JP2001135162A - Power cable - Google Patents

Power cable

Info

Publication number
JP2001135162A
JP2001135162A JP31808599A JP31808599A JP2001135162A JP 2001135162 A JP2001135162 A JP 2001135162A JP 31808599 A JP31808599 A JP 31808599A JP 31808599 A JP31808599 A JP 31808599A JP 2001135162 A JP2001135162 A JP 2001135162A
Authority
JP
Japan
Prior art keywords
conductor
return
cable
voltage side
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31808599A
Other languages
Japanese (ja)
Inventor
Toru Okazaki
徹 岡崎
Masayuki Hirose
正幸 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31808599A priority Critical patent/JP2001135162A/en
Publication of JP2001135162A publication Critical patent/JP2001135162A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Communication Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power cable most suited for application to e.g. plasma explosion, where a large current is repeatedly supplied to flow in a short time, avoiding inconveniences due to repulsion between a conductor and a return conductor. SOLUTION: The power cable comprises a plurality of high-voltage cables 30 each having a conductor 41, an insulating layer 42 and a shielding layer 43, and a plurality of grounded return conductors 31. The high-voltage cables 30 and the return conductors 31 are formed in one unit. If the high-voltage cables as forward passages and the return conductors are independently formed, no electromagnetic force works between the conductor and the shielding layer in each of the high-voltage cables, and no gap is formed between the insulating layer and the shielding layer, therefore hardy causing destruction of the high- voltage cables.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ爆破用な
ど、短時間に大電流を流すことが繰り返し行われる用途
に最適な電力ケーブルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power cable most suitable for applications in which a large current is repeatedly applied in a short time, such as for plasma blasting.

【0002】[0002]

【従来の技術】岩石の爆破法の一つとしてプラズマ爆破
法が知られている(特開平4-222794号公報)。これは、
図4に示すように、爆破対象の岩石20内に穴21を形成
し、穴内に粘性の高い電解液22を充填すると共に、この
電解液内に爆破用の同軸電極23を浸漬する。次に、電極
23に1×100万分の1秒当たりに少なくとも100×100万ワ
ットの電気エネルギーを放出する。これにより、同軸電極
間の電解液22に絶縁破壊を起こさせてプラズマを発生
し、このプラズマの圧力に伴う衝撃波Sにより爆破を行
うと言うものである。電気エネルギーの供給には、電力
供給源24に接続されたコンデンサバンク25を用いる。コ
ンデンサバンク25はスイッチ26と接続され、引き金装置
27を遠隔引き金28で起動してスイッチ26を動作させ、同
軸電力ケーブル29を通じて電力供給を行う。
2. Description of the Related Art A plasma blasting method is known as one of the rock blasting methods (JP-A-4-222794). this is,
As shown in FIG. 4, a hole 21 is formed in a rock 20 to be blasted, a highly viscous electrolytic solution 22 is filled in the hole, and a coaxial electrode 23 for blasting is immersed in the electrolytic solution. Next, the electrode
23 emits at least 100 million watts of electrical energy per 1 millionth of a second. As a result, the electrolyte 22 between the coaxial electrodes causes dielectric breakdown to generate plasma, and is exploded by a shock wave S accompanying the pressure of the plasma. To supply electric energy, a capacitor bank 25 connected to a power supply source 24 is used. The capacitor bank 25 is connected to the switch 26 and the trigger device
27 is activated by a remote trigger 28 to activate the switch 26 to supply power through the coaxial power cable 29.

【0003】このような同軸電力ケーブル29の一例を図
3に示す。この電力ケーブルは、中心から順に、導体
1、内部半導電層2、絶縁体3、外部半導電層4、リターン
導体5、防食層6、補強層7を具えている。導体1は同軸電
極の一方に、リターン導体5は同軸電極の他方に接続さ
れている。この電力ケーブルの導体1には短時間に大容
量のパルス電流が流され、リターン導体5には導体1とは
逆方向のリターン電流が流される。そのため、両導体
1、5間には反発力が作用してリターン導体5が外周方向
に僅かに動いてずれを生じることがある。補強層7はリ
ターン導体5のずれや膨らみを押さえるためのものであ
る。
[0003] An example of such a coaxial power cable 29 is shown in FIG. This power cable is
1, comprising an inner semiconductive layer 2, an insulator 3, an outer semiconductive layer 4, a return conductor 5, an anticorrosion layer 6, and a reinforcing layer 7. The conductor 1 is connected to one of the coaxial electrodes, and the return conductor 5 is connected to the other of the coaxial electrodes. A large-capacity pulse current flows through the conductor 1 of the power cable in a short time, and a return current in the opposite direction to the conductor 1 flows through the return conductor 5. Therefore, both conductors
In some cases, a repulsive force acts between 1 and 5 to cause the return conductor 5 to slightly move in the outer peripheral direction to cause a shift. The reinforcing layer 7 is for suppressing displacement or swelling of the return conductor 5.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の電力ケ
ーブルでは次のような問題があった。 電流が大きくなるとリターン導体5を押さえるための
補強が困難になる。リターン導体5を押さえる力を確保
するには補強層7の厚みを大きくすることが挙げられる
が、それではケーブルの外径が大きくなり曲げ難くなる
と言う問題を伴う。
However, the above power cable has the following problems. When the current increases, it becomes difficult to reinforce the return conductor 5 to hold it. Increasing the thickness of the reinforcing layer 7 is an example of securing the force for holding down the return conductor 5, but this involves a problem that the outer diameter of the cable becomes large and it becomes difficult to bend.

【0005】リターン導体5の移動により外部半導電
層4とリターン導体5との間にギャップが生じ、このギャ
ップで放電が繰り返し生じると絶縁破壊に至ることがあ
る。
[0005] The movement of the return conductor 5 creates a gap between the external semiconductive layer 4 and the return conductor 5, and if discharge occurs repeatedly in this gap, dielectric breakdown may occur.

【0006】補強層7による締め付けには限度があ
る。補強層7による締め付けだけではリターン導体5の動
きを抑制できないこともあり、その場合、銅線で構成さ
れているリターン導体5に変形を生じることがある。
There is a limit to the tightening by the reinforcing layer 7. In some cases, the movement of the return conductor 5 cannot be suppressed only by the tightening by the reinforcing layer 7, and in that case, the return conductor 5 formed of a copper wire may be deformed.

【0007】上記のケーブルに適合するコネクタが作
りにくい。遮蔽層をリターン導体として電流を負担させ
るため、電流の程度によってはリターン導体が厚くな
り、導体もリターン導体も共に大電流を許容するコネク
タの構造が難しくなる。
[0007] It is difficult to make a connector that fits the above cable. Since the shield layer is used as a return conductor to bear the current, the return conductor becomes thick depending on the degree of the current, and it becomes difficult to form a connector that allows a large current for both the conductor and the return conductor.

【0008】表皮効果によって導体外周に電流が集中
し、導体断面を有効に使えない。10kHzでは導体の表面
から約1mmしか電流が流れない。大直径の導体では、ケ
ーブルに撚りを施しても最内層の素線が最外層に出てこ
なければ、撚りによるインピーダンスの均一化効果が望
めない。
The current concentrates on the outer periphery of the conductor due to the skin effect, and the conductor cross section cannot be used effectively. At 10 kHz, current flows only about 1 mm from the surface of the conductor. In the case of a conductor having a large diameter, even if the cable is twisted, the effect of equalizing the impedance due to the twisting cannot be expected unless the innermost element wire does not come out to the outermost layer.

【0009】従って、本発明の主目的は、導体とリター
ン導体との反発による不都合を解消できる電力ケーブル
を提供することにある。
Accordingly, it is a primary object of the present invention to provide a power cable which can eliminate the inconvenience caused by repulsion between a conductor and a return conductor.

【0010】[0010]

【課題を解決するための手段】本発明は、往路となる高
圧側ケーブルと帰路導体とを独立構成とし、かつ高圧側
ケーブルと帰路導体の各々を複数本で構成して上記の目
的を達成する。
According to the present invention, the above object is achieved by forming the high voltage side cable and the return path conductor, which are the forward path, independently, and configuring each of the high voltage side cable and the return path conductor with a plurality of lines. .

【0011】すなわち、本発明電力ケーブルは、導体、
絶縁層および遮蔽層を具える複数の高圧側ケーブルと、
接地された複数本の帰路導体とを具え、これら高圧側ケ
ーブルと帰路導体とが一体のケーブルとして構成された
ことを特徴とする。
That is, the power cable of the present invention comprises a conductor,
A plurality of high-side cables comprising an insulating layer and a shielding layer;
A plurality of return conductors which are grounded are provided, and the high voltage side cable and the return conductor are configured as an integral cable.

【0012】このように往路となる高圧側ケーブルと帰
路導体とを独立構成とすれば、高圧側ケーブルにおける
導体と遮蔽層との間には電磁力が働かず、絶縁層と遮蔽
層との間に隙間ができることもないため、高圧側ケーブ
ルの破壊が生じにくい。
If the high-voltage side cable and the return path conductor, which are the forward path, are formed independently of each other, no electromagnetic force acts between the conductor and the shielding layer in the high-voltage side cable. Since there is no gap in the high-voltage side cable, breakage of the high-voltage side cable hardly occurs.

【0013】また、高圧側ケーブルと帰路導体の各々を
複数本とすることで一つの導体が小さくなり、コネクタ
も個々の導体に対して形成すれば小型のコネクタで済
む。特に、高圧側ケーブルにおける遮蔽層にはリターン
電流が流れないため、遮蔽層の処理が簡単である。
Further, by using a plurality of high-voltage side cables and return conductors, one conductor can be reduced in size. If a connector is formed for each individual conductor, a small connector can be used. In particular, since the return current does not flow through the shield layer of the high-voltage side cable, the processing of the shield layer is simple.

【0014】そして、高圧側ケーブルと帰路導体の各々
における一つの導体を小さくできるため、素線絶縁によ
るインピーダンスの均一化効果が大きくなる。従って、
高圧側ケーブルの導体と帰路導体の少なくとも一方は素
線絶縁された撚り線で構成することが望ましい。なお、
高圧側ケーブルと帰路導体との一体化は、両者を撚り合
わせることで容易に実現できる。
Further, since one conductor in each of the high-voltage side cable and the return conductor can be reduced, the effect of uniformizing the impedance by the wire insulation is increased. Therefore,
It is desirable that at least one of the conductor of the high-voltage side cable and the return conductor is formed of a stranded wire insulated from wires. In addition,
The integration of the high voltage side cable and the return conductor can be easily realized by twisting both.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1はプラズマ爆破の電力供給に最適な本発明パ
ルスパワー用電力ケーブルの概略断面図である。この電
力ケーブルは、6本の高圧側ケーブル30と7本の帰路導
体31とからなり、7本の帰路導体31をより合わせたもの
の外周に6本の高圧側ケーブル30をより合わせて一体に
構成されている。
Embodiments of the present invention will be described below. FIG. 1 is a schematic sectional view of a power cable for pulse power according to the present invention, which is optimal for supplying power for plasma blasting. This power cable is composed of six high voltage side cables 30 and seven return path conductors 31. The seven return path conductors 31 are twisted together, and the six high voltage side cables 30 are twisted around the outer periphery to be integrally formed. Have been.

【0016】高圧側ケーブルはパルスパワー源からの往
路電流の流路として用いられる。このケーブル30は、中
心から順に導体41、絶縁層42(内部半導電層と外部半導
電層を含む)、遮蔽層43およびシース44を具えている。
この高圧側ケーブルの導体41は、素線絶縁した撚り線で
構成することが好ましい。
The high voltage side cable is used as a flow path for a forward current from a pulse power source. The cable 30 includes a conductor 41, an insulating layer 42 (including an inner semiconductive layer and an outer semiconductive layer), a shielding layer 43, and a sheath 44 in this order from the center.
It is preferable that the conductor 41 of the high-voltage side cable is constituted by a strand wire insulated from the strand.

【0017】一方、帰路導体31は帰路電流の流路として
用いられる。帰路導体31は高圧に耐える必要がないの
で、薄い絶縁を施したケーブルで良い。例えば、ホルマ
ール素線絶縁を施した撚り線などが考えられる。
On the other hand, the return conductor 31 is used as a return current flow path. Since the return conductor 31 does not need to withstand high pressure, a cable with thin insulation may be used. For example, a stranded wire subjected to formal wire insulation is conceivable.

【0018】これらの高圧側ケーブル30と帰路導体31と
は撚られているため、電磁反発力による膨らみに対して
何ら工夫しなくともケーブル状態を保つことも可能であ
る。ただし、高圧側ケーブルの外部にさらに被覆を施す
などして高圧側ケーブル30と帰路導体31の撚りを拘束す
るようにしても良い。
Since the high-voltage side cable 30 and the return conductor 31 are twisted, the cable state can be maintained without any measures against bulging due to electromagnetic repulsion. However, the twist of the high voltage side cable 30 and the return conductor 31 may be restricted by further coating the outside of the high voltage side cable.

【0019】このように構成すれば、高圧側ケーブル30
における導体41と遮蔽層43との間には電磁力が働かず、
絶縁層と遮蔽層との間に隙間ができることもないため、
高圧側ケーブルの破壊が生じにくい。また、高圧側ケー
ブル30と帰路導体31の各々における一つの導体を小さく
できるため、素線絶縁によるインピーダンスの均一化効
果が大きくなる。
With this configuration, the high voltage side cable 30
Electromagnetic force does not work between the conductor 41 and the shielding layer 43 in,
Since there is no gap between the insulating layer and the shielding layer,
High voltage side cable is less likely to break. In addition, since one conductor in each of the high-voltage side cable 30 and the return conductor 31 can be reduced, the effect of uniformizing the impedance by strand insulation increases.

【0020】そして、上記電力ケーブルのコネクタは図
2に示すように構成することが好適である。往路となる
高圧側ケーブル30の各々にコネクタ50を接続する。一
方、帰路導体31は7本を一括して1個のコネクタ51に接
続する。もちろん、帰路導体31の各々にコネクタを接続
しても良い。このように、帰路導体31を往路と独立さ
せ、往路を複数本の高圧側ケーブル30に分割すること
で、コネクタは各高圧側ケーブル毎に形成すれば良い。
また、高圧側ケーブルの遮蔽層43には帰路電流を流す必
要がないため、遮蔽層43の処理が簡単でコネクタも簡単
な構成で良い。さらに、帰路導体自体が高圧に耐える必
要がないため、帰路導体31に接続されるコネクタも簡易
な構造で済む。
Preferably, the connector of the power cable is configured as shown in FIG. The connector 50 is connected to each of the high-voltage side cables 30 that are to be forwarded. On the other hand, seven return conductors 31 are collectively connected to one connector 51. Of course, a connector may be connected to each of the return conductors 31. In this way, the connector may be formed for each high-voltage side cable by separating the return path conductor 31 from the outward path and dividing the outward path into a plurality of high-voltage side cables 30.
Further, since it is not necessary to supply a return current to the shielding layer 43 of the high voltage side cable, the processing of the shielding layer 43 is simple and the connector may have a simple configuration. Further, since the return conductor itself does not need to withstand high pressure, the connector connected to the return conductor 31 also has a simple structure.

【0021】尚、本発明のパルスパワー電力ケーブル
は、上述の図示例にのみ限定されるものではなく、本発
明の要旨を逸脱しない範囲内において種々変更を加え得
ることは勿論である。
Incidentally, the pulse power cable of the present invention is not limited to the above-described example, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

【0022】[0022]

【発明の効果】以上説明したように、本発明電力ケーブ
ルによれば、高圧側ケーブルの遮蔽層に電磁力が働かな
いため絶縁層との間に隙間ができず、電界的に安定であ
る。また、高圧側ケーブルの導体が複数本に分割されて
いるため、コネクタも小さくて済む。
As described above, according to the power cable of the present invention, no electromagnetic force acts on the shielding layer of the high-voltage side cable, so that no gap is formed between the power cable and the insulating layer and the electric cable is stable in electric field. Further, since the conductor of the high voltage side cable is divided into a plurality of conductors, the connector can be small.

【0023】さらに、複数本に分割された高圧側ケーブ
ルの導体および帰路導体の各々を素線絶縁すれば、さら
に小さく導体を分割することでができ、各素線の負担電
流を均一化し、総合的なインピーダンスを下げられ、ケ
ーブルでのジュール損を下げることができる。
Further, if the conductors and return conductors of the high-voltage side cable divided into a plurality of wires are insulated by wires, the conductors can be further divided into smaller portions, and the burden current of each wire can be made uniform. Impedance can be reduced, and Joule loss in the cable can be reduced.

【0024】従って、プラズマ爆破法などにおける電力
供給ケーブルとしての利用に最適である。
Therefore, it is most suitable for use as a power supply cable in a plasma blast method or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電力ケーブルの概略断面図である。FIG. 1 is a schematic sectional view of a power cable of the present invention.

【図2】図1のケーブルに接続するコネクタの配置図で
ある。
FIG. 2 is a layout view of a connector connected to the cable of FIG. 1;

【図3】従来の電力ケーブルの断面図である。FIG. 3 is a cross-sectional view of a conventional power cable.

【図4】プラズマ爆破法の説明図である。FIG. 4 is an explanatory view of a plasma blast method.

【符号の説明】[Explanation of symbols]

1 導体 2 内部半導電層 3 絶縁体 4 外部半導電
層 5 リターン導体 6 防食層 7 補強層 8 電極層 9 押さえ層 10 コア 20 岩石 21 穴 22 電解液 23 同軸電極 24 電力供給源 25 コンデンサバンク 26 スイッチ 27 引き金装置 28 遠隔引き金 29 同軸電力ケーブル 30 高圧側ケ
ーブル 31 帰路導体 41 導体 42 絶縁層 43 遮蔽層 44
シース 50 コネクタ 51 コネクタ
1 conductor 2 inner semiconductive layer 3 insulator 4 outer semiconductive layer 5 return conductor 6 anticorrosion layer 7 reinforcing layer 8 electrode layer 9 holding layer 10 core 20 rock 21 hole 22 electrolyte 23 coaxial electrode 24 power supply 25 capacitor bank 26 Switch 27 Trigger device 28 Remote trigger 29 Coaxial power cable 30 High voltage side cable 31 Return conductor 41 Conductor 42 Insulation layer 43 Shielding layer 44
Sheath 50 Connector 51 Connector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導体、絶縁層および遮蔽層を具える複数
の高圧側ケーブルと、接地された複数本の帰路導体とを
具え、これら高圧側ケーブルと帰路導体とが一体のケー
ブルとして構成されたことを特徴とする電力ケーブル。
1. A high voltage side cable comprising a conductor, an insulating layer and a shielding layer, and a plurality of grounded return conductors, wherein the high voltage side cable and the return conductor are formed as an integral cable. A power cable, characterized in that:
【請求項2】 高圧側ケーブルの導体と帰路導体の少な
くとも一方は素線絶縁された撚り線で構成されたことを
特徴とする請求項1に記載の電力ケーブル。
2. The power cable according to claim 1, wherein at least one of the conductor of the high-voltage side cable and the return conductor is formed of a strand wire insulated from a wire.
JP31808599A 1999-11-09 1999-11-09 Power cable Withdrawn JP2001135162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31808599A JP2001135162A (en) 1999-11-09 1999-11-09 Power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31808599A JP2001135162A (en) 1999-11-09 1999-11-09 Power cable

Publications (1)

Publication Number Publication Date
JP2001135162A true JP2001135162A (en) 2001-05-18

Family

ID=18095324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31808599A Withdrawn JP2001135162A (en) 1999-11-09 1999-11-09 Power cable

Country Status (1)

Country Link
JP (1) JP2001135162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176976A (en) * 2007-01-17 2008-07-31 Fuji Electric Holdings Co Ltd Power transfer cable, power conversion device using power transfer cable, and connecting method of power transfer cable
JP2012115456A (en) * 2010-11-30 2012-06-21 Toshiba Corp Magnetic resonance imaging apparatus
CN114283969A (en) * 2021-11-30 2022-04-05 远东电缆有限公司 Pulse heavy current electromagnetic force self-reduction silicon rubber cable structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176976A (en) * 2007-01-17 2008-07-31 Fuji Electric Holdings Co Ltd Power transfer cable, power conversion device using power transfer cable, and connecting method of power transfer cable
JP2012115456A (en) * 2010-11-30 2012-06-21 Toshiba Corp Magnetic resonance imaging apparatus
CN114283969A (en) * 2021-11-30 2022-04-05 远东电缆有限公司 Pulse heavy current electromagnetic force self-reduction silicon rubber cable structure
CN114283969B (en) * 2021-11-30 2023-09-19 远东电缆有限公司 Electromagnetic force self-reducing silicon rubber cable structure with large pulse current

Similar Documents

Publication Publication Date Title
CA2416034A1 (en) Crushing apparatus electrode and crushing apparatus
RU2005105990A (en) CURRENT CONDUCTOR FOR ELECTRICAL PROTECTION OF ELECTRICAL EQUIPMENT AND ELECTRIC TRANSMISSION LINE SUPPLIED WITH SUCH DEVICE
JP2001135162A (en) Power cable
WO2015030011A1 (en) Shielded cable and wire harness
CN212411598U (en) Power cable with simple structure
EP3363026B1 (en) Low eletromagnetic field electrosurgical cable
JP4194178B2 (en) Power cable
KR102565605B1 (en) Connecting Structure of Power Cable Conductor and Connecting Device Of The Same
EP0998001B1 (en) Method of preventing break in insulated wire and instantaneous power failure
KR102471823B1 (en) Multi step fracture bolt, power cable connecting structure and connecting device of power cable's conductor
JP2019091670A (en) Power distribution line improving arc fusion characteristics
KR102500202B1 (en) Connecting Structure of Power Cable Conductor And Connecting Method Of The Same
JP3143099U (en) 3-core power cord
KR100668433B1 (en) Co-axial type reaction assembly for plasma blasting
JP7430429B1 (en) Coaxial microwave plasma torch
CN210956219U (en) Composite conductor cable
KR102537538B1 (en) Connecting Structure of Power Cable Conductor, Connecting Method Of The Same and Connecting Device Of The Same
US2297471A (en) Cable terminal
KR102242522B1 (en) Plasma generating apparatus
JP4783937B2 (en) Method for manufacturing electrode for crushing device
EP4369871A2 (en) An anti-tip electrode type single electrode structure and electrode cleaning device
CN212847768U (en) Pulse high-voltage switch wire harness
KR200359005Y1 (en) cable for earthing
JP2003311176A (en) Electrode for crushing device and crushing device
KR102545397B1 (en) Connecting Structure of Power Cable Conductor And Connecting Method Of The Same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109