JP2001135313A - Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material

Info

Publication number
JP2001135313A
JP2001135313A JP31228299A JP31228299A JP2001135313A JP 2001135313 A JP2001135313 A JP 2001135313A JP 31228299 A JP31228299 A JP 31228299A JP 31228299 A JP31228299 A JP 31228299A JP 2001135313 A JP2001135313 A JP 2001135313A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31228299A
Other languages
Japanese (ja)
Inventor
Masanori Soma
正典 相馬
Tomio Tsujimura
富雄 辻村
Kazunobu Matsumoto
和順 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP31228299A priority Critical patent/JP2001135313A/en
Publication of JP2001135313A publication Critical patent/JP2001135313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a nonaqueous electrolyte secondary battery with excellent cycle characteristic and high capacity, and to provide a nonaqueous electrolyte secondary battery using the positive electrode active material. SOLUTION: In a positive electrode active material for a nonaqueous electrolyte secondary battery using lithium cobalt oxide shown in a formula of LiCoO2, the lithium cobalt has a diameter of ferer of 0.1 to 4 μm in a projection figure through a SEM monitoring, and the positive electrode active material is formed of sphere or oval sphere secondary particles formed of primary particles of small crystals whose mean granular diameter is not more than 2 μm. The granular diameter of the secondary particle is from 1 to 40 μm. At least a part of the small crystals constructing the secondary particle is bonded by sintering. A tap concentration of the lithium cobalt oxide is not less than 2.2 g/cm3. The invention also provides a nonaqueous electrolyte secondary battery whose construction element is the positive electrode active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極にリチウム金
属、リチウム合金またはカーボンを用いる非水系電解質
二次電池用正極活物質に関するものであり、特にサイク
ル特性を向上させた非水系電解質二次電池用正極活物質
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery using lithium metal, a lithium alloy or carbon as a negative electrode, and more particularly to a non-aqueous electrolyte secondary battery having improved cycle characteristics. The present invention relates to a positive electrode active material for use.

【0002】[0002]

【従来の技術】近年、携帯電話やノートパソコンの普及
に伴い、小型、軽量で、かつ高エネルギー密度を有する
二次電池の開発が強く望まれている。このようなものと
してリチウム金属、リチウム合金あるいはカーボンを負
極として用いるリチウムイオン二次電池があり、研究開
発が盛んに行われている。合成が比較的容易なリチウム
コバルト複合酸化物(LiCoO)を正極活物質とし
て用いたリチウムイオン二次電池は、4V級の高い電圧
が得られるため、高エネルギー密度を有する電池として
期待され、実用化されている。
2. Description of the Related Art In recent years, with the spread of portable telephones and notebook personal computers, there has been a strong demand for the development of a small, lightweight, and high energy density secondary battery. As such a device, there is a lithium ion secondary battery using lithium metal, a lithium alloy or carbon as a negative electrode, and research and development are being actively conducted. A lithium-ion secondary battery using a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode active material is expected to be a battery having a high energy density because a high voltage of 4 V class can be obtained, and is practically used. Has been

【0003】近年のさらなる高容量化や大電流化の要求
に対して電池への正極活物質の充填密度を上げるなどの
対策が必要となってきた。そこで具体的には正極活物質
と混合するカーボンなどの導電剤量を減らすなどの方法
が採用され、さらに正極活物質の粒径を大きくして充填
密度を向上させる試みが行われているが、リチウムイオ
ンの挿入・脱離反応に関与する表面積が減少するため、
正極活物質の放電容量が低下してしまい、一方挿入・脱
離反応に関与する表面積を増加させるために粒径を小さ
くすると、導電剤のカーボンが不足して、やはり放電容
量が低下してしまうという問題があった。
In response to recent demands for higher capacity and higher current, it has become necessary to take measures such as increasing the packing density of a positive electrode active material in a battery. Therefore, specifically, a method such as reducing the amount of a conductive agent such as carbon mixed with the positive electrode active material has been adopted, and further attempts have been made to increase the particle size of the positive electrode active material and improve the packing density. Since the surface area involved in lithium ion insertion / desorption reactions decreases,
The discharge capacity of the positive electrode active material is reduced. On the other hand, if the particle size is reduced to increase the surface area involved in the insertion / desorption reaction, the carbon of the conductive agent becomes insufficient, and the discharge capacity also decreases. There was a problem.

【0004】前記の問題を解決する方法として、コバル
ト酸リチウムの小結晶が多数集合して球状もしくは楕円
球状をした二次粒子から構成される非水電解質二次電池
用活物質が提案されている(Abstracts of
9th International Meetin
g on Lithium Batteries,Po
ster II Thur56, 1998)。前記正
極活物質を用いた場合、確かに正極活物質の充填密度が
増加し、電池のエネルギー密度が向上するが、充放電サ
イクルを繰り返すと、放電末期の電圧低下が大きくな
り、容量が減少してしまうことがあり、その原因につい
ては解明されていなかった。
As a method for solving the above-mentioned problem, an active material for a non-aqueous electrolyte secondary battery has been proposed which comprises a large number of small crystals of lithium cobaltate aggregated to form spherical or elliptical secondary particles. (Abstracts of
9th International Meetin
go on Lithium Batteries, Po
ster II Thur 56, 1998). When the positive electrode active material is used, the packing density of the positive electrode active material is certainly increased, and the energy density of the battery is improved.However, when the charge / discharge cycle is repeated, the voltage drop at the end of discharge increases, and the capacity decreases. And the cause had not been elucidated.

【0005】[0005]

【発明が解決しようとする課題】本発明はサイクル特性
に優れ、かつ高容量の非水電解質二次電池用正極活物質
およびこれを用いた非水系電解質二次電池を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent cycle characteristics and a high capacity, and a non-aqueous electrolyte secondary battery using the same. Things.

【0006】[0006]

【課題を解決するための手段】本発明者は前記の問題を
解決するため鋭意研究を行った結果、一次粒子の粒径お
よびその均一性とサイクル特性の間に深い関係があるこ
とを見出し本発明を完成するに至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that there is a deep relationship between the particle size of primary particles and their uniformity and cycle characteristics. The invention has been completed.

【0007】すなわち本発明の第1の実施態様に係る非
水系電解質二次電池用正極活物質は、式LiCoO
表されるコバルト酸リチウムを用いた非水電解質二次電
池用の正極活物質において、前記コバルト酸リチウムは
SEM観察による投影図形のフェレー径が0.1〜4μ
mの範囲にあり、かつ平均粒径が2μm以下である小結
晶の一次粒子が多数集合した球状あるいは楕円球状の二
次粒子からなることを特徴とするものであり、さらに前
記二次粒子の粒径が1〜40μmの範囲にあり、また前
記二次粒子を構成している小結晶相互の少なくとも一部
が焼結により接合し、かつ前記コバルト酸リチウムのタ
ップ密度が2.2g/cm以上であることを特徴とす
る。
That is, the positive electrode active material for a nonaqueous electrolyte secondary battery according to the first embodiment of the present invention is a positive electrode active material for a nonaqueous electrolyte secondary battery using lithium cobaltate represented by the formula LiCoO 2. In the above, the lithium cobaltate has a Feret diameter of a projected figure of 0.1 to 4 μm by SEM observation.
m, and comprises spherical or elliptical spherical secondary particles in which a large number of primary particles of small crystals having an average particle diameter of 2 μm or less are collected. The diameter is in the range of 1 to 40 μm, and at least a part of the small crystals constituting the secondary particles are joined by sintering, and the tap density of the lithium cobaltate is 2.2 g / cm 3 or more. It is characterized by being.

【0008】また本発明の第2の実施態様に係る非水系
電解質二次電池は、前記第1の実施態様に係る正極活物
質を構成要素とすることを特徴とするものである。
[0008] A nonaqueous electrolyte secondary battery according to a second embodiment of the present invention is characterized in that the positive electrode active material according to the first embodiment is used as a constituent element.

【0009】[0009]

【発明の実施の形態】本発明に係る非水系電解質二次電
池用の正極活物質によれば、SEM(走査型電子顕微
鏡)観察による投影図形のフェレー径が0.1〜4μm
の範囲にあり、かつ平均粒径が2μm以下である小結晶
の一次粒子が多数集合した球状または楕円球状の二次粒
子からなるコバルト酸リチウムを用いることによって、
サイクル特性を良好なものとすることができる。なお本
明細書において用いた用語「投影図形のフェレー径」と
は投影図形における最大長さ(特に楕円球体を測定した
ときの一番長い方向の長さ)を意味し、その寸法を0.
1〜4μmの範囲とした理由は、0.1μm未満では放
電容量が低下し、一方4μmを超えるとサイクルに伴う
容量劣化や放電末期における電圧低下が大きくなるため
である。さらに一次粒子の平均粒径を2μm以下とした
理由は、2μmを超える平均粒径とすると、前記フェレ
ー径を0.1〜4μmの範囲とするのが困難であるため
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the Feret diameter of a projected figure by SEM (scanning electron microscope) observation is 0.1 to 4 μm.
By using lithium cobaltate composed of spherical or elliptical secondary particles in which a large number of small crystal primary particles having a mean particle size of 2 μm or less are in the range of
Cycle characteristics can be improved. Note that the term “ferret diameter of a projected figure” used in this specification means the maximum length of the projected figure (particularly, the length in the longest direction when an ellipsoidal sphere is measured), and the dimension is set to 0.
The reason for setting the range to 1 to 4 μm is that when the thickness is less than 0.1 μm, the discharge capacity decreases, while when it exceeds 4 μm, the capacity deterioration due to the cycle and the voltage drop at the end of discharge increase. Further, the reason why the average particle diameter of the primary particles is 2 μm or less is that if the average particle diameter exceeds 2 μm, it is difficult to make the Feret diameter in the range of 0.1 to 4 μm.

【0010】本発明者は、充放電に伴う一次粒子の膨脹
・収縮変化量の不均一性が、サイクル特性に大きな影響
を及ぼすと考え、上記のような一次粒子の粒度分布を規
定するに至った。コバルト酸リチウムは充放電に伴いC
軸が約3%膨脹・収縮することが小槻らにより報告(J
ournal of the Electrochem
icalSociety,141,2972(199
4))されている。したがって、粗大粒子を含み一次粒
子が不均一な二次粒子では、一次粒子によって膨脹・収
縮変化量が大きく異なるので、二次粒子内部の歪みが大
きくなり、ついには一次粒子接合部に亀裂が入り、電気
的接触が取られなくなる結果、サイクル特性が悪化する
と考えられる。
The present inventor believes that the non-uniformity of the change in expansion and contraction of the primary particles due to charge and discharge has a great effect on the cycle characteristics, and has determined the particle size distribution of the primary particles as described above. Was. Lithium cobaltate is charged and discharged with C
Kotsuki et al. Report that the shaft expands and contracts by about 3% (J
ownal of the Electrochem
icalSociety, 141, 2972 (199)
4)) has been done. Therefore, in the case of secondary particles containing coarse particles and non-uniform primary particles, the amount of change in expansion and contraction varies greatly depending on the primary particles, so that the strain inside the secondary particles increases, and finally the joints of the primary particles crack. It is considered that as a result, no electrical contact is obtained, resulting in deterioration of cycle characteristics.

【0011】つぎに二次粒子の形状を球状または楕円球
状とした理由は、これら以外の不定形の形状とした場
合、2.2g/cm以上のタップ密度が得られず、ま
た優れたサイクル特性が得られないからである。また二
次粒子の粒径を1〜40μmとした理由は、1μm未満
では高負荷放電時の放電容量が低下し、一方40μmを
超えると電極作製時の合剤スラリーの塗布性が悪化する
ためである。さらに二次粒子を構成している小結晶相互
の少なくとも一部が焼結により接合している二次粒子で
正極活物質を形成することが好ましく、このように構成
することにより一次粒子間の電子伝導性を向上させるこ
とができ、また必要な導電剤の量を減らして充填密度を
向上することができるのである。
[0011] Next, the reason why the secondary particles are spherical or elliptical in shape is that if they have an irregular shape other than these, a tap density of 2.2 g / cm 3 or more cannot be obtained, and excellent cycle characteristics can be obtained. This is because characteristics cannot be obtained. The reason for setting the particle diameter of the secondary particles to 1 to 40 μm is that if the particle diameter is less than 1 μm, the discharge capacity at the time of high-load discharge decreases, whereas if it exceeds 40 μm, the applicability of the mixture slurry during electrode production deteriorates. is there. Further, it is preferable that the positive electrode active material is formed of secondary particles in which at least a part of the small crystals constituting the secondary particles are joined by sintering. The conductivity can be improved, and the packing density can be improved by reducing the required amount of the conductive agent.

【0012】つぎに非水系電解質二次電池用正極活物質
の製造方法について説明する。前記した性状のコバルト
酸リチウムは0.2〜0.8μmの一次粒子が多数集合
した1〜40μmの範囲にある二次粒子からなるコバル
ト源と、リチウム塩とを混合して、この混合物を熱処理
することにより得られる。そして前記した条件の下にあ
る混合物の熱処理は酸化雰囲気中で約900℃程度で4
〜12時間行うことが望ましいが、この条件を調整すれ
ば温度800〜1000℃で4〜12時間の熱処理で所
期の効果を奏することもできる。さらに前記コバルト源
としては四三酸化コバルト(Co)、オキシ水酸
化コバルト(CoOOH)などを、またリチウム源とし
ては炭酸リチウム(Li CO)、水酸化リチウム
(LiOH)、硝酸リチウム(LiNO)などを用い
ることができる。
Next, a positive electrode active material for a non-aqueous electrolyte secondary battery
A method of manufacturing the device will be described. Cobalt of the above properties
Lithium oxide is composed of many primary particles of 0.2-0.8μm
Kobal consisting of secondary particles in the range of 1 to 40 μm
Heat source, and a lithium salt.
It is obtained by doing. And under the above conditions
Heat treatment of the mixture at about 900 ° C. in an oxidizing atmosphere.
It is preferable to perform this process for up to 12 hours.
If heat treatment at a temperature of 800 to 1000 ° C for 4 to 12 hours
The effect of the period can also be achieved. Further, the cobalt source
Cobalt tetroxide (Co3O4), Oxyhydroxy
And cobalt source (CoOOH)
Lithium carbonate (Li 2CO3), Lithium hydroxide
(LiOH), lithium nitrate (LiNO)3)
Can be

【0013】なお通常正極活物質の充放電特性を評価す
る場合、活物質と導電剤、結着剤を混合・成形した複合
電極を正極として用いる。この場合、活物質と導電剤の
混合比や電極作製方法により、充放電特性が左右される
問題があった。そして内田他の報告(電気化学、vol
65、954(1997))によると、マイクロリード
電極を活物質粒子に接触させて電気化学特性を測定す
る、単一粒子の電気化学測定法を用いることにより、導
電剤などの影響を除外した粒子本来の充放電特性を評価
することができる。本発明の効果を確認するに当たり、
通常の複合電極による評価とともに、単一粒子サイクリ
ックボルタモグラム(cyclic voltamog
ram)測定による活物質粒子の充放電特性評価を行っ
た。
In general, when evaluating the charge / discharge characteristics of a positive electrode active material, a composite electrode obtained by mixing and molding the active material, a conductive agent, and a binder is used as a positive electrode. In this case, there is a problem that the charge / discharge characteristics are affected by the mixing ratio of the active material and the conductive agent and the electrode manufacturing method. And Uchida et al.'S report (Electrochemistry, vol.
65, 954 (1997)), by using a single particle electrochemical measurement method in which a microlead electrode is brought into contact with active material particles to measure electrochemical characteristics, the influence of a conductive agent or the like is eliminated. The original charge / discharge characteristics can be evaluated. In confirming the effect of the present invention,
Along with the evaluation using a conventional composite electrode, a single particle cyclic voltammogram (cyclic voltammogram) was used.
ram) measurement to evaluate the charge / discharge characteristics of the active material particles.

【0014】[0014]

【実施例】以下、本発明の実施例を、比較例とともに詳
細に説明する。 [実施例1]0.2〜0.8μm以下の一次粒子が多数
集合した粒径1〜40μmの範囲にあり球状あるいは楕
円球状である二次粒子からなるオキシ水酸化コバルト
(CoOOH)および炭酸リチウム(LiCO)と
を、LiとCoの比が1:1になるように精秤し、ポリ
ビニルアルコール樹脂(PVA)水溶液を粉末100重
量部に対してPVAが約1.4重量部になるように添加
しながら、ステンレス鋼製の撹拌羽根とアジテータを備
えた混合造粒機で混合し造粒した。ついで3〜5mmに
造粒された前記混合物を120℃で5時間乾燥させた
後、酸素気流中900℃で10時間焼成した。
EXAMPLES Examples of the present invention will be described below in detail along with comparative examples. Example 1 Cobalt oxyhydroxide (CoOOH) and lithium carbonate composed of spherical or elliptical secondary particles having a particle size in the range of 1 to 40 μm in which a large number of primary particles of 0.2 to 0.8 μm are aggregated (Li 2 CO 3 ) was precisely weighed so that the ratio of Li to Co became 1: 1 and the aqueous solution of polyvinyl alcohol (PVA) was reduced to about 1.4 parts by weight of PVA with respect to 100 parts by weight of powder. While adding as much as possible, the mixture was mixed and granulated by a mixing granulator equipped with a stainless steel stirring blade and an agitator. Then, the mixture granulated to a size of 3 to 5 mm was dried at 120 ° C. for 5 hours, and then fired at 900 ° C. for 10 hours in an oxygen stream.

【0015】得られたコバルト酸リチウムについて誘導
結合プラズマ原子分光分析器(ICP)を用いて組成分
析を行ったところ、いずれも仕込み組成と一致する結果
が得られた。またCuのKα線を用いた粉末X線回折に
よる生成相の同定では、JCPDSのファイル番号16
−427番のLiCoO以外の相としては、Li
とCoの相が痕跡程度検出された以外は認め
られなかった。得られたコバルト酸リチウムを32μm
の目開きの篩で整粒してSEM観察を行った結果、投影
図形のフェレー径が0.4〜3.5μmの範囲にあり、
かつ平均粒径が1.2μmの小結晶が多数集合した1〜
30μmの範囲にある球状あるいは楕円球状の二次粒子
からなっていることが確認できた。またSEMの倍率を
15000倍にして観察したところ、二次粒子を構成す
る一次粒子相互はそれぞれ一部が焼結により接合してい
ることが確認された。また容量100cmのメスシリ
ンダーに前記のように整粒したコバルト酸リチウムを一
定量(50g)入れ、メスシリンダーを50cmの高さ
から硬度60〜80のゴム板上で200回落下を繰り返
しタップした。タップ終了後のメスシリンダー内の試料
容積を読みとりタップ密度を算出したところ、コバルト
酸リチウムのタップ密度は2.55g/cmであっ
た。
A composition analysis was performed on the obtained lithium cobaltate using an inductively coupled plasma atomic spectrometer (ICP). As a result, the results were consistent with the charged compositions. In addition, in the identification of the generated phase by powder X-ray diffraction using Cu Kα ray, JCPDS file No. 16
The phases other than the No.-427 No. LiCoO 2 include Li 2 C
No trace was observed except for the traces of O 3 and Co 3 O 4 phases. 32 μm of the obtained lithium cobaltate
As a result of conducting SEM observation after sizing with a sieve having an aperture of, the Feret diameter of the projected figure is in the range of 0.4 to 3.5 μm,
And a large number of small crystals having an average particle size of 1.2 μm
It was confirmed that the particles consisted of spherical or elliptical secondary particles in the range of 30 μm. Further, when observation was performed at a magnification of 15,000 times with SEM, it was confirmed that the primary particles constituting the secondary particles were partially joined to each other by sintering. Further, a predetermined amount (50 g) of lithium cobalt oxide sized as described above was put into a measuring cylinder having a capacity of 100 cm 3, and the measuring cylinder was repeatedly dropped 200 times on a rubber plate having a hardness of 60 to 80 from a height of 50 cm and tapped. . When the sample volume in the graduated cylinder after the tap was read and the tap density was calculated, the tap density of lithium cobaltate was 2.55 g / cm 3 .

【0016】つぎに得られたコバルト酸リチウムを活物
質として用いて電池を組み立て充放電容量を測定した。
前記コバルト酸リチウムの正極活物質とアセチレンブラ
ックおよびポリフッ化ビニリデン樹脂を90:5:5の
重量比で混合して、N−メチルピロリドン(NMP)を
加えペースト化した。これを20μm厚のアルミニウム
箔に乾燥後の活物質重量が0.05g/cmになるよ
うに塗布し、120℃で真空乾燥を行った後、直径1c
mの円板状に打ち抜いて正極ペレットとした。そして図
1のように正極ペレット5と、負極には直径16mm
φ、厚さ1mmのリチウム金属のペレット2を用い、さ
らに電解液として1モル/リットルのLiClOを支
持塩とするエチレンカーボネート(EC)とジエチレン
カーボネート(DEC)の等量混合溶液を用いた。また
セパレータ3には膜厚25μmのポリエチレン多孔膜を
用いて該セパレータに電解液を染み込ませガスケット4
を用いてシールして2032型コイン電池をアルゴン雰
囲気で露点が−80℃に制御されたグローブボックス中
で組み立てた。なお図1において1は負極缶、6は正極
缶である。
Next, a battery was assembled using the obtained lithium cobaltate as an active material, and the charge / discharge capacity was measured.
The positive electrode active material of lithium cobaltate, acetylene black and polyvinylidene fluoride resin were mixed at a weight ratio of 90: 5: 5, and N-methylpyrrolidone (NMP) was added to form a paste. This was applied to an aluminum foil having a thickness of 20 μm so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and then diameter 1c.
m to form a positive electrode pellet. As shown in FIG. 1, the positive electrode pellet 5 and the negative electrode had a diameter of 16 mm.
A lithium metal pellet 2 having a diameter of 1 mm and a thickness of 1 mm was used, and a mixed solution of ethylene carbonate (EC) and diethylene carbonate (DEC) using 1 mol / liter of LiClO 4 as a supporting salt was used as an electrolytic solution. The separator 3 is made of a polyethylene porous film having a thickness of 25 μm.
Then, a 2032 type coin battery was assembled in a glove box in which the dew point was controlled at −80 ° C. in an argon atmosphere. In FIG. 1, 1 is a negative electrode can and 6 is a positive electrode can.

【0017】このようにして作製された二次電池を24
時間程度放置し、開回路電圧(OCV)が安定した後、
正極に対する電流密度0.5mA/cmでカットオフ
電圧4.3Vまで充電した後、1時間開回路で放置し、
電流密度0.5mA/cmで3.0Vまで放電した。
得られた1サイクル目の3.5Vカットオフの放電容量
を下記する表1に示す。また下記する表2に示した電流
密度の条件で充放電サイクルを繰り返した際の、11サ
イクル目の3.5Vカットオフの放電容量と下記する数
式1により求めた放電容量維持率を下記する表1に併せ
て示した。
The secondary battery thus manufactured is
After leaving it for about an hour and the open circuit voltage (OCV) stabilizes,
After charging to a cut-off voltage of 4.3 V at a current density of 0.5 mA / cm 2 with respect to the positive electrode, the battery was left in an open circuit for one hour,
The battery was discharged to 3.0 V at a current density of 0.5 mA / cm 2 .
The obtained discharge capacity at 3.5 V cutoff in the first cycle is shown in Table 1 below. In addition, when the charge / discharge cycle is repeated under the conditions of the current density shown in Table 2 below, the discharge capacity of the 3.5 V cutoff at the 11th cycle and the discharge capacity retention rate obtained by the following equation 1 are shown in the following table. 1 is also shown.

【0018】[0018]

【式1】容量維持率(%)=(11サイクル目の放電容
量)/(1サイクル目の放電容量)×100
[Formula 1] Capacity retention rate (%) = (discharge capacity at 11th cycle) / (discharge capacity at 1st cycle) × 100

【0019】さらに単一粒子のサイクリックボルタモグ
ラムを測定し、導電剤などの影響を除外した正極活物質
本来の充放電特性について評価した。測定に用いたセル
および装置の概略図を図2に示す。上下二室に仕切られ
た測定セルのガラスフィルター15上に、活物質粒子1
1を分散させたガラスセパレーターを置き、セルを顕微
鏡の観察台に設置した。セルには電解液16として1モ
ル/リットルのLiClOを支持塩とするエチレンカ
ーボネート(EC)とジエチルカーボネート(DEC)
の等量混合溶液を満たし、対極および参照極にはリチウ
ム金属17を用いた。顕微鏡12に装着したCCDカメ
ラの映像を通じて粒子を観察しながら、マイクロマニピ
ュレーター14を操作し、白金−ロジウム合金からなる
マイクロリード電極(直径25μm)13を粒子に押し
当てて電気的な接触をとった。次に微小電流ポテンショ
スタット18によりマイクロリード電極の電位を掃引
し、電流変化を測定した。測定粒子11として、二次粒
子の粒径20〜25μmの球状または楕円球状の粒子を
選んだ。またマイクロリード電極13の電位走査範囲は
3.0〜4.3Vvs.Li/Li、走査速度は10
mV/secとした。得られた1サイクル目と15サイ
クル目のサイクリックボルタモグラムを図3に示す。
Further, the cyclic voltammogram of the single particles was measured to evaluate the original charge / discharge characteristics of the positive electrode active material excluding the influence of the conductive agent and the like. FIG. 2 shows a schematic diagram of the cell and the apparatus used for the measurement. The active material particles 1 are placed on the glass filter 15 of the measuring cell partitioned into upper and lower two chambers.
The glass separator in which No. 1 was dispersed was placed, and the cell was placed on an observation table of a microscope. In the cell, ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 mol / l of LiClO 4 as a supporting salt as an electrolyte 16 are provided.
, And lithium metal 17 was used for the counter electrode and the reference electrode. While observing the particles through the image of the CCD camera mounted on the microscope 12, the micromanipulator 14 was operated, and a micro lead electrode (diameter 25 μm) 13 made of a platinum-rhodium alloy was pressed against the particles to make electrical contact. . Next, the potential of the micro lead electrode was swept by the minute current potentiostat 18 to measure a change in current. As the measurement particles 11, spherical or elliptical spherical particles having a particle diameter of 20 to 25 μm of secondary particles were selected. The potential scanning range of the micro lead electrode 13 is 3.0 to 4.3 Vvs. Li + / Li, scanning speed is 10
mV / sec. FIG. 3 shows the obtained cyclic voltammograms at the first cycle and the fifteenth cycle.

【0020】[比較例1]原料のオキシ水酸化コバルト
(CoOOH)と炭酸リチウム(LiCO)とを混
合・造粒した後、酸素気流中950℃で10時間焼成す
る以外は実施例1と同様にしてコバルト酸リチウムを得
た。得られたコバルト酸リチウムについてSEM観察を
行った結果、投影図形のフェレー径が0.5〜19μm
の範囲にあり、かつ平均粒径が3.3μmの小結晶の一
次粒子が多数集合した1〜30μmの範囲にある球状あ
るいは楕円球状をした二次粒子からなっていることが確
認できた。また二次粒子を構成する一次粒子相互はそれ
ぞれ一部が焼結により接合していることが確認された。
また得られたコバルト酸リチウムを正極活物質として用
いて実施例1と同様な方法で図1のようなコイン型電池
を作製し、これを実施例1と同様な測定方法により測定
した1サイクル目および11サイクル目の3.5Vカッ
トオフの放電容量と11サイクル目の放電容量維持率を
下記する表1に併せて示す。
Comparative Example 1 Example 1 was repeated except that the raw materials cobalt oxyhydroxide (CoOOH) and lithium carbonate (Li 2 CO 3 ) were mixed and granulated, and then calcined at 950 ° C. for 10 hours in an oxygen stream. In the same manner as in the above, lithium cobaltate was obtained. As a result of performing SEM observation on the obtained lithium cobaltate, the Feret diameter of the projected figure was 0.5 to 19 μm.
And a large number of small crystal primary particles having an average particle size of 3.3 μm are aggregated in the range of 1 to 30 μm, and it was confirmed that the particles consisted of spherical or elliptical secondary particles. It was also confirmed that the primary particles constituting the secondary particles were partially joined to each other by sintering.
Using the obtained lithium cobaltate as the positive electrode active material, a coin-type battery as shown in FIG. 1 was produced in the same manner as in Example 1, and this was measured in the first cycle by the same measurement method as in Example 1. The discharge capacity at 3.5 V cutoff at the 11th cycle and the discharge capacity retention at the 11th cycle are also shown in Table 1 below.

【0021】[比較例2]原料のオキシ水酸化コバルト
と炭酸リチウムを混合・造粒した後、酸素気流中100
0℃で10時間焼成する以外は実施例1と同様にしてコ
バルト酸リチウムを得た。得られたコバルト酸リチウム
についてSEM観察を行った結果、投影図形のフェレー
径が1〜15μmの範囲にあり、かつ平均粒径が5μm
の小結晶の一次粒子が多数集合した1〜40μmの範囲
にある球状あるいは楕円球状の二次粒子からなっている
ことが確認できた。また二次粒子を構成する一次粒子相
互はそれぞれ一部が焼結により接合していることが確認
された。また得られたコバルト酸リチウムを正極活物質
として用いて実施例1と同様な方法で図1のようなコイ
ン型電池を作製し、これを実施例1と同様な測定方法に
より測定した1サイクル目および11サイクル目の3.
5Vカットオフの放電容量と11サイクル目の放電容量
維持率を下記する表1に併せて示す。さらに前記正極活
物質の単一粒子のサイクリックボルタモグラムを実施例
1と同様な方法で測定し、得られた1サイクル目と15
サイクル目のボルタモグラムを図4に示す。
[Comparative Example 2] Cobalt oxyhydroxide and lithium carbonate as raw materials were mixed and granulated, and then mixed in an oxygen stream.
Lithium cobaltate was obtained in the same manner as in Example 1 except that the firing was performed at 0 ° C. for 10 hours. As a result of performing SEM observation on the obtained lithium cobaltate, the Feret diameter of the projected figure was in the range of 1 to 15 μm, and the average particle diameter was 5 μm.
It was confirmed that the particles consisted of spherical or elliptical secondary particles in the range of 1 to 40 μm in which a large number of primary particles of the small crystal were aggregated. It was also confirmed that the primary particles constituting the secondary particles were partially joined to each other by sintering. Using the obtained lithium cobaltate as the positive electrode active material, a coin-type battery as shown in FIG. 1 was produced in the same manner as in Example 1, and this was measured in the first cycle by the same measurement method as in Example 1. And 3. of the eleventh cycle.
The discharge capacity at the 5 V cutoff and the discharge capacity retention rate at the 11th cycle are also shown in Table 1 below. Further, a cyclic voltammogram of a single particle of the positive electrode active material was measured in the same manner as in Example 1.
The voltammogram at the cycle is shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】実施例1から明らかなように、フェレー径
が0.1〜4μmの範囲にあり、かつ平均粒径が2μm
以下である小結晶の一次粒子が多数集合した1〜40μ
mの範囲にある球状あるいは楕円球状をした二次粒子か
ら構成された本発明に係る正極活物質を用いた場合、サ
イクル特性が極めて優れていることが分かった。また表
1に示した電池の初期放電容量も良好であり、充放電サ
イクルを繰り返しても容量劣化が少なく、さらに図3に
示した単一粒子のサイクリックボルタモグラムでは、1
5サイクル目においても1サイクル目とほぼ同様に波形
が維持されており、高いサイクル特性を示した。これに
対して比較例1および比較例2に示した粒径が4μm以
上の粗大一次粒子を含み、一次粒子の粒径が不均一な二
次粒子から構成された正極活物質を用いた場合、サイク
ル特性が悪化するとともに、表1に示したように電池の
充放電サイクルを繰り返すと、放電容量および放電容量
維持率が著しく低下してしまった。
As is apparent from Example 1, the Feret diameter is in the range of 0.1 to 4 μm, and the average particle diameter is 2 μm.
1 to 40μ in which many primary particles of the following small crystals are aggregated
It was found that when the positive electrode active material according to the present invention composed of spherical or elliptical secondary particles in the range of m was used, the cycle characteristics were extremely excellent. In addition, the initial discharge capacity of the battery shown in Table 1 was good, the capacity deterioration was small even after repeated charge / discharge cycles, and the single-particle cyclic voltammogram shown in FIG.
In the fifth cycle, the waveform was maintained almost in the same manner as in the first cycle, showing high cycle characteristics. On the other hand, when the positive electrode active material including coarse primary particles having a particle size of 4 μm or more shown in Comparative Examples 1 and 2 and secondary particles having a non-uniform primary particle size is used, As the cycle characteristics deteriorated and the charge / discharge cycle of the battery was repeated as shown in Table 1, the discharge capacity and the discharge capacity maintenance ratio were significantly reduced.

【0025】さらに図4に示した単一粒子のサイクリッ
クボルタモグラムでは、サイクルを重ねると波形が乱
れ、ピーク電流値が著しく低下した。そして詳細に金属
顕微鏡で観察しながら測定を行ったところ、サイクルを
重ねるうちに崩壊してしまう二次粒子が観測された。
Further, in the cyclic voltammogram of a single particle shown in FIG. 4, when the cycle was repeated, the waveform was disturbed, and the peak current value was significantly reduced. And when the measurement was performed while observing with a metallographic microscope in detail, secondary particles that collapsed during repeated cycles were observed.

【0026】[0026]

【発明の効果】以上述べた通り本発明によるコバルト酸
リチウムを非水系電解質二次電池の正極活物質として用
いることによって、優れたサイクル特性を発揮すること
ができる非水系電解質二次電池を作製することが可能と
なる。
As described above, by using the lithium cobalt oxide according to the present invention as a positive electrode active material of a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery capable of exhibiting excellent cycle characteristics is manufactured. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により得られた正極活物質を用いた20
32型コイン電池の一部切欠斜視図である。
FIG. 1 shows a graph of 20 using the positive electrode active material obtained according to the present invention.
It is a partially cutaway perspective view of a 32 type coin battery.

【図2】単一二次粒子のサイクリックボルタモグラムを
測定する装置の概略図である。
FIG. 2 is a schematic diagram of an apparatus for measuring a cyclic voltammogram of a single secondary particle.

【図3】実施例1で得られたコバルト酸リチウムの単一
二次粒子のサイクリックボルタモグラムである。
FIG. 3 is a cyclic voltammogram of single secondary particles of lithium cobaltate obtained in Example 1.

【図4】比較例2で得られたコバルト酸リチウムの単一
二次粒子のサイクリックボルタモグラムである。
FIG. 4 is a cyclic voltammogram of a single secondary particle of lithium cobaltate obtained in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 負極缶 2 リチウム金属ペレット 3 セパレーター 4 ガスケット 5 正極ペレット 6 正極缶 11 単一正極活物質粒子 12 顕微鏡 13 マイクロリード電極 14 マイクロマニピュレーター 15 ガラスフィルター 16 電解液 17 リチウム金属 18 微小電流ポテンショスタット DESCRIPTION OF SYMBOLS 1 Negative electrode can 2 Lithium metal pellet 3 Separator 4 Gasket 5 Positive electrode pellet 6 Positive electrode can 11 Single positive electrode active material particle 12 Microscope 13 Micro lead electrode 14 Micromanipulator 15 Glass filter 16 Electrolyte solution 17 Lithium metal 18 Micro current potentiostat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 和順 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 Fターム(参考) 5H003 AA04 BA01 BB05 BC01 BC06 BD02 BD05 5H029 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 DJ16 DJ17 HJ02 HJ05 HJ08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazunori Matsumoto 3-18-5, China, Ichikawa, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory F-term (reference) 5H003 AA04 BA01 BB05 BC01 BC06 BD02 BD05 5H029 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 DJ16 DJ17 HJ02 HJ05 HJ08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 式LiCoOで表されるコバルト酸リ
チウムを用いた非水電解質二次電池用の正極活物質にお
いて、前記コバルト酸リチウムはSEM観察による投影
図形のフェレー径が0.1〜4μmの範囲にあり、かつ
平均粒径が2μm以下である小結晶の一次粒子が多数集
合した球状あるいは楕円球状の二次粒子からなることを
特徴とする非水系電解質二次電池用正極活物質。
1. A positive electrode active material for a non-aqueous electrolyte secondary battery using lithium cobaltate represented by the formula LiCoO 2 , wherein the lithium cobaltate has a Feret diameter of 0.1 to 4 μm in a projected figure by SEM observation. And a spherical or elliptical secondary particle in which a large number of primary particles of small crystals having an average particle diameter of 2 μm or less are aggregated.
【請求項2】 前記二次粒子の粒径が1〜40μmの範
囲にあることを特徴とする請求項1記載の非水系電解質
二次電池用正極活物質。
2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary particles have a particle size in a range of 1 to 40 μm.
【請求項3】 前記二次粒子を構成している小結晶相互
の少なくとも一部が焼結により接合していることを特徴
とする請求項1または2記載の非水系電解質二次電池用
正極活物質。
3. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein at least a part of the small crystals constituting the secondary particles are joined by sintering. material.
【請求項4】 前記コバルト酸リチウムのタップ密度が
2.2g/cm以上であることを特徴とする請求項1
〜3のいずれか1項記載の非水系電解質二次電池用正極
活物質。
4. The lithium cobalt oxide has a tap density of 2.2 g / cm 3 or more.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3.
【請求項5】 請求項1〜4のいずれか1項記載の正極
活物質を構成要素とすることを特徴とする非水系電解質
二次電池。
5. A non-aqueous electrolyte secondary battery comprising the positive electrode active material according to claim 1 as a constituent element.
JP31228299A 1999-11-02 1999-11-02 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material Pending JP2001135313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31228299A JP2001135313A (en) 1999-11-02 1999-11-02 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31228299A JP2001135313A (en) 1999-11-02 1999-11-02 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material

Publications (1)

Publication Number Publication Date
JP2001135313A true JP2001135313A (en) 2001-05-18

Family

ID=18027378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31228299A Pending JP2001135313A (en) 1999-11-02 1999-11-02 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material

Country Status (1)

Country Link
JP (1) JP2001135313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003489A1 (en) * 2001-06-27 2003-01-09 Santoku Corporation Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode
US7547493B2 (en) 2004-06-04 2009-06-16 Nippon Chemical Industrial Co., Ltd Lithium cobalt oxide, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003489A1 (en) * 2001-06-27 2003-01-09 Santoku Corporation Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode
US7547493B2 (en) 2004-06-04 2009-06-16 Nippon Chemical Industrial Co., Ltd Lithium cobalt oxide, method for manufacturing the same, and nonaqueous electrolyte secondary battery
US7547492B2 (en) 2004-06-04 2009-06-16 Nippon Chemical Industrial Co., Ltd Lithium cobalt oxide, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
Jia et al. Nd-doped LiNi0. 5Co0. 2Mn0. 3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries
CN112794370B (en) Doped positive electrode material precursor, preparation method and application thereof, doped positive electrode material, preparation method and application thereof
EP2368851B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
EP2581343B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
EP1487038A2 (en) Positive electrode material, its manufacturing method and lithium batteries
CN108025928A (en) Nickel-base anode material
CN107078293A (en) Positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2005071807A (en) Water-based lithium secondary battery
JP2003151546A (en) Positive electrode active substance for lithium ion secondary battery and its manufacturing method
JP2002216760A (en) Positive electrode active material for lithium secondary battery and method for manufacturing the same
JP7414702B2 (en) Cathode active material for lithium secondary batteries
JP7034275B2 (en) Lithium-cobalt metal oxide powder, its preparation method, and method for determining the content of cobalt (II, III).
JP2003208895A (en) Lithium-nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
CN105514364A (en) Modified lithium ion battery cathode material capable of improving cycle performance and preparation method thereof
JP4800589B2 (en) Solid electrolyte-containing electrode for lithium secondary battery
Para et al. Electrochemical performance optimization of NMC811 through the structure design of its precursor
Nishikawa et al. Intrinsic electrochemical characteristics in the individual needle-like LiCoO2 crystals synthesized by flux growth
CN109696520B (en) Co in lithium ion battery positive active material 3 O 4 Content determination method
JP2001155729A (en) Positive electrode active material for use in non-aqueous secondary battery and non-aqueous electrolyte secondary battery using it
JP7384071B2 (en) Positive electrode layer used in lithium ion secondary batteries and lithium ion secondary batteries
CN114122380A (en) Preparation method of zirconium-doped cerium fluoride-coated nickel-cobalt-manganese ternary positive electrode material and prepared positive electrode material
JP2001135313A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2003331841A (en) Positive active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery
CN115057488B (en) Lithium ion battery positive electrode material with special morphology, and preparation method and application thereof
JP2000251894A (en) Nonaqueous secondary battery, and usage thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050309