JP2001135355A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2001135355A
JP2001135355A JP31674499A JP31674499A JP2001135355A JP 2001135355 A JP2001135355 A JP 2001135355A JP 31674499 A JP31674499 A JP 31674499A JP 31674499 A JP31674499 A JP 31674499A JP 2001135355 A JP2001135355 A JP 2001135355A
Authority
JP
Japan
Prior art keywords
secondary battery
compound
polymer
electrolyte
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31674499A
Other languages
Japanese (ja)
Inventor
Satoshige Nanai
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31674499A priority Critical patent/JP2001135355A/en
Publication of JP2001135355A publication Critical patent/JP2001135355A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Secondary Cells (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems such as a low dry temperature and a low self carrying characteristic in a polymer gel secondary battery which is compact in size, high in capacity, and used for an electronic apparatus. SOLUTION: A compound obtained by reacting a compound in which substitutes including an aliphatic double bond are introduced into 6-membered cyclic compound at three points, with a polymer having poly ether as a main component of its main chain, and having aliphatic double bonds at both ends thereof is used as a structutral element of an ionic conductor. Therefore, a secondary battery having an electrolyte whose drying temperature is higher than the conventional product and which keeps self carrying characteristic, can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の電源な
どに利用可能な二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery that can be used as a power source for electronic equipment.

【0002】[0002]

【従来の技術】電子機器の性能向上とともに、機器の小
型化や携帯化が必要となってきている。これに伴い、小
型高容量の二次電池が要望されている。従来から利用さ
れている二次電池としては、鉛畜電池、ニッケル・カド
ミウム電池などが知られているが、これらに代わってよ
りエネルギー密度の高いリチウム系二次電池が注目され
ている。
2. Description of the Related Art As the performance of electronic equipment has been improved, it has become necessary to make the equipment smaller and more portable. Accordingly, a small and high-capacity secondary battery has been demanded. Conventionally used secondary batteries include lead-acid batteries, nickel-cadmium batteries, and the like. Lithium-based secondary batteries having higher energy density have been attracting attention instead of these batteries.

【0003】このリチウム系二次電池では、活物質とし
て当初金属リチウムを用いることが試みられたが、充放
電を繰り返すうちに樹枝状晶金属が電極表面に成長し、
その成長量が甚だしくなると時には電池の過発熱に至る
という課題があることが判明した。これを防ぐためのひ
とつの方法として、金属リチウムに代えて、リチウムを
層間に吸蔵することができる炭素質材料を用いることが
行われている。炭素質材料を用いた場合にはリチウム樹
枝状晶の成長は見られないので、電池の過発熱抑止には
有効である。
In this lithium-based secondary battery, an attempt was initially made to use lithium metal as an active material, but dendritic metal grew on the electrode surface during repeated charging and discharging.
It has been found that there is a problem that when the growth amount becomes excessive, the battery sometimes overheats. As one method for preventing this, a carbonaceous material that can occlude lithium between layers has been used instead of metallic lithium. When a carbonaceous material is used, lithium dendrites do not grow, which is effective for suppressing overheating of the battery.

【0004】リチウム系二次電池でのリチウム樹枝状晶
成長に関する課題については、上記のとおり解決された
が、従来の電解液に液体を用いた電池では、電解液の漏
出を防ぐために丈夫な容器とシール構造が用いられてい
る。この容器とシール構造によって、結果的に電池の重
量や厚さを軽減できないという課題もある。また、切り
欠きなどをもった形状の容器をシールするには、高価ま
たは複雑な装置を必要とする課題がある。
The problem of lithium dendrite growth in a lithium secondary battery has been solved as described above. However, in a conventional battery using a liquid as an electrolyte, a durable container is required to prevent leakage of the electrolyte. And a seal structure is used. There is also a problem that the weight and thickness of the battery cannot be reduced as a result of the container and the seal structure. In addition, there is a problem that an expensive or complicated device is required to seal a container having a notch or the like.

【0005】この課題を解決するために、電解液を固体
化もしくはゲル化して、液体使用時よりも簡易な容器や
シール構造を利用可能とし、電池を薄型化したり自由な
形状とすることを可能とすることが行われつつある。さ
らには、固体化やゲル化によって、発火点などの耐熱安
定性も液体に比べて高くなる傾向にあり、組み立て製作
工程においても有利になると期待される。
[0005] In order to solve this problem, the electrolyte is solidified or gelled so that a simpler container or seal structure can be used than when a liquid is used, and the battery can be made thinner and freely shaped. Is being done. Furthermore, due to solidification and gelation, the heat resistance such as the ignition point tends to be higher than that of the liquid, and it is expected to be advantageous in the assembly and fabrication process.

【0006】上記の考えに従い、特表平9−50048
5号公報に見られる方法で作られた電解液をゲル化した
リチウム系二次電池が実用化されている。
[0006] In accordance with the above idea, Japanese Patent Application Laid-Open No. 9-50048
Lithium secondary batteries obtained by gelling an electrolytic solution prepared by the method disclosed in Japanese Patent Application Laid-Open No. 5 (1993) -1993 have been put to practical use.

【0007】[0007]

【発明が解決しようとする課題】従来の技術に述べたよ
うな、特表平9−500485号公報の方法で作られた
電解液をゲル化した電池は、ゲルを構成する高分子と低
分子量溶媒が、化学的によい親和性を示さず微視的には
分離構造をもっていると考えられている。このため、電
解液の乾燥温度が従来の液体系とほとんど同じとなって
しまい、耐乾燥性はほとんど向上しないという課題があ
る。これの対策として、低分子量溶媒との親和性がより
よい高分子をゲルのマトリクスに用いることが望まれる
が、逆に、ゲルの可塑性が高まり、機械的強度が低下す
るという課題も生じてしまう。
As described in the prior art, the battery prepared by gelling the electrolyte prepared by the method disclosed in Japanese Patent Application Laid-Open No. 9-500485 has a high molecular weight and a low molecular weight constituting the gel. It is considered that the solvent does not show good affinity chemically and has a microscopically separated structure. For this reason, the drying temperature of the electrolyte is almost the same as that of the conventional liquid system, and there is a problem that the drying resistance is hardly improved. As a countermeasure for this, it is desired to use a polymer having a better affinity for a low molecular weight solvent for the gel matrix, but on the contrary, the gel plasticity increases and the mechanical strength decreases. .

【0008】本発明は、かかる課題を解決するもので、
従来のものよりも乾燥温度が高く、なおかつ自己支持性
を保つ電解質をもった二次電池の実現を目的とする。
[0008] The present invention is to solve such a problem,
An object of the present invention is to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、ポリエーテルを主鎖の主成分としその両末
端に脂肪族二重結合をもつ重合体を、脂肪族二重結合を
含む置換基を六員環環状化合物に三箇所導入した化合物
と反応させて生成した化合物をイオン伝導体の構成要素
とし、これによって、従来のものよりも乾燥温度が高
く、なおかつ自己支持性を保つ電解質をもった二次電池
が実現可能となる。
In order to solve the above-mentioned problems, the present invention provides a polymer having a polyether as a main component and having an aliphatic double bond at both ends thereof, A compound formed by reacting a substituent containing a three-membered cyclic compound with a compound introduced at three positions is used as a component of the ionic conductor, whereby the drying temperature is higher than conventional ones, and the self-supporting property is maintained. A secondary battery having an electrolyte can be realized.

【0010】また、ポリエーテルを主鎖の主成分としそ
の両末端にアルコール性水酸基をもつ重合体を、イソシ
アネート基をもつ置換基を六員環環状化合物に三箇所導
入した化合物と反応させて生成した化合物をイオン伝導
体の構成要素とし、これによっても、従来のものよりも
乾燥温度が高く、なおかつ自己支持性を保つ電解質をも
った二次電池が実現可能となる。
Further, a polymer having polyether as a main component of a main chain and having alcoholic hydroxyl groups at both ends thereof is formed by reacting with a compound having a substituent having an isocyanate group introduced at three positions in a six-membered cyclic compound. The compound thus obtained is used as a component of the ion conductor, which also makes it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0011】さらに、ポリエーテルを主鎖の主成分とし
その両末端にアミノ基をもつ重合体を、エポキシド基を
もつ置換基を六員環環状化合物に三箇所導入した化合物
と反応させて生成した化合物をイオン伝導体の構成要素
とし、これによっても、従来のものよりも乾燥温度が高
く、なおかつ自己支持性を保つ電解質をもった二次電池
が実現可能となる。
Further, a polymer having polyether as a main component of the main chain and having amino groups at both ends thereof is produced by reacting with a compound in which a substituent having an epoxide group is introduced at three positions into a six-membered cyclic compound. The compound is used as a component of the ion conductor, and this also makes it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0012】また、ポリエーテルを主鎖の主成分としそ
の両末端に脂肪族二重結合をもつ重合体と、ポリブタジ
エンを成分とする重合体とを反応させて生成した重合体
をイオン伝導体の構成要素とし、これによっても、従来
のものよりも乾燥温度が高く、なおかつ自己支持性を保
つ電解質をもった二次電池が実現可能となる。
Further, a polymer formed by reacting a polymer having polyether as a main component of the main chain and having an aliphatic double bond at both ends thereof and a polymer containing polybutadiene as a component is used as an ion conductor. As a constituent element, this also makes it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0013】以上掲げてきた手段による二次電池を実現
することで、従来のものよりも乾燥温度が高く、なおか
つ自己支持性を保つ電解質をもった、特に4mm以下の
厚さであることを特徴とする薄型二次電池が実現可能と
なる。
[0013] By realizing the secondary battery by the means mentioned above, the drying temperature is higher than that of the conventional one, and the electrolyte has an electrolyte maintaining self-supporting property, and particularly has a thickness of 4 mm or less. Thin secondary battery can be realized.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、ポリエーテルを主鎖の主成分としその両末端に脂肪
族二重結合をもつ重合体と、脂肪族二重結合を含む置換
基を六員環環状化合物に三箇所導入した化合物とを反応
させて生成した化合物をイオン伝導体の構成要素とする
ことを特徴とする二次電池であって、これを用いて、従
来のものよりも乾燥温度が高く、なおかつ自己支持性を
保つ電解質をもった二次電池を実現可能とする作用を有
する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a polymer having a polyether as a main component of a main chain and having an aliphatic double bond at both ends thereof, and an aliphatic double bond. A secondary battery characterized in that a compound formed by reacting a compound obtained by introducing a substituent into a six-membered cyclic compound at three positions is used as a component of an ion conductor, This has the effect of making it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than that of the battery and that maintains self-supporting properties.

【0015】本発明の請求項2に記載の発明は、ポリエ
ーテルを主鎖の主成分としその両末端にアルコール性水
酸基をもつ重合体と、イソシアネート基を含む置換基を
六員環環状化合物に三箇所導入した化合物とを反応させ
て生成した化合物をイオン伝導体の構成要素とすること
を特徴とする二次電池であって、これを用いて、従来の
ものよりも乾燥温度が高く、なおかつ自己支持性を保つ
電解質をもった二次電池を実現可能とする作用を有す
る。
The invention according to claim 2 of the present invention relates to a polymer having polyether as a main component of the main chain and having an alcoholic hydroxyl group at both terminals, and a six-membered cyclic compound having a substituent containing an isocyanate group. A secondary battery, characterized in that a compound produced by reacting with a compound introduced at three points is used as a component of an ion conductor, using this, a drying temperature is higher than conventional ones, and This has the function of realizing a secondary battery having an electrolyte that maintains self-supporting properties.

【0016】本発明の請求項3に記載の発明は、ポリエ
ーテルを主鎖の主成分としその両末端にアミノ基をもつ
重合体と、エポキシド基を含む置換基を六員環環状化合
物に三箇所導入した化合物とを反応させて生成した化合
物をイオン伝導体の構成要素とすることを特徴とする二
次電池であって、これを用いて、従来のものよりも乾燥
温度が高く、なおかつ自己支持性を保つ電解質をもった
二次電池を実現可能とする作用を有する。
According to a third aspect of the present invention, there is provided a polymer having polyether as a main component of a main chain and having amino groups at both ends thereof and a substituent containing an epoxide group in a six-membered cyclic compound. A secondary battery, characterized in that a compound produced by reacting with a compound introduced at a site is used as a component of an ion conductor, the drying temperature being higher than that of a conventional battery, and the use of a secondary battery. It has the function of realizing a secondary battery having an electrolyte that maintains supportability.

【0017】本発明の請求項4に記載の発明は、ポリエ
ーテルを主鎖の主成分としその両末端に脂肪族二重結合
をもつ重合体と、ポリブタジエンを成分とする重合体と
を反応させて生成した重合体をイオン伝導体の構成要素
とすることを特徴とする二次電池であって、これを用い
て、従来のものよりも乾燥温度が高く、なおかつ自己支
持性を保つ電解質をもった二次電池を実現可能とする作
用を有する。
According to a fourth aspect of the present invention, a polymer having polyether as a main component and an aliphatic double bond at both ends thereof is reacted with a polymer having polybutadiene as a component. A secondary battery characterized in that the polymer produced by the above is used as a component of an ion conductor, using the same to provide an electrolyte which has a higher drying temperature and a higher self-supporting property than conventional ones. And has the function of realizing a secondary battery.

【0018】本発明の請求項5に記載の発明は、ポリエ
ーテルが、少なくとも-CH2OCH2-単位を含んでいること
を特徴とする請求項1ないし4のいずれか記載の二次電
池であって、これを用いて、従来のものよりも乾燥温度
が高く、なおかつ自己支持性を保つ電解質をもった二次
電池を実現可能とする作用を有する。
According to a fifth aspect of the present invention, there is provided the secondary battery according to any one of the first to fourth aspects, wherein the polyether contains at least a —CH 2 OCH 2 — unit. Accordingly, the use of this has the effect of making it possible to realize a secondary battery having an electrolyte which has a higher drying temperature than conventional ones and which maintains self-supporting properties.

【0019】本発明の請求項6に記載の発明は、イオン
伝導体が、特に低分子量溶媒を含んだゲルであることを
特徴とする請求項1ないし5のいずれか記載の二次電池
であって、これを用いて、従来のものよりも乾燥温度が
高く、なおかつ自己支持性を保つ電解質をもった二次電
池を実現可能とする作用を有する。
According to a sixth aspect of the present invention, there is provided the secondary battery according to any one of the first to fifth aspects, wherein the ionic conductor is a gel containing a low molecular weight solvent. By using this, it has the effect of making it possible to realize a secondary battery having an electrolyte which has a higher drying temperature than conventional ones and which maintains self-supporting properties.

【0020】本発明の請求項7に記載の発明は、イオン
伝導体が、リチウムイオンを電解質の成分として溶解し
ていることを特徴とする請求項1ないし6のいずれか記
載の二次電池であって、これを用いて、従来のものより
も乾燥温度が高く、なおかつ自己支持性を保つ電解質を
もった二次電池を実現可能とする作用を有する。
According to a seventh aspect of the present invention, there is provided a secondary battery according to any one of the first to sixth aspects, wherein the ionic conductor dissolves lithium ions as a component of the electrolyte. Accordingly, the use of this has the effect of making it possible to realize a secondary battery having an electrolyte which has a higher drying temperature than conventional ones and which maintains self-supporting properties.

【0021】本発明の請求項8に記載の発明は、リチウ
ムイオンを吸蔵放出することで機能する電極を持つこと
を特徴とする請求項1ないし7のいずれか記載の二次電
池であって、これを用いて、従来のものよりも乾燥温度
が高く、なおかつ自己支持性を保つ電解質をもった二次
電池を実現可能とする作用を有する。
The invention according to claim 8 of the present invention is the secondary battery according to any one of claims 1 to 7, further comprising an electrode that functions by inserting and extracting lithium ions. By using this, it has the effect of making it possible to realize a secondary battery having an electrolyte which has a higher drying temperature than the conventional one and which maintains self-supporting properties.

【0022】本発明の請求項9に記載の発明は、厚さが
4mm以下であることを特徴とする請求項1ないし8の
いずれか記載の二次電池であって、これを用いて、従来
のものよりも乾燥温度が高く、なおかつ自己支持性を保
つ電解質をもった薄型二次電池を実現可能とする作用を
有する。
According to a ninth aspect of the present invention, there is provided a secondary battery according to any one of the first to eighth aspects, wherein the thickness is 4 mm or less. This has the effect of making it possible to realize a thin secondary battery having an electrolyte which has a higher drying temperature than that of the above and has an electrolyte which maintains self-supporting properties.

【0023】[0023]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0024】なお、以下の説明では、本発明を実験結果
に基づいて説明するが、本発明は下記実施例により限定
されるものではなく、主旨を変更しない範囲で適宜変更
して実施できるものである。
In the following description, the present invention will be described on the basis of experimental results. However, the present invention is not limited to the following examples, but can be carried out by appropriately changing the scope without changing the gist. is there.

【0025】まず、比較例を説明し、その次に本発明の
実施例を説明する。
First, a comparative example will be described, and then an example of the present invention will be described.

【0026】(比較例1)弗化ビニリデンと六弗化プロ
ピレンの共重合体0.5gとフタル酸ジブチル0.3g
をアセトン4gに溶解しポリマ溶液を得た。スピンコー
タを用いてガラス基板上にポリマ溶液を塗布し、65℃
で乾燥してポリマ膜を得た。ポリマ膜の厚さは、24μ
mだった。炭酸ジエチルと炭酸エチレンを1:1に混合
した溶媒に、四弗化ホウ酸リチウムを1mol/l溶解
して電解液とした。ポリマ膜を炭酸ジエチルで洗浄して
フタル酸ジブチルを除去した後、電解液に浸漬しゲル電
解質とした。得られたゲル電解質の示差走査熱量測定の
結果は、図1のようになった。
Comparative Example 1 0.5 g of a copolymer of vinylidene fluoride and propylene hexafluoride and 0.3 g of dibutyl phthalate
Was dissolved in 4 g of acetone to obtain a polymer solution. Apply a polymer solution on a glass substrate using a spin coater,
To obtain a polymer film. The thickness of the polymer film is 24μ
m. Lithium tetrafluoroborate (1 mol / l) was dissolved in a solvent in which diethyl carbonate and ethylene carbonate were mixed at a ratio of 1: 1 to prepare an electrolytic solution. After the polymer film was washed with diethyl carbonate to remove dibutyl phthalate, it was immersed in an electrolytic solution to obtain a gel electrolyte. FIG. 1 shows the results of differential scanning calorimetry of the obtained gel electrolyte.

【0027】(比較例2)両末端が水酸基のポリエチレ
ンオキシド10gをトルエン15gに入れ、メタクリル
酸を加えて原料液とした。加えたメタクリル酸は、ポリ
エチレンオキシドの末端水酸基に対する数比で2倍の量
とした。原料液に0.2gのトルエンスルホン酸を加え
て反応原液とした。反応原液を還流しながら加熱して反
応を進めた。1時間ごとに、メタクリル酸を仕込み時の
ポリエチレンオキシド末端水酸基に対する数比で等量ず
つ追加した。
(Comparative Example 2) 10 g of polyethylene oxide having hydroxyl groups at both ends was placed in 15 g of toluene, and methacrylic acid was added to prepare a raw material liquid. The amount of added methacrylic acid was twice as large as the number ratio to the terminal hydroxyl group of polyethylene oxide. 0.2 g of toluenesulfonic acid was added to the raw material liquid to obtain a reaction stock solution. The reaction was proceeded by heating the undiluted solution under reflux. Every hour, methacrylic acid was added in an equal amount by the number ratio to the polyethylene oxide terminal hydroxyl group at the time of charging.

【0028】最終的に、加えたメタクリル酸は、仕込み
時のポリエチレンオキシド末端水酸基に対する数比で合
計6倍となった。さらに、3時間還流しながら反応を続
けた後、室温に放置冷却し、反応液を得た。得られた反
応液に、水酸化リチウムの飽和エタノール溶液を加えて
中和した。中和後、沈殿をろ過除去し、ろ液を硫酸マグ
ネシウムで1日乾燥した。硫酸マグネシウムをろ過除去
し、ろ液を真空乾燥してメタクリル酸エステル化ポリエ
チレンオキシドを得た。
Finally, the total ratio of the added methacrylic acid to the polyethylene oxide terminal hydroxyl group at the time of charging was 6 times in total. Further, the reaction was continued while refluxing for 3 hours, and then allowed to cool to room temperature to obtain a reaction solution. The obtained reaction solution was neutralized by adding a saturated ethanol solution of lithium hydroxide. After neutralization, the precipitate was removed by filtration, and the filtrate was dried over magnesium sulfate for one day. The magnesium sulfate was removed by filtration, and the filtrate was dried under vacuum to obtain methacrylic acid esterified polyethylene oxide.

【0029】メタクリル酸エステル化ポリエチレンオキ
シドと比較例1の電解液とジメトキシフェニルアセトフ
ェノンとをそれぞれ重量比で50:300:1になるよ
うに混合し、ゲル原液とした。ゲル原液をシャーレに入
れ、紫外線を15分間照射した後、得られたフィルムを
電解液中ですすいでゲル電解質を得た。
The methacrylic acid-esterified polyethylene oxide, the electrolytic solution of Comparative Example 1 and dimethoxyphenylacetophenone were mixed at a weight ratio of 50: 300: 1 to prepare a stock gel solution. The gel stock solution was placed in a petri dish, irradiated with ultraviolet rays for 15 minutes, and then the obtained film was rinsed in an electrolytic solution to obtain a gel electrolyte.

【0030】得られたゲル電解質の示差走査熱量測定結
果は、図2のようになった。
FIG. 2 shows the result of differential scanning calorimetry of the obtained gel electrolyte.

【0031】(実施例1)比較例2のメタクリル酸エス
テル化ポリエチレンオキシドに、二重結合数比で等量の
イソシアヌル酸トリアリルエステルを加え、さらに、比
較例1の電解液とジメトキシフェニルアセトフェノンと
を、それぞれメタクリル酸エステル化ポリエチレンオキ
シドに対する重量比が比較例2と同じになるように加え
て、ゲル原液とした。得られたゲル原液を比較例2と同
様に処理し、ゲル電解質を得た。
Example 1 To the methacrylic acid-esterified polyethylene oxide of Comparative Example 2 was added an equal amount of triallyl isocyanurate in terms of the double bond number ratio, and the electrolytic solution of Comparative Example 1 and dimethoxyphenylacetophenone were added. Was added so that the weight ratio to methacrylic acid-esterified polyethylene oxide was the same as that of Comparative Example 2 to obtain a stock gel solution. The obtained gel stock solution was treated in the same manner as in Comparative Example 2 to obtain a gel electrolyte.

【0032】得られたゲル電解質の示差走査熱量測定結
果は、図3のようになった。
FIG. 3 shows the results of differential scanning calorimetry of the obtained gel electrolyte.

【0033】(実施例2)両末端が水酸基のポリエチレ
ンオキシドと比較例1の電解液とを重量比で1:6とな
るように混合し、ゲル原液とした。別に、比較例1の電
解液をゲル原液の電解液の1/2量とり、ベンゼントリ
イソシアナートをゲル原液のポリエチレンオキシドの末
端水酸基に対する数比で1/3になる量だけ溶解し、硬
化剤とした。
Example 2 Polyethylene oxide having hydroxyl groups at both ends and the electrolyte of Comparative Example 1 were mixed at a weight ratio of 1: 6 to prepare a stock gel solution. Separately, 電解 of the electrolyte of Comparative Example 1 was taken as the electrolyte of the stock gel solution, and benzene triisocyanate was dissolved in an amount of 3 of the number ratio to the terminal hydroxyl groups of polyethylene oxide in the stock gel solution, and the curing agent was dissolved. And

【0034】ゲル原液と硬化剤を混合し、すぐにシャー
レに入れて硬化した後、得られたフィルムを電解液です
すいでゲル電解質を得た。
The gel stock solution and the curing agent were mixed, immediately placed in a petri dish, and cured, and the resulting film was rinsed with an electrolytic solution to obtain a gel electrolyte.

【0035】得られたゲル電解質の示差走査熱量測定結
果は、図4のようになった。
FIG. 4 shows the results of differential scanning calorimetry of the obtained gel electrolyte.

【0036】(実施例3)両末端を3−アミノプロピル
化したポリエチレンオキシドと比較例1の電解液とを重
量比で1:6となるように混合し、ゲル原液とした。別
に、比較例1の電解液をゲル原液の電解液の1/2量と
り、イソシアヌル酸トリグリシジルをエポキシド基とゲ
ル原液のポリエチレノキシドの末端アミノ基とが等量と
なる量だけ溶解し、硬化剤とした。
(Example 3) Polyethylene oxide having both ends 3-aminopropylated and the electrolyte solution of Comparative Example 1 were mixed at a weight ratio of 1: 6 to prepare a stock gel solution. Separately, the electrolyte of Comparative Example 1 was 1 / of the electrolyte of the gel stock solution, and triglycidyl isocyanurate was dissolved in such an amount that the epoxide group and the terminal amino group of the polyethylene oxide of the gel stock solution were equivalent, A curing agent was used.

【0037】ゲル原液と硬化剤を混合し、すぐにシャー
レに入れて硬化した後、得られたフィルムを電解液です
すいでゲル電解質を得た。
The gel stock solution and the curing agent were mixed, immediately placed in a Petri dish, and cured, and the resulting film was rinsed with an electrolyte to obtain a gel electrolyte.

【0038】得られたゲル電解質の示差走査熱量測定結
果は、図5のようになった。
FIG. 5 shows the result of differential scanning calorimetry of the obtained gel electrolyte.

【0039】(実施例4)比較例2のメタクリル酸エス
テル化ポリエチレンオキシドとポリブタジエンゴムとジ
メトキシフェニルアセトフェノンと比較例1の電解液と
を、重量比でそれぞれ50:5:1:300で混合し、
ゲル原液とした。得られたゲル原液を比較例2と同様に
処理し、ゲル電解質を得た。
Example 4 The methacrylic acid esterified polyethylene oxide of Comparative Example 2, polybutadiene rubber, dimethoxyphenylacetophenone and the electrolyte of Comparative Example 1 were mixed at a weight ratio of 50: 5: 1: 300, respectively.
A gel stock solution was used. The obtained gel stock solution was treated in the same manner as in Comparative Example 2 to obtain a gel electrolyte.

【0040】得られたゲル電解質の示差走査熱量測定結
果は、図6のようになった。
FIG. 6 shows the results of differential scanning calorimetry of the obtained gel electrolyte.

【0041】(実施例5)ポリ弗化ビニリデンをN−メ
チルピロリドンに10%溶解したものとコバルト酸リチ
ウムの粉末を混合し、厚さ20μmのアルミニウム箔上
に塗布した後、常圧65℃で15分間予備乾燥し、その
後70℃で2時間真空乾燥して正極を作製した。なお、
ポリ弗化ビニリデンは、コバルト酸リチウムに対して乾
燥重量として10%になるようにした。
Example 5 A mixture of 10% poly (vinylidene fluoride) dissolved in N-methylpyrrolidone and lithium cobalt oxide powder were mixed and applied on an aluminum foil having a thickness of 20 μm. Preliminary drying was performed for 15 minutes, and then vacuum drying was performed at 70 ° C. for 2 hours to produce a positive electrode. In addition,
The polyvinylidene fluoride was adjusted to 10% by dry weight based on lithium cobaltate.

【0042】ポリ弗化ビニリデンをN−メチルピロリド
ンに10%溶解したものと黒鉛粉末とを混練し銅箔に塗
布した後、常圧65℃で15分間予備乾燥し、その後7
0℃で2時間真空乾燥して負極を得た。なお、ポリ弗化
ビニリデンは、黒鉛に対して乾燥重量として10%にな
るようにした。
A mixture of 10% poly (vinylidene fluoride) dissolved in N-methylpyrrolidone and graphite powder was kneaded, applied to a copper foil, and preliminarily dried at 65 ° C. for 15 minutes.
Vacuum drying was performed at 0 ° C. for 2 hours to obtain a negative electrode. Incidentally, polyvinylidene fluoride was adjusted to be 10% by dry weight with respect to graphite.

【0043】比較例1の電解液に、得られた正極と負極
を10時間浸漬して、電解液を含んだ正極と負極を得た。
The obtained cathode and anode were immersed in the electrolyte of Comparative Example 1 for 10 hours to obtain a cathode and an anode containing the electrolyte.

【0044】電解液を含んだ正極と負極の間に、実施例
1から4までと比較例1と2で得られたゲル電解質をそ
れぞれ挟み、二つ折りにしたアルミ箔ポリオレフィンラ
ミネートフィルムで包装し、真空熱融着で密閉した。な
お、正極と負極からは、それぞれ導電性の引き出し線を
外に出しておいた。
The gel electrolytes obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were sandwiched between a positive electrode and a negative electrode containing an electrolytic solution, respectively, and wrapped with a folded aluminum foil polyolefin laminate film. Sealed by vacuum heat fusion. In addition, conductive leads were respectively drawn out of the positive electrode and the negative electrode.

【0045】得られた電池の最大の厚さは、0.47m
mであった。また、得られた電池の充放電容量は、(表
1)のようになった。
The maximum thickness of the obtained battery is 0.47 m
m. The charge / discharge capacity of the obtained battery was as shown in (Table 1).

【0046】[0046]

【表1】 [Table 1]

【0047】以上、実施例1から4と比較例1とを比較す
れば、各実施例のゲル電解質がより高温まで乾燥しにく
いことがわかる。また、実施例1から4と比較例1と2
とを比較すれば、各実施例のゲル電解質が溶解しにくい
ことも分かる。さらに実施例5によれば、放電容量に関
しては、実施例1から4までのゲル電解質を用いた場合
でも比較例1と2のゲル電解質を用いたものと同等であ
ることがわかる。
As described above, when Examples 1 to 4 are compared with Comparative Example 1, it can be seen that the gel electrolyte of each Example is difficult to dry to a higher temperature. Examples 1 to 4 and Comparative Examples 1 and 2
It can also be seen that the gel electrolyte of each example is hardly dissolved. Further, according to Example 5, it can be seen that the discharge capacity was the same as that using the gel electrolytes of Comparative Examples 1 and 2 even when the gel electrolytes of Examples 1 to 4 were used.

【0048】なお、ゲル電解質に溶解する塩は各実施例
で用いた四フッ化ホウ酸塩に限定されるものではなく、
六フッ化リン酸塩や各種アミド塩、イミド塩、過塩素酸
塩などのその他の塩に変更することも可能である。さら
に、一種類の塩を含むだけでなく複数種の塩を混合して
用いるのも可能である。
The salt dissolved in the gel electrolyte is not limited to the tetrafluoroborate used in each embodiment.
It is also possible to change to other salts such as hexafluorophosphate, various amide salts, imide salts and perchlorates. Further, it is possible to use not only one kind of salt but also a mixture of plural kinds of salts.

【0049】また、ゲル電解質に膨潤させる溶媒は、炭
酸エチレンと炭酸ジエチルの混合溶媒を用いたが、分解
反応などの副反応が起きない範囲で他の溶媒と変更する
のも可能である。
As the solvent for swelling the gel electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate is used. However, it is possible to change the solvent to another solvent as long as a side reaction such as a decomposition reaction does not occur.

【0050】また、実施例の電池ではリチウムを吸蔵放
出可能な電極としてコバルト酸リチウムと黒鉛を用いた
が、これに代えて、例えばニッケル酸リチウムやリチウ
ムマンガン酸化物、リチウムバナジウム酸化物などのリ
チウムを吸蔵放出可能な化合物を用いるのも可能であ
る。また、その他のリチウムを吸蔵放出可能な化合物を
用いるのも可能である。
In the batteries of the examples, lithium cobaltate and graphite were used as electrodes capable of inserting and extracting lithium. Instead of these, for example, lithium nickelate, lithium manganese oxide, lithium vanadium oxide and the like were used. Can be used. It is also possible to use other compounds capable of inserting and extracting lithium.

【0051】なお、実施例ではケースとしてアルミ箔ポ
リオレフィンラミネートフィルムを用いたが、ケースの
材質も金属や合成樹脂などに代えるのも可能である。ま
た、ケースの形状も板状、柱状、円型、角型なども可能
であるし、その他の切り欠きをもった形状なども可能で
ある。
In the embodiment, the aluminum foil polyolefin laminate film is used as the case, but the material of the case can be replaced with metal, synthetic resin or the like. The shape of the case may be a plate, a column, a circle, a square, or the like, or any other shape having a notch.

【0052】また、実施例では正極と負極を1枚ずつ積
層したが、それぞれ複数枚を積層するのも可能であり、
巻回するのも可能である。また、本発明の効果は、積層
順序、片面・両面塗布、正負極それぞれの枚数に対して
左右されるものではない。
Further, in the embodiment, the positive electrode and the negative electrode are laminated one by one, but it is also possible to laminate a plurality of each.
It is also possible to wind. The effect of the present invention does not depend on the order of lamination, single-sided / double-sided coating, and the number of positive and negative electrodes.

【0053】[0053]

【発明の効果】以上のように本発明によれば、ポリエー
テルを主鎖の主成分としその両末端に脂肪族二重結合を
もつ重合体を、脂肪族二重結合を含む置換基を六員環環
状化合物に三箇所導入した化合物と反応させて生成した
化合物をイオン伝導体の構成要素とし、これによって、
従来のものよりも乾燥温度が高く、なおかつ自己支持性
を保つ電解質をもった二次電池が実現可能となる。
As described above, according to the present invention, a polymer having a polyether as the main component of the main chain and having an aliphatic double bond at both terminals is substituted with a substituent having an aliphatic double bond by six. A compound formed by reacting with a compound introduced into the three-membered cyclic compound at three positions is used as a component of the ion conductor, whereby
A secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties can be realized.

【0054】また、ポリエーテルを主鎖の主成分としそ
の両末端にアルコール性水酸基をもつ重合体を、イソシ
アネート基をもつ置換基を六員環環状化合物に三箇所導
入した化合物と反応させて生成した化合物をイオン伝導
体の構成要素とし、これによっても、従来のものよりも
乾燥温度が高く、なおかつ自己支持性を保つ電解質をも
った二次電池が実現可能となる。
Further, a polymer having polyether as a main component of the main chain and having alcoholic hydroxyl groups at both ends thereof is reacted with a compound having three substituents having isocyanate groups introduced into a six-membered cyclic compound. The compound thus obtained is used as a component of the ion conductor, which also makes it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0055】さらに、ポリエーテルを主鎖の主成分とし
その両末端にアミノ基をもつ重合体を、エポキシド基を
もつ置換基を六員環環状化合物に三箇所導入した化合物
と反応させて生成した化合物をイオン伝導体の構成要素
とし、これによっても、従来のものよりも乾燥温度が高
く、なおかつ自己支持性を保つ電解質をもった二次電池
が実現可能となる。
Furthermore, a polymer having polyether as a main component of the main chain and having amino groups at both ends thereof was produced by reacting with a compound in which a substituent having an epoxide group was introduced at three places into a six-membered cyclic compound. The compound is used as a component of the ion conductor, and this also makes it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0056】また、ポリエーテルを主鎖の主成分としそ
の両末端に脂肪族二重結合をもつ重合体と、ポリブタジ
エンを成分とする重合体とを反応させて生成した重合体
をイオン伝導体の構成要素とし、これによっても、従来
のものよりも乾燥温度が高く、なおかつ自己支持性を保
つ電解質をもった二次電池が実現可能となる。
Further, a polymer formed by reacting a polymer having a polyether as a main component of the main chain and having an aliphatic double bond at both ends thereof and a polymer containing polybutadiene as a component is used as an ion conductor. As a constituent element, this also makes it possible to realize a secondary battery having an electrolyte that has a higher drying temperature than conventional ones and that maintains self-supporting properties.

【0057】以上掲げてきた手段による二次電池を実現
することで、従来のものよりも乾燥温度が高く、なおか
つ自己支持性を保つ電解質をもった、特に4mm以下の
厚さであることを特徴とする薄型二次電池が実現可能と
なる。
By realizing the secondary battery by the above-mentioned means, it is characterized in that the drying temperature is higher than that of the conventional one, and that the electrolyte has an electrolyte that maintains its self-supporting property, and in particular, has a thickness of 4 mm or less. Thin secondary battery can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較例1の示差走査熱量測定結果を示す図FIG. 1 is a diagram showing the results of differential scanning calorimetry of Comparative Example 1.

【図2】比較例2の示差走査熱量測定結果を示す図FIG. 2 is a diagram showing the results of differential scanning calorimetry of Comparative Example 2.

【図3】本発明第1の実施例の示差走査熱量測定結果を
示す図
FIG. 3 is a diagram showing the results of differential scanning calorimetry of the first embodiment of the present invention.

【図4】本発明第2の実施例の示差走査熱量測定結果を
示す図
FIG. 4 is a diagram showing the results of differential scanning calorimetry of the second embodiment of the present invention.

【図5】本発明第3の実施例の示差走査熱量測定結果を
示す図
FIG. 5 is a diagram showing the results of differential scanning calorimetry of the third embodiment of the present invention.

【図6】本発明第4の実施例の示差走査熱量測定結果を
示す図
FIG. 6 is a diagram showing the results of differential scanning calorimetry of the fourth embodiment of the present invention.

フロントページの続き Fターム(参考) 4J027 AA03 AC03 AC06 AJ08 BA29 CA14 CA33 CD00 4J034 DA01 DB04 DB07 DG03 HA01 HA08 HC12 HC61 HC71 MA01 RA14 5H029 AJ00 AJ03 AJ11 AK03 AL07 AM02 AM07 AM11 BJ02 BJ04 HJ02 HJ04 Continued on the front page F term (reference) 4J027 AA03 AC03 AC06 AJ08 BA29 CA14 CA33 CD00 4J034 DA01 DB04 DB07 DG03 HA01 HA08 HC12 HC61 HC71 MA01 RA14 5H029 AJ00 AJ03 AJ11 AK03 AL07 AM02 AM07 AM11 BJ02 BJ04 HJ02 HJ04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ポリエーテルを主鎖の主成分としその両
末端に脂肪族二重結合をもつ重合体と、脂肪族二重結合
を含む置換基を六員環環状化合物に三箇所導入した化合
物とを反応させて生成した化合物をイオン伝導体の構成
要素とすることを特徴とする二次電池。
1. A polymer in which a polyether is a main component of a main chain and an aliphatic double bond is provided at both ends thereof, and a compound obtained by introducing a substituent containing an aliphatic double bond into a six-membered cyclic compound at three positions. And a compound formed by reacting the above with a compound as a component of an ion conductor.
【請求項2】 ポリエーテルを主鎖の主成分としその両
末端にアルコール性水酸基をもつ重合体と、イソシアネ
ート基を含む置換基を六員環環状化合物に三箇所導入し
た化合物とを反応させて生成した化合物をイオン伝導体
の構成要素とすることを特徴とする二次電池。
2. A polymer having a main chain of polyether as a main component and having alcoholic hydroxyl groups at both ends thereof, and a compound obtained by introducing a substituent containing an isocyanate group into a six-membered cyclic compound at three positions. A secondary battery comprising the produced compound as a component of an ion conductor.
【請求項3】 ポリエーテルを主鎖の主成分としその両
末端にアミノ基をもつ重合体と、エポキシド基を含む置
換基を六員環環状化合物に三箇所導入した化合物とを反
応させて生成した化合物をイオン伝導体の構成要素とす
ることを特徴とする二次電池。
3. A polymer formed by reacting a polymer having polyether as a main component of the main chain and having amino groups at both ends thereof, and a compound having a substituent containing an epoxide group introduced at three positions into a six-membered cyclic compound. A secondary battery comprising the compound obtained as a component of an ion conductor.
【請求項4】 ポリエーテルを主鎖の主成分としその両
末端に脂肪族二重結合をもつ重合体と、ポリブタジエン
を成分とする重合体とを反応させて生成した重合体をイ
オン伝導体の構成要素とすることを特徴とする二次電
池。
4. A polymer formed by reacting a polymer having a polyether as a main component of a main chain and having an aliphatic double bond at both ends with a polymer containing a polybutadiene as a component, A secondary battery, which is a constituent element.
【請求項5】 ポリエーテルが、少なくとも-CH2OCH2-
単位を含んでいることを特徴とする請求項1ないし4の
いずれか記載の二次電池。
5. The method of claim 5, wherein the polyether is at least —CH 2 OCH 2
The secondary battery according to any one of claims 1 to 4, comprising a unit.
【請求項6】 イオン伝導体が、特に低分子量溶媒を含
んだゲルであることを特徴とする請求項1ないし5のい
ずれか記載の二次電池。
6. The secondary battery according to claim 1, wherein the ionic conductor is a gel containing a low molecular weight solvent.
【請求項7】 イオン伝導体が、リチウムイオンを電解
質の成分として溶解していることを特徴とする請求項1
ないし6のいずれか記載の二次電池。
7. The ion conductor according to claim 1, wherein lithium ion is dissolved as a component of the electrolyte.
7. The secondary battery according to any one of items 6 to 6.
【請求項8】 リチウムイオンを吸蔵放出することで機
能する電極を持つことを特徴とする請求項1ないし7の
いずれか記載の二次電池。
8. The secondary battery according to claim 1, further comprising an electrode that functions by inserting and extracting lithium ions.
【請求項9】 厚さが4mm以下であることを特徴とす
る請求項1ないし8のいずれか記載の二次電池。
9. The secondary battery according to claim 1, wherein the thickness is 4 mm or less.
JP31674499A 1999-11-08 1999-11-08 Secondary battery Pending JP2001135355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31674499A JP2001135355A (en) 1999-11-08 1999-11-08 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31674499A JP2001135355A (en) 1999-11-08 1999-11-08 Secondary battery

Publications (1)

Publication Number Publication Date
JP2001135355A true JP2001135355A (en) 2001-05-18

Family

ID=18080434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31674499A Pending JP2001135355A (en) 1999-11-08 1999-11-08 Secondary battery

Country Status (1)

Country Link
JP (1) JP2001135355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121603A (en) * 2017-12-28 2019-07-22 財團法人工業技術研究院Industrial Technology Research Institute Electrolyte, composition used for electrolyte, and lithium battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121603A (en) * 2017-12-28 2019-07-22 財團法人工業技術研究院Industrial Technology Research Institute Electrolyte, composition used for electrolyte, and lithium battery using the same

Similar Documents

Publication Publication Date Title
CN102119462B (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
JP6469879B2 (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
CN1251347C (en) Solid polymer elecrolytes
US6841303B2 (en) High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries
CN100399603C (en) Non-aqueous solution electrochemical device polar plate and its manufacturing method
US20020197536A1 (en) Lithium polymer battery
US7514182B2 (en) Organic electrolytic solution and lithium battery using the same
US20230216087A1 (en) In-situ polymerized solid-state battery with multilayer electrolyte and preparation method thereof
US7462420B2 (en) Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt
WO2002061874A1 (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
JP4751502B2 (en) Polymer battery
TWI284435B (en) Non-aqueous electrolyte battery
KR102367371B1 (en) Anode and Lithium Secondary Battery Comprising the Same
KR20200032842A (en) Polymer Electrolyte and Method for Preparing the Same
JP2001135355A (en) Secondary battery
JP2000319531A (en) High molecular electrolyte and its production
JP5896154B2 (en) SOLID ELECTROLYTE FILM FORMING AGENT, ELECTROLYTIC SOLUTION CONTAINING SAME, AND ELECTRIC STORAGE DEVICE
KR20030005255A (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
US20020136958A1 (en) High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries
CN1739214A (en) Electrolyte for use in phosphate based lithium ion/polymer cells
KR20200077803A (en) Polymer Electrolyte and Method for Preparing the Same
JP4156495B2 (en) Gel electrolyte, its production method and its use
US11909058B2 (en) Method and system for formation of cylindrical and prismatic can cells
KR102046498B1 (en) Negative electrode for lithium metal battery and manufacturing method for the same
JP5299242B2 (en) Lithium polymer secondary battery