080494A (en) Method to manufacture ball grid arrays with excellent solder ball adhesion for semiconductor packaging and the array
WO1997032457A1 (en) Method for manufacturing electronic circuit device
JP2001138075A (en) Method for welding solid
JP2001196414A (en) Semiconductor device, its manufacturing method, circuit board, and electronic equipment
JPH05109820A (en) Mounting method for semiconductor device
JPH02278743A (en) Junction structure of indium solder
JP3733775B2 (en) Projection electrode forming device
Speerschneider et al. Solder Bump Reflow Tape Automated Bonding.(Retroactive Coverage)
Johnson Microjoining developments for the electronics industry
JPH01264234A (en) Bonding apparatus of coated thin wire
JPH02285651A (en) Manufacture of device
JPS62166548A (en) Formation of solder bump
JPS63147348A (en) Formation of solder bump
JPS6358947A (en) Formation of solder bump
Sun et al. IC Component Level Failure Induced By Intermetallic Layer Structural Defects of Solder Joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206