JP2001131561A - Method for hydrogenating heavy oil - Google Patents

Method for hydrogenating heavy oil

Info

Publication number
JP2001131561A
JP2001131561A JP31021099A JP31021099A JP2001131561A JP 2001131561 A JP2001131561 A JP 2001131561A JP 31021099 A JP31021099 A JP 31021099A JP 31021099 A JP31021099 A JP 31021099A JP 2001131561 A JP2001131561 A JP 2001131561A
Authority
JP
Japan
Prior art keywords
iron
dispersion
oil
heavy oil
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31021099A
Other languages
Japanese (ja)
Other versions
JP3404522B2 (en
Inventor
Akira Kushiyama
暁 櫛山
Isamu Uemasu
勇 上桝
Satoru Kobayashi
悟 小林
Yoshiki Sato
芳樹 佐藤
Teruo Kondo
輝男 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP31021099A priority Critical patent/JP3404522B2/en
Publication of JP2001131561A publication Critical patent/JP2001131561A/en
Application granted granted Critical
Publication of JP3404522B2 publication Critical patent/JP3404522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an industrially extremely advantageous method for hydrogenating a heavy oil, capable of suppressing crystal growth of iron sulfide fine particle in a hydrogenation treatment reaction and efficiently hydrogenating unfavorable components such as metal compounds of asphaltene, vanadium, nickel, etc., and sulfur and nitrogen compounds, etc., contained in a heavy oil with a small amount of a catalyst. SOLUTION: In this method for hydrogenating a heavy oil using hydrogen sulfide and an iron-based catalyst, a colloidal iron dispersion of dispersion in oil type is used as the iron-based catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素と鉄系触
媒を用いる重質油の改良された水素化処理方法に関する
ものである。
The present invention relates to an improved method for hydrotreating heavy oil using hydrogen sulfide and an iron-based catalyst.

【0002】[0002]

【従来の技術】周知のように、石油や石炭系の重質油に
は、アスファルテンと呼ばれる高分子量かつ芳香族性の
高い成分、バナジウムやニッケル等の金属化合物、硫黄
や窒素の化合物など、燃料品質等にとって好ましくない
成分が多く含まれている。これらの成分を除去する方法
としては、従来より高圧水素雰囲気で重質油と触媒を接
触させる水素化処理法が広く利用されている。この水素
化処理法は、粒状の触媒を用いる固定床方式あるいは懸
濁床方式と、粉末状の触媒あるいは油溶性金属化合物触
媒と硫化水素を用いるスラリー方式に大別されるが、ア
スファルテンや金属化合物の極めて多い重質油の水素化
処理にはスラリー方式が適していると言われている。こ
のスラリー方式に使用する触媒については、従来多くの
研究や特許取得がなされている。例えば油溶性鉄化合物
を用いる方法、油溶性モリブデン化合物を用いるMーc
okeプロセス、バナジウム化合物を用いるAurab
onプロセス、硫酸鉄を含浸させた石炭粉末を用いるC
ANMETプロセス、遷移金属化合物と超微粉体の組み
合わせを用いるSOCプロセスなどの優れた技術が提案
されている。これらの中でも、特に硫化水素と油溶性鉄
系触媒を用いる方法は、価格、安全性の点で工業的に極
めて有望な方法であり、例えば石炭液化反応用触媒等と
しての研究が数多くなされている。この方法において
は、油溶性鉄系触媒が反応系内で硫化水素と反応するこ
とにより触媒活性作用を示す高分散型の硫化鉄微細粒子
を形成し、該硫化鉄微細粒子の高触媒活性作用により重
質油の水素化処理が行われるものである。しかしなが
ら、これらの研究でも言及されているように、この油溶
性鉄系触媒と硫化水素との反応により得られる硫化鉄微
細粒子は反応初期にはその粒子径が小さく高い触媒活性
を示すものの、反応の進行に伴いこれらの微細粒子の凝
集や結晶成長を起こり、その粒子径が大きくなるため、
初期の触媒活性が得られなくなり、また所望の触媒効果
を上げるためにはその使用量を多くする必要がある、等
といった問題点がある。
2. Description of the Related Art As is well known, petroleum and coal-based heavy oils include a high molecular weight and highly aromatic component called asphaltenes, metal compounds such as vanadium and nickel, and compounds such as sulfur and nitrogen. Contains many components that are not desirable for quality. As a method for removing these components, a hydrotreating method of contacting a heavy oil with a catalyst in a high-pressure hydrogen atmosphere has been widely used. This hydrotreating method is roughly classified into a fixed bed method or a suspension bed method using a granular catalyst, and a slurry method using a powdery catalyst or an oil-soluble metal compound catalyst and hydrogen sulfide. It is said that the slurry method is suitable for the hydrotreating of heavy oil with extremely large amounts of oil. Many studies and patents have been made on the catalyst used in this slurry method. For example, a method using an oil-soluble iron compound, Mc using an oil-soluble molybdenum compound
Oura process, Aurab using vanadium compound
On process, C using coal powder impregnated with iron sulfate
Excellent technologies such as an ANMET process and an SOC process using a combination of a transition metal compound and an ultrafine powder have been proposed. Among them, a method using hydrogen sulfide and an oil-soluble iron-based catalyst is an industrially extremely promising method in terms of price and safety, and many studies have been made as, for example, a catalyst for a coal liquefaction reaction. . In this method, an oil-soluble iron-based catalyst reacts with hydrogen sulfide in a reaction system to form highly dispersed iron sulfide fine particles exhibiting a catalytic activity, and the high catalytic activity of the iron sulfide fine particles forms Hydroprocessing of heavy oil is performed. However, as mentioned in these studies, the iron sulfide fine particles obtained by the reaction of this oil-soluble iron-based catalyst with hydrogen sulfide have a small particle diameter in the early stage of the reaction and exhibit high catalytic activity. Aggregation and crystal growth of these fine particles occur as the particle size increases, and the particle size increases.
There are problems such that the initial catalyst activity cannot be obtained, and that the amount of the catalyst must be increased in order to enhance the desired catalytic effect.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を克服するためになされたものであり、水素
化処理反応中における硫化鉄微細粒子の結晶成長を抑制
でき、少量の触媒量で重質油に含まれるアスファルテ
ン、バナジウムやニッケル等の金属化合物、及び硫黄や
窒素の化合物などの好ましくない成分を効率的に水素化
処理できる、工業的に極めて有利な重質油の水素化処理
方法を提供することをその目的とする。
SUMMARY OF THE INVENTION The present invention has been made to overcome the above-mentioned problems of the prior art, and can suppress the crystal growth of iron sulfide fine particles during a hydrogenation reaction, and can use a small amount of catalyst. Hydrogenation of heavy oil which is industrially extremely advantageous, which can efficiently hydrotreat asphaltene, metal compounds such as vanadium and nickel, and undesired components such as sulfur and nitrogen compounds contained in heavy oil in an amount. Its purpose is to provide a processing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、第一に、硫化水素と
鉄系触媒を用いる重質油の水素化処理方法において、該
鉄系触媒として、油中分散型コロイド状鉄分散液を使用
することを特徴とする重質油の水素化処理方法が提供さ
れる。第二に、第一の重質油の水素化処理方法におい
て、油中分散型コロイド状鉄分散液が、酸化第二鉄及び
/又は水酸化第二鉄ゾルに界面活性剤の水溶液を加えて
当該ゾルを凝結させ、生成した沈殿を炭化水素系溶媒で
抽出して得られる分散液であることを特徴とする、重質
油の水素化処理方法が提供される。第三に、第一の水素
化処理方法において、油中分散型コロイド状鉄分散液
が、酸化第二鉄及び/又は水酸化第二鉄ゾルに希硫酸を
加えて当該ゾルを凝結させ、生成した沈殿を界面活性剤
を含む炭化水素系溶媒で抽出して得られる分散液である
ことを特徴とする、重質油の水素化処理方法が提供され
る。第四に、第一の水素化処理方法において、油中分散
型コロイド状鉄分散液が、酸化第二鉄及び/又は水酸化
第二鉄ゾルを界面活性剤を含む炭化水素系溶媒に接触さ
せて得られる分散液であることを特徴とする、重質油の
水素化処理方法が提供される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, first, in a method for hydrotreating heavy oil using hydrogen sulfide and an iron-based catalyst, the use of an in-oil-dispersed colloidal iron dispersion as the iron-based catalyst is described. A method for hydrotreating heavy oil is provided. Second, in the first method for hydrotreating heavy oil, an aqueous dispersion of a surfactant is added to ferric oxide and / or ferric hydroxide sol by dispersing a colloidal iron dispersion in oil. A method for hydrotreating heavy oil, characterized by being a dispersion obtained by coagulating the sol and extracting a generated precipitate with a hydrocarbon-based solvent. Third, in the first hydrotreating method, a colloidal iron-in-oil dispersion is formed by adding dilute sulfuric acid to ferric oxide and / or ferric hydroxide sol to condense the sol and form A method for hydrotreating heavy oil, characterized by being a dispersion obtained by extracting the precipitated precipitate with a hydrocarbon-based solvent containing a surfactant. Fourth, in the first hydrotreating method, the colloidal iron dispersion in oil is brought into contact with a ferric oxide and / or ferric hydroxide sol in a hydrocarbon solvent containing a surfactant. The present invention provides a method for hydrotreating heavy oil, which is a dispersion obtained by the above method.

【0005】[0005]

【発明の実施の形態】本発明は、従来公知の硫化水素と
鉄系触媒を用いる重質油の水素化処理方法において、従
来この種の反応触媒として従来全く知見されていない油
中分散型コロイド状鉄分散液を使用することを特徴とし
ている。本発明でいう、油中分散型コロイド状鉄分散液
とは、炭化水素系溶媒中に溶解しないが、該溶媒中で安
定な高分散状態を採り、好ましくは界面活性剤を含有す
る分散液を意味する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conventionally known method for hydrotreating heavy oil using hydrogen sulfide and an iron-based catalyst. It is characterized by using a state iron dispersion. In the present invention, the in-oil-dispersed colloidal iron dispersion is not dissolved in a hydrocarbon solvent, but takes a stable high dispersion state in the solvent, preferably a dispersion containing a surfactant. means.

【0006】本発明の方法で用いる油中分散型コロイド
状鉄分散液触媒は、従来公知の油溶性鉄系触媒と同様に
反応系内で硫化水素と反応して硫化鉄(ピロータイト、
Fe1-XS)微粒子を形成するが、その粒子径は油溶性鉄系
触媒を用いた場合に比較し著しく小さくなることがX線
回折測定により確認されている。また、本発明方法で生
起する硫化鉄微粒子は従来公知の油溶性鉄系触媒から誘
導されるものと異なり、反応が進行しても微細粒子の凝
集・会合や結晶成長が起こりにくく、その粒子径の変化
が極めて小さいものである。このように、本発明におい
て用いる油中分散型コロイド状鉄分散液触媒は、触媒活
性を示す硫化鉄微粒子の粒子径を小さくでき、しかも反
応中におけるこれらの微粒子の粒子径の増大を制御する
ことができるので、かかる分散液を触媒とする本発明の
重質油の水素化処理方法によれば、その触媒活性が高め
られると共にその触媒活性が長時間持続するので、重質
油に含まれるアスファルテンや金属化合物等の好ましく
ない成分をを少量の触媒量で効率よく除去することがで
きる。
The oil-dispersed colloidal iron dispersion catalyst used in the method of the present invention reacts with hydrogen sulfide in a reaction system in the same manner as a conventionally known oil-soluble iron-based catalyst to produce iron sulfide (pyroite,
Although Fe1-XS) fine particles are formed, it has been confirmed by X-ray diffraction measurement that the particle size is significantly smaller than when an oil-soluble iron-based catalyst is used. Further, the iron sulfide fine particles generated by the method of the present invention are different from those derived from conventionally known oil-soluble iron-based catalysts. Is extremely small. As described above, the in-oil-dispersed colloidal iron dispersion catalyst used in the present invention can reduce the particle size of the iron sulfide fine particles exhibiting catalytic activity, and can control the increase in the particle size of these fine particles during the reaction. According to the method for hydrotreating heavy oil of the present invention using such a dispersion as a catalyst, the catalytic activity is enhanced and the catalytic activity is maintained for a long time. Unwanted components such as metal and metal compounds can be efficiently removed with a small amount of catalyst.

【0007】本発明で使用する上記油中分散型コロイド
状鉄分散液からなる触媒としては、以下の3種の調製方
法によって得られるものが好ましく使用される。
As the catalyst composed of the above-mentioned colloidal iron dispersion in oil dispersion used in the present invention, those obtained by the following three preparation methods are preferably used.

【0008】本発明で好ましく使用される第一の触媒
は、酸化第二鉄及び/又は水酸化第二鉄)ゾルに界面活
性剤の水溶液を加えて当該ゾルを凝結させ、生成した沈
殿を炭化水素系溶媒で抽出することによって得られる油
中分散型コロイド状鉄分散液である。
[0008] The first catalyst preferably used in the present invention is to add an aqueous solution of a surfactant to a ferric oxide and / or ferric hydroxide sol to coagulate the sol and to carbonize the formed precipitate. It is a colloidal iron dispersion in oil obtained by extraction with a hydrogen-based solvent.

【0009】この場合、酸化第二鉄及び/又は水酸化第
二鉄ゾルを界面活性剤水溶液で凝結させ、これを炭化水
素系溶媒で抽出する操作それ自体は、学術文献例えば、
目黒謙次郎、近藤 保、日本化学雑誌、第76巻、第6
号、642−645頁(1955年)に従って行えばよ
い。
In this case, the operation of coagulating the sol of ferric oxide and / or ferric hydroxide with an aqueous solution of a surfactant and extracting the same with a hydrocarbon-based solvent is itself a scientific literature.
Kenjiro Meguro, Tamotsu Kondo, The Chemical Journal of Japan, Vol. 76, No. 6
No. 642-645 (1955).

【0010】当該方法で使用される酸化第二鉄及び/水
酸化第二鉄ゾルは、従来公知の方法に従って調製すれば
よく、このような調製法としては、例えば沸騰水に第二
鉄塩の水溶液を滴下する方法や第二鉄塩の水溶液を炭酸
水素ナトリウム水溶液で部分的に中和する方法などが挙
げられる。
The ferric oxide and / or ferric hydroxide sol used in the method may be prepared according to a conventionally known method. For example, such a preparation method includes, for example, adding a ferric salt to boiling water. Examples thereof include a method of dropping an aqueous solution and a method of partially neutralizing an aqueous solution of a ferric salt with an aqueous solution of sodium hydrogen carbonate.

【0011】上記酸化第二鉄及び/水酸化第二鉄ゾルを
凝結させる際に用いる界面活性剤としては、陰イオン界
面活性剤、陽イオン界面活性剤、非イオン界面活性剤、
両性界面活性剤の何れも使用できるが、陰イオン活性剤
の使用が好ましい。陰イオン界面活性剤としては、アル
キルアリールスルホン酸、アルキルアリールスルホン酸
塩、アルキル硫酸、アルキル硫酸塩、スルホコハク酸エ
ステル、スルホコハク酸エステル塩などが挙げられる
が、アルキルアリーリスルホン酸たとえばドデシルベン
ゼンスルホン酸が好ましく使用される。
Surfactants used for coagulating the ferric oxide and / or ferric hydroxide sol include anionic surfactants, cationic surfactants, nonionic surfactants,
While any of the amphoteric surfactants can be used, the use of an anionic surfactant is preferred. Examples of the anionic surfactant include an alkylarylsulfonic acid, an alkylarylsulfonic acid salt, an alkylsulfuric acid, an alkylsulfate, a sulfosuccinate, and a sulfosuccinate, and an alkylaryl sulfonic acid such as dodecylbenzenesulfonic acid. Is preferably used.

【0012】界面活性剤水溶液の量は、当該水溶液に含
まれる界面活性剤のモル数が酸化第二鉄及び/又は水酸
化第二鉄ゾルに含まれる鉄のモル数の0.01倍以上、
好ましくは0.05倍以上とするのが適当である。界面
活性剤のモル数が少なすぎると凝結が十分に起こらない
ばかりでなく、次に行う炭化水素系溶媒による抽出が困
難となる。
The amount of the aqueous surfactant solution is such that the number of moles of the surfactant contained in the aqueous solution is at least 0.01 times the number of moles of iron contained in the sol of ferric oxide and / or ferric hydroxide.
Preferably, it is suitably 0.05 times or more. If the number of moles of the surfactant is too small, not only does coagulation not sufficiently occur, but also it becomes difficult to perform the subsequent extraction with a hydrocarbon solvent.

【0013】酸化第二鉄及び/又は水酸化第二鉄ゾルの
凝結で生じた沈殿を抽出するために用いられる炭化水素
系溶媒としては、重質油と相溶性のある溶媒であれば何
れも使用でき、このような溶媒としては、トルエン、キ
シレン、デカヒドロナフタレン(別名デカリン)等の単
一溶媒の他、ガソリン、灯油、軽油などの混合溶媒(燃
料油)等が挙げられる。
The hydrocarbon solvent used for extracting the precipitate formed by the coagulation of the ferric oxide and / or ferric hydroxide sol may be any solvent that is compatible with heavy oil. Examples of such a solvent include a single solvent such as toluene, xylene, and decahydronaphthalene (also called decalin), and a mixed solvent (fuel oil) such as gasoline, kerosene, and light oil.

【0014】本発明で好ましく使用される第二の触媒
は、酸化第二鉄及び/水酸化第二鉄ゾルに希硫酸を加え
て当該ゾルを凝結させ、生成した沈殿を、界面活性剤を
炭化水素系溶媒に溶かした溶液で抽出することによって
得られる油中分散型コロイド状鉄分散液である。
The second catalyst preferably used in the present invention is a method in which dilute sulfuric acid is added to a sol of ferric oxide and / or ferric hydroxide to coagulate the sol. It is an oil-dispersed colloidal iron dispersion obtained by extraction with a solution dissolved in a hydrogen-based solvent.

【0015】ここで用いる酸化第二鉄及び/又は水酸化
第二鉄ゾルは、第一の調製方法で述べた方法で調製すれ
ばよい。
The ferric oxide and / or ferric hydroxide sol used here may be prepared by the method described in the first preparation method.

【0016】希硫酸の添加量は、そこに含まれる硫酸の
モル数が酸化第二鉄及び又は水酸化第二鉄ゾルに含まれ
る鉄のモル数の0.01倍以上、好ましくは0.05倍
以上とするのが適当である。希硫酸の添加量が少なすぎ
ると、凝結が十分に起らなくなる。
The amount of dilute sulfuric acid to be added is such that the number of moles of sulfuric acid contained therein is at least 0.01 times the number of moles of iron contained in the sol of ferric oxide and / or ferric hydroxide, preferably 0.05 times. It is appropriate that the number be twice or more. If the amount of the dilute sulfuric acid is too small, coagulation does not sufficiently occur.

【0017】界面活性剤としては、第一の調製方法で述
べた界面活性剤がそのまま使用できる。
As the surfactant, the surfactant described in the first preparation method can be used as it is.

【0018】また、炭化水素系溶媒としては、重質油と
相溶性があり、かつ界面活性剤を溶解できる溶媒であれ
ば特に制約はない。このような炭化水素系溶媒として
は、第一の調製方法の項で説明した溶媒がそのまま使用
できる。
The hydrocarbon solvent is not particularly limited as long as it is compatible with heavy oil and can dissolve a surfactant. As such a hydrocarbon solvent, the solvent described in the section of the first preparation method can be used as it is.

【0019】界面活性剤含む炭化水素系溶媒の使用量
は、その中に含まれる界面活性剤のモル数が、酸化第二
鉄及び/又は水酸化第二鉄ゾルに含まれる鉄のモル数の
0.05倍以上、好ましくは0.1倍以上とするのが適
当である。
The amount of the hydrocarbon-based solvent containing the surfactant is such that the number of moles of the surfactant contained therein is less than the number of moles of iron contained in the ferric oxide and / or the ferric hydroxide sol. It is suitably at least 0.05 times, preferably at least 0.1 times.

【0020】本発明で好ましく使用される第三の触媒
は、酸化第二鉄及び/又は水酸化第二鉄ゾルを、界面活
性剤を含む炭化水素系溶媒に接触させることにより得ら
れる油中分散型コロイド状鉄分散液である。
The third catalyst preferably used in the present invention is a dispersion in oil obtained by contacting a ferric oxide and / or a ferric hydroxide sol with a hydrocarbon solvent containing a surfactant. A colloidal iron dispersion.

【0021】ここで用いる酸化第二鉄及び/又は水酸化
第二鉄ゾルは、第一及び第二の調製方法で述べた方法で
調製すればよい。
The ferric oxide and / or ferric hydroxide sol used here may be prepared by the methods described in the first and second preparation methods.

【0022】界面活性剤としては、第一及びの調製方法
で述べた界面活性剤がそのまま使用できる。
As the surfactant, the surfactants described in the first and second preparation methods can be used as they are.

【0023】また、炭化水素系溶媒としては、重質油と
相溶性があり、かつ界面活性剤を溶解できる溶媒であれ
ば特に制約はない。このような炭化水素系溶媒として
は、第一及び第二の調製方法の項で説明した溶媒がその
まま使用できる。
The hydrocarbon solvent is not particularly limited as long as it is compatible with the heavy oil and can dissolve the surfactant. As such a hydrocarbon-based solvent, the solvents described in the first and second preparation methods can be used as they are.

【0024】界面活性剤を含む炭化水素系溶媒の使用量
は、その中に含まれる界面活性剤のモル数が、酸化第二
鉄及び/又は水酸化第二鉄ゾルに含まれる鉄のモル数の
0.05倍以上、好ましくは0.1倍以上とするのが適
当である。
The amount of the hydrocarbon-based solvent containing a surfactant is determined based on the number of moles of the surfactant contained therein and the number of moles of iron contained in the ferric oxide and / or ferric hydroxide sol. It is suitably at least 0.05 times, preferably at least 0.1 times.

【0025】本発明の重質油の水素化処理を行うには、
例えば前述の調製方法で得た分散液触媒と硫化水素を重
質油に添加し、水素雰囲気で反応させればよい。反応方
式としては、通常スラリー床方式が採用されるが、固定
床方式、懸濁床方式を使用しても構わない。
To carry out the hydrotreating of the heavy oil of the present invention,
For example, the dispersion catalyst obtained by the above-described preparation method and hydrogen sulfide may be added to heavy oil and reacted in a hydrogen atmosphere. As a reaction system, a slurry bed system is usually employed, but a fixed bed system or a suspension bed system may be used.

【0026】本発明の原料である重質油としては、水素
化脱硫や水素化分解などの水素化っ処理法の対象となる
従来公知の石炭及び石油由来の重質油の全てが適用され
る。このような重質油としては、例えば、原油を蒸留し
て得られる常圧残油、減圧残油、廃潤滑油、石炭液化油
などが例示される。また、硫化水素としては、硫化水素
それ自体はもちろんのこと、反応系で硫化水素を生起す
る化合物たとえば元素状硫黄、アルキルサルファイドな
ど硫黄化合物も使用できる。硫化水素濃度は特に制約さ
れないが、水素ガス中濃度が0.5〜5vol%程度と
するのが適当である。
As the heavy oil which is the raw material of the present invention, all conventionally known heavy oils derived from coal and petroleum which are to be subjected to hydrotreating methods such as hydrodesulfurization and hydrocracking are applied. . Examples of such heavy oils include atmospheric residual oil, vacuum residual oil, waste lubricating oil, and coal liquefied oil obtained by distilling crude oil. Further, as the hydrogen sulfide, not only hydrogen sulfide itself but also a compound which generates hydrogen sulfide in the reaction system, for example, a sulfur compound such as elemental sulfur and alkyl sulfide can be used. The concentration of hydrogen sulfide is not particularly limited, but it is appropriate that the concentration in hydrogen gas is about 0.5 to 5 vol%.

【0027】本発明の水素化処理方法における、反応温
度、水素圧力、、水素/重質油容積比、、反応時間など
の反応条件は、従来公知の重質油の水素化脱硫や水素化
分解で使用されている通常の反応条件をそのまま採用す
ればよい。
In the hydrotreating method of the present invention, the reaction conditions such as the reaction temperature, hydrogen pressure, hydrogen / heavy oil volume ratio, and reaction time are determined by the conventionally known hydrodesulfurization and hydrocracking of heavy oil. The usual reaction conditions used in the above may be employed as they are.

【0028】例えば、反応温度;200〜500℃、水
素圧力;5〜20MPa、水素/重質油容積比;500
〜2000l/l、反応時間;0−5〜5時間といっ
た、反応条件を適宜採用すればよい。
For example, reaction temperature: 200 to 500 ° C., hydrogen pressure: 5 to 20 MPa, hydrogen / heavy oil volume ratio: 500
Reaction conditions such as 適宜 2000 l / l, reaction time;

【0029】[0029]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0030】実施例1 [油中分散型コロイド状鉄分散液触媒の調製] (1)硝酸第二鉄水和物〔Fe(NO3)3・9H2O〕15.15g(0.0
375モル)を約40mlの純水に溶かして分液ロートに入れ
る。300mlの三角フラスコに純水約200mlを入れて電熱器
で加熱沸騰させ、沸騰を続けながら、前記の硝酸第二鉄
水溶液を約10ml/分の速度で滴下する。滴下終了後、三
角フラスコを冷水に浸して室温まで冷却させ、純水を加
えて全体の容積を250mlとする。以上により、濃赤褐色
で透明な鉄濃度0.15mol/lの酸化第二鉄ゾルを調製し
た。 (2)これとは別に、ドデシルベンゼンスルホン酸(ソ
フト型)0.98g(0.003モル)を純水に溶かし、全体の容
積を100mlとする。これにより、濃度0.03mol/lのドデシ
ルベンゼンスルホン酸水溶液を調製した。 (3)200mlビーカーに、上記(1)の酸化第二鉄ゾル1
00mlを入れ、これに上記(2)のドデシルベンゼンスル
ホン酸水溶液50mlを加えて、酸化第二鉄ゾルを凝結させ
た。なお、この例では、添加したドデシルベンゼンスル
ホン酸のモル数は、鉄のモル数の0.1倍となる。 (4)酸化第二鉄ゾルを凝結させた後、デカリンを25ml
加え、スターラで約5分間緩やかに攪拌した。この操作
により、デカリン中に酸化第二鉄コロイドが抽出分散さ
れた。抽出後のデカリン相(分散型触媒液)と水相の分
離は、分液ロートを用いて行った。この触媒液の鉄濃度
は0.145mol/lであった。 [重質油の水素化処理] (5)以上のようにして調製した触媒液を用いて、マヤ
常圧残油(硫黄含量4.6wt.%、窒素含量0.57wt.%、ヘプ
タン不溶アスファルテン含量16.1wt.%、バナジウム含量
420ppm、ニッケル含量82ppm)の水素化処理を下記の要
領で行った。内容積100mlの電磁誘導攪拌式ステンレス
製オートクレーブに、上記(4)で得た触媒液6mlとマ
ヤ残油22gを加え、1.7vol.%の硫化水素を含む水素ガス
を10MPa充填した後、室温から400℃まで約1時間で昇温
し、400℃で1時間保持して反応させた。この間、内容
物を700rpmの速度で攪拌した。反応結果を、表1のAに
示した。
Example 1 [Preparation of Catalyst for Dispersion of Colloidal Iron Dispersion in Oil] (1) Ferric nitrate hydrate [Fe (NO3) 3.9H2O] 15.15 g (0.0
375 mol) in about 40 ml of pure water and put into a separating funnel. About 200 ml of pure water is put into a 300 ml Erlenmeyer flask, heated and boiled with an electric heater, and the above aqueous ferric nitrate solution is dropped at a rate of about 10 ml / min while continuing to boil. After completion of the dropwise addition, the Erlenmeyer flask is immersed in cold water and cooled to room temperature, and pure water is added to make the total volume 250 ml. As described above, a ferric oxide sol having a dark red-brown and transparent iron concentration of 0.15 mol / l was prepared. (2) Separately, 0.98 g (0.003 mol) of dodecylbenzenesulfonic acid (soft type) is dissolved in pure water to make the total volume 100 ml. Thus, an aqueous solution of dodecylbenzenesulfonic acid having a concentration of 0.03 mol / l was prepared. (3) Ferric oxide sol 1 of (1) above in a 200 ml beaker
Then, 50 ml of the aqueous solution of dodecylbenzenesulfonic acid of the above (2) was added thereto to coagulate the ferric oxide sol. In this example, the number of moles of dodecylbenzenesulfonic acid added is 0.1 times the number of moles of iron. (4) After coagulating the ferric oxide sol, 25 ml of decalin was added.
In addition, the mixture was gently stirred with a stirrer for about 5 minutes. By this operation, the ferric oxide colloid was extracted and dispersed in decalin. Separation of the decalin phase (dispersion type catalyst solution) and the aqueous phase after the extraction was performed using a separating funnel. The iron concentration of this catalyst solution was 0.145 mol / l. [Hydrogenation treatment of heavy oil] (5) Using the catalyst solution prepared as described above, Maya atmospheric residue (sulfur content 4.6 wt.%, Nitrogen content 0.57 wt.%, Heptane-insoluble asphaltene content 16.1) wt.%, vanadium content
Hydrogenation treatment of 420 ppm and nickel content of 82 ppm) was performed in the following manner. 6 ml of the catalyst solution obtained in the above (4) and 22 g of Maya residual oil were added to an electromagnetic induction stirring type stainless steel autoclave having an internal volume of 100 ml, and hydrogen gas containing 1.7 vol. The temperature was raised to 400 ° C. in about 1 hour, and the reaction was carried out at 400 ° C. for 1 hour. During this time, the contents were stirred at a speed of 700 rpm. The reaction results are shown in Table 1A.

【0031】実施例2 [油中分散型コロイド状鉄分散液触媒の調製] (1)実施例1と同様にして、鉄濃度0.15mol/lの酸化
第二鉄ゾルを調製した。 (2)これとは、別に濃度が0.03mol/l の希硫酸を調製
した。 (3)また、別途、ドデシルベンゼンスルホン酸4.90g
をデカリンに溶かして、全体の容積を100mlとした。こ
れにより、濃度0.15mol/lのドデシルベンゼンスルホン
酸デカリン溶液を調製した。 (4)200mlビーカーに、上記(1)の酸化第二鉄ゾル1
00mlを入れ、これに上記(2)の希硫酸50mlを滴下し
て、酸化第二鉄ゾルを凝結させた。この例では、添加し
た硫酸のモル数は、鉄のモル数の0.1倍となる。 (5)酸化第二鉄ゾルを凝結させた後、上記(3)のド
デシルベンゼンスルホン酸デカリン溶液を25ml加え、ス
ターラで約5分間緩やかに攪拌した。この操作により、
デカリン溶液中に酸化第二鉄コロイドが抽出分散され
た。なお、この例では、添加したドデシルベンゼンスル
ホン酸のモル数は、鉄のモル数の0.25倍となる。抽
出後のデカリン相(触媒液)と水相の分離は、分液ロー
トを用いて行った。この触媒液の鉄濃度は0.19mol/lで
あった。 [重質油の水素化処理] (6)以上のようにして調製した触媒液5ml、デカリン1
mlとマヤ常圧残油22gをオートクレーブに加え、実施例
1と同様にして水素化処理を行った。反応結果を、表1
のBに示した。
Example 2 [Preparation of Catalyst for Dispersion in Colloidal Iron Dispersion in Oil] (1) A ferric oxide sol having an iron concentration of 0.15 mol / l was prepared in the same manner as in Example 1. (2) Separately, dilute sulfuric acid having a concentration of 0.03 mol / l was prepared. (3) Separately, 4.90 g of dodecylbenzenesulfonic acid
Was dissolved in decalin to make the total volume 100 ml. Thus, a decalin dodecylbenzenesulfonate solution having a concentration of 0.15 mol / l was prepared. (4) Ferric oxide sol 1 of (1) above in a 200 ml beaker
Then, 50 ml of the diluted sulfuric acid of the above (2) was added dropwise to the mixture to coagulate the ferric oxide sol. In this example, the number of moles of sulfuric acid added is 0.1 times the number of moles of iron. (5) After the ferric oxide sol was condensed, 25 ml of the above-mentioned solution (3) of decalin dodecylbenzenesulfonate was added, followed by gentle stirring with a stirrer for about 5 minutes. With this operation,
The ferric oxide colloid was extracted and dispersed in the decalin solution. In this example, the number of moles of the added dodecylbenzenesulfonic acid is 0.25 times the number of moles of iron. Separation of the decalin phase (catalyst liquid) and the aqueous phase after the extraction was performed using a separating funnel. The iron concentration of this catalyst solution was 0.19 mol / l. [Hydrogenation treatment of heavy oil] (6) Catalyst solution 5 ml, decalin 1 prepared as above
ml and 22 g of Maya atmospheric pressure residual oil were added to the autoclave, and hydrogenation was carried out in the same manner as in Example 1. Table 1 shows the reaction results.
B.

【0032】実施例3 [油中分散型コロイド状鉄分散液触媒の調製] (1)実施例1と同様にして、鉄濃度0.15mol/lの酸化
第二鉄ゾルを調製した。 (2)これとは別に、ドデシルベンゼンスルホン酸4.90
gをデカリンに溶かして、全体の容積を100mlとした。こ
れにより、濃度0.15mol/lのドデシルベンゼンスルホン
酸デカリン溶液を調製した。 (3)200mlビーカーに、上記(1)の酸化第二鉄ゾル1
00mlを入れ、これに上記(2)のドデシルベンゼンスル
ホン酸デカリン溶液20mlを加え、スターラで約5分程度
緩やかに攪拌した。この操作により、デカリン溶液中に
酸化第二鉄コロイドが抽出分散された。なお、この例で
は、添加したドデシルベンゼンスルホン酸のモル数は、
鉄のモル数の0.2倍であった。 抽出後のデカリン相
(触媒液)と水相の分離は、分液ロートを用いて行っ
た。この触媒液の鉄濃度は0.185mol/lであった。 [重質油の水素化処理] (4)以上のようにして調製した触媒液5ml、デカリン1
mlとマヤ常圧残油22gをオートクレーブに加え、実施例
1と同様にして水素化処理を行った。反応結果を、表1
のCに示した。
Example 3 [Preparation of Catalyst for Dispersion of Colloidal Iron Dispersion in Oil] (1) A ferric oxide sol having an iron concentration of 0.15 mol / l was prepared in the same manner as in Example 1. (2) Separately, dodecylbenzenesulfonic acid 4.90
g was dissolved in decalin to make the total volume 100 ml. Thus, a decalin dodecylbenzenesulfonate solution having a concentration of 0.15 mol / l was prepared. (3) Ferric oxide sol 1 of (1) above in a 200 ml beaker
20 ml of the above solution (2) of decalin dodecylbenzenesulfonate was added thereto, and the mixture was gently stirred with a stirrer for about 5 minutes. By this operation, the ferric oxide colloid was extracted and dispersed in the decalin solution. In this example, the number of moles of the added dodecylbenzenesulfonic acid is
It was 0.2 times the number of moles of iron. Separation of the decalin phase (catalyst liquid) and the aqueous phase after the extraction was performed using a separating funnel. The iron concentration of this catalyst solution was 0.185 mol / l. [Hydrogenation treatment of heavy oil] (4) 5 ml of catalyst solution prepared as above, decalin 1
ml and 22 g of Maya atmospheric pressure residual oil were added to the autoclave, and hydrogenation was carried out in the same manner as in Example 1. Table 1 shows the reaction results.
C.

【0033】比較例1 実施例1〜3の反応結果と比較するため、油溶性鉄化合
物である2−エチルヘキサン酸鉄(III)(別名オクチ
ル酸鉄)を用いた反応を行った。この反応では、オクチ
ル酸鉄のミネラルスピリッツ溶液(鉄濃度として6wt.%
を含む)3.34g(3.7ml)、デカリン2.3mlとマヤ常圧残
油22gをオートクレーブに加え、実施例1と同様にして
水素化処理を行った。反応結果を、表1のDに示した。
Comparative Example 1 For comparison with the reaction results of Examples 1 to 3, a reaction was carried out using iron (III) 2-ethylhexanoate (also known as iron octylate), which is an oil-soluble iron compound. In this reaction, a mineral spirits solution of iron octylate (iron concentration of 6 wt.%
3.34 g (3.7 ml), 2.3 ml of decalin and 22 g of Mayan atmospheric residue were added to the autoclave, and hydrogenation was carried out in the same manner as in Example 1. The reaction results are shown in Table 1D.

【0034】[0034]

【表1】 [Table 1]

【0035】表1の結果からわかるように、本発明の方
法で調製した油中分散型コロイド状鉄分散液触媒を用い
ると、アスファルテンの分解率やバナジウムの除去率に
おいて良好な結果が得られる。すなわち、本発明の実施
例である、実験番号A、B、Cでは、触媒成分である鉄
の添加量が約50mgで、油溶性鉄化合物を用いた実験
番号Dの約1/4であるにも拘わらず、アスファルテン
分解率は実験番号Dを上回っている。バナジウム除去率
についても、実験番号 Aは実験番号Dとほぼ同等であ
る。さらに、好ましくない生成物であるコーク(トルエ
ン不溶分)の生成量に関しても、本発明の方法では実験
番号Dに比べ生成率が低く、有利であることが分かる。
As can be seen from the results in Table 1, when the catalyst in the oil-dispersed colloidal iron dispersion prepared by the method of the present invention is used, good results can be obtained in asphaltene decomposition rate and vanadium removal rate. That is, in Experiment Nos. A, B, and C, which are examples of the present invention, the amount of addition of iron as a catalyst component was about 50 mg, which was about 1/4 of Experiment No. D using an oil-soluble iron compound. Nevertheless, the asphaltene decomposition rate exceeds experiment number D. Regarding the vanadium removal rate, Experiment No. A is almost the same as Experiment No. D. Further, the production rate of coke (toluene-insoluble matter), which is an undesirable product, is lower in the production rate of the method of the present invention than in Experiment No. D, which is advantageous.

【0036】[0036]

【発明の効果】本発明において用いる油中分散型コロイ
ド状鉄分散液からなる触媒は、触媒活性を示す硫化鉄微
粒子の粒子径を小さくでき、しかも反応中におけるこれ
らの微粒子の粒子径の増大を制御することができるの
で、かかる油中分散型鉄系化合物を触媒とする本発明の
重質油の水素化処理方法によれば、その触媒活性が高め
られると共にその触媒活性が長時間持続するので、重質
油に含まれるアスファルテンや金属化合物等の好ましく
ない成分をを少量の触媒量で効率よく除去することがで
きる。
The catalyst comprising the colloidal iron dispersion in oil dispersion used in the present invention can reduce the particle size of the iron sulfide fine particles exhibiting catalytic activity, and can increase the particle size of these fine particles during the reaction. According to the method for hydrotreating heavy oil of the present invention using such an iron-dispersed iron compound as a catalyst, the catalytic activity is enhanced and the catalytic activity is maintained for a long time. In addition, undesired components such as asphaltenes and metal compounds contained in heavy oil can be efficiently removed with a small amount of catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 芳樹 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 近藤 輝男 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 Fターム(参考) 4G069 AA02 AA08 BA21C BA37 BB04A BB04B BB09A BB09B BB10C BB19A BB19B BC66A BC66B BD01A BD01B BD08A BD08B CC02 CC05 DA03 FA01 FB80 FC02 FC03 4H029 CA00 DA00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiki Sato 16-3 Onogawa, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Teruo Kondo 16-3, Onogawa, Tsukuba, Ibaraki Pref. F-term in Environmental Technology Research Institute (reference) 4G069 AA02 AA08 BA21C BA37 BB04A BB04B BB09A BB09B BB10C BB19A BB19B BC66A BC66B BD01A BD01B BD08A BD08B CC02 CC05 DA03 FA01 FB80 FC02 FC03 4H029 CA00 DA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】硫化水素と鉄系触媒を用いる重質油の水素
化処理方法において、該鉄系触媒として、油中分散型コ
ロイド状鉄分散液を使用することを特徴とする重質油の
水素化処理方法。
1. A method for hydrotreating heavy oil using hydrogen sulfide and an iron-based catalyst, characterized in that a colloidal iron dispersion in oil is used as the iron-based catalyst. Hydrotreating method.
【請求項2】油中分散型コロイド状鉄分散液が、酸化第
二鉄及び/又は水酸化第二鉄ゾルに界面活性剤の水溶液
を加えて当該ゾルを凝結させ、生成した沈殿を炭化水素
系溶媒で抽出して得られる分散液であることを特徴とす
る請求項1の重質油の水素化処理方法。
2. An aqueous dispersion of a colloidal iron dispersion in oil is added to a sol of ferric oxide and / or ferric hydroxide by adding an aqueous solution of a surfactant to coagulate the sol. 2. The method for hydrotreating heavy oil according to claim 1, wherein the dispersion is a dispersion obtained by extraction with a system solvent.
【請求項3】油中分散型コロイド状鉄分散液が、酸化第
二鉄及び/又は水酸化第二鉄ゾルに希硫酸を加えて当該
ゾルを凝結させ、生成した沈殿を界面活性剤を含む炭化
水素系溶媒で抽出して得られる分散液であることを特徴
とする請求項1の重質油の水素化処理方法。
3. A colloidal iron dispersion in an oil-dispersed state, wherein diluted sulfuric acid is added to a ferric oxide and / or ferric hydroxide sol to coagulate the sol, and the resulting precipitate contains a surfactant. The method for hydrotreating heavy oil according to claim 1, wherein the dispersion is a dispersion obtained by extraction with a hydrocarbon solvent.
【請求項4】油中分散型コロイド状鉄分散液が、酸化第
二鉄及び/又は水酸化第二鉄ゾルを界面活性剤を含む炭
化水素系溶媒に接触させて得られる分散液であることを
特徴とする請求項1の重質油の水素化処理方法。
4. The colloidal iron dispersion in oil dispersion is a dispersion obtained by contacting a ferric oxide and / or ferric hydroxide sol with a hydrocarbon solvent containing a surfactant. The method for hydrotreating heavy oil according to claim 1, wherein:
JP31021099A 1999-10-29 1999-10-29 Hydroprocessing of heavy oil Expired - Lifetime JP3404522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31021099A JP3404522B2 (en) 1999-10-29 1999-10-29 Hydroprocessing of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31021099A JP3404522B2 (en) 1999-10-29 1999-10-29 Hydroprocessing of heavy oil

Publications (2)

Publication Number Publication Date
JP2001131561A true JP2001131561A (en) 2001-05-15
JP3404522B2 JP3404522B2 (en) 2003-05-12

Family

ID=18002530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31021099A Expired - Lifetime JP3404522B2 (en) 1999-10-29 1999-10-29 Hydroprocessing of heavy oil

Country Status (1)

Country Link
JP (1) JP3404522B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879092A (en) * 1981-10-16 1983-05-12 シエブロン・リサ−チ・コンパニ− Hydrogenation of heavy hydrocarbon oil
JPS58108294A (en) * 1981-08-11 1983-06-28 アンステイテユ・フランセ・デユ・ペトロ−ル Catalytic hydrogenation conversion for heavy hydrocarbon in liquid phase under presence of dispersive catalyst and carbonaceous particles
JPS5975986A (en) * 1982-10-25 1984-04-28 Asahi Chem Ind Co Ltd Conversion of heavy hydrocarbon to light hydrocarbon
JPS61143490A (en) * 1984-12-17 1986-07-01 エクソン・リサーチ・アンド・エンジニアリング・カンパニー Hydrogenation conversion method
JPH06205968A (en) * 1992-06-11 1994-07-26 Canada High dispersion type hydrogenation catalyst
JPH06346064A (en) * 1993-05-31 1994-12-20 Alberta Oil Sands Technol & Res Authority Hydrocracking using colloidal catalyst prepared in situ
JPH0977503A (en) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd Production of metal oxide or hydroxide sol

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108294A (en) * 1981-08-11 1983-06-28 アンステイテユ・フランセ・デユ・ペトロ−ル Catalytic hydrogenation conversion for heavy hydrocarbon in liquid phase under presence of dispersive catalyst and carbonaceous particles
JPS5879092A (en) * 1981-10-16 1983-05-12 シエブロン・リサ−チ・コンパニ− Hydrogenation of heavy hydrocarbon oil
JPS5975986A (en) * 1982-10-25 1984-04-28 Asahi Chem Ind Co Ltd Conversion of heavy hydrocarbon to light hydrocarbon
JPS61143490A (en) * 1984-12-17 1986-07-01 エクソン・リサーチ・アンド・エンジニアリング・カンパニー Hydrogenation conversion method
JPH06205968A (en) * 1992-06-11 1994-07-26 Canada High dispersion type hydrogenation catalyst
JPH06346064A (en) * 1993-05-31 1994-12-20 Alberta Oil Sands Technol & Res Authority Hydrocracking using colloidal catalyst prepared in situ
JPH0977503A (en) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd Production of metal oxide or hydroxide sol

Also Published As

Publication number Publication date
JP3404522B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
CN107754818B (en) A kind of hydrocracking catalyst for suspension bed and preparation method
US5320741A (en) Combination process for the pretreatment and hydroconversion of heavy residual oils
US6274530B1 (en) Fluid hydrocracking catalyst precursor and method
Hosseinpour et al. Successive co-operation of supercritical water and silica-supported iron oxide nanoparticles in upgrading of heavy petroleum residue: Suppression of coke deposition over catalyst
KR102049003B1 (en) A process for obtaining carbon black powder with reduced sulfur content
JPS6239634B1 (en)
EP1973993A2 (en) Hydrocarbon-soluble molybdenum catalyst precursors and methods of making same
JP2009522102A (en) Hydrocarbon-soluble bimetallic catalyst precursor and method of making the same
US2112292A (en) Process for recovery of catalytically active molybdenum sulphide
JP2020531636A (en) Removal of insoluble asphaltene from crude oil using solid heteropoly compounds
CA1153720A (en) Upgrading of hydrocarbon feedstock
US2369432A (en) Desulphurization catalysts
JPH0790282A (en) Cracking and hydrogenation treatment of heavy oil
CN114225932A (en) Petroleum asphalt-based carbon-supported monatomic molybdenum catalyst and preparation method and application method thereof
JPWO2002049963A1 (en) Titanium compound, titanium-containing aqueous solution and method for producing the same
CN107970952B (en) A kind of inferior heavy oil hydrocracking catalyst for suspension bed and preparation method
CN111876189B (en) Method for two-stage catalytic direct liquefaction of coal and application thereof
JP2002533527A (en) Oil stream demetallization method
CN114073984A (en) Oil-soluble molybdenum octoate catalyst, preparation method and application thereof
JP2001131561A (en) Method for hydrogenating heavy oil
JPH06205968A (en) High dispersion type hydrogenation catalyst
CN115888812A (en) Hydrotreating oil-soluble bimetallic catalyst and preparation method thereof
KR102579379B1 (en) Method of synthesizing nano-sized tungsten particles by sol-gel process, and Method of preparing light oil from extra heavy oil using the tungsten particles
US2398919A (en) Process for catalytic desulphurization
KR20110051331A (en) Preparation method of oil-soluble bimetallic catalyst based on molybdenum and method of hydroconversion of heavy oil using therof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3404522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term