JP2001131187A - Purification method of monosilane - Google Patents

Purification method of monosilane

Info

Publication number
JP2001131187A
JP2001131187A JP30832099A JP30832099A JP2001131187A JP 2001131187 A JP2001131187 A JP 2001131187A JP 30832099 A JP30832099 A JP 30832099A JP 30832099 A JP30832099 A JP 30832099A JP 2001131187 A JP2001131187 A JP 2001131187A
Authority
JP
Japan
Prior art keywords
monosilane
impurity gas
pure water
gas
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30832099A
Other languages
Japanese (ja)
Inventor
Hirotaka Yoshida
吉田  浩隆
Tadashi Yoshino
正 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP30832099A priority Critical patent/JP2001131187A/en
Publication of JP2001131187A publication Critical patent/JP2001131187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To efficiently purify monosilane by separating impurities in impurity gas-containing monosilane. SOLUTION: In a method for purifying monosilane obtained by disproportionating an alkoxysilane represented by the general formula HnSi(OR)1-n, n (wherein n is 1, 2 or 3; and R is an alkyl group or a cycloalkyl group) in the presence of a catalyst, impurity gas-containing monosilane is contacted with pure water to absorb the impurity gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般式HnSi
(OR)4-nで表される水素数1〜3のアルコキシシラ
ンを不均化して得られるモノシランの精製方法に関す
る。
The present invention relates to a compound represented by the general formula H n Si
The present invention relates to a method for purifying monosilane obtained by disproportionating alkoxysilane having 1 to 3 hydrogen atoms represented by (OR) 4-n .

【0002】[0002]

【従来の技術】モノシランガスは、多結晶シリコン、ア
モルファスシリコン、絶縁膜(シリカ)等の原料とし
て、半導体基盤、太陽電池、シリコンエピタキシャル
膜、ファインセラミックス等広範に使用されている。ま
た、近年の半導体産業の成長に伴いその需要も急激な伸
びを示しており、さらに安価に、大量に製造する方法の
開発が望まれている。
2. Description of the Related Art Monosilane gas is widely used as a raw material for polycrystalline silicon, amorphous silicon, insulating films (silica), etc., for semiconductor substrates, solar cells, silicon epitaxial films, fine ceramics and the like. In addition, with the recent growth of the semiconductor industry, the demand has been rapidly increasing, and the development of a method for mass production at lower cost has been desired.

【0003】従来知られているモノシランの製法におい
ては、反応条件が穏和なことや、腐食性ガスが発生しな
い等の点からアルコキシシランの不均化による製造法が
有望視されている。この方法で効率よくモノシランを製
造するための触媒、溶媒については多種多様な検討がな
されている。また、この方法では原料にアルコキシシラ
ンを用いるため、従来のモノシラン合成時に不純物ガス
として問題となるアルシン、ホスフィン等が発生しない
とい利点もある。
In the known monosilane production method, a production method by disproportionation of alkoxysilane is considered to be promising in view of mild reaction conditions and no generation of corrosive gas. A wide variety of studies have been made on catalysts and solvents for efficiently producing monosilane by this method. Further, in this method, since alkoxysilane is used as a raw material, there is an advantage that arsine, phosphine, and the like, which are problematic as impurity gases during conventional synthesis of monosilane, are not generated.

【0004】しかしながら、アルコキシシランの有する
アルキル基に起因すると考えられる炭化水素類が不純物
ガスとして比較的多く発生するため、これらの分離が必
要となる。一般に炭化水素類の分離には蒸留や吸着等の
方法が用いられている。しかし、半導体用ガスとして用
いられるモノシランにおける不純物ガスのレベルは、一
般に言うレベルと格段な違いがあり、温度差を利用する
蒸留法では到底達し得ない純度となっている。また、微
量の不純物ガス除去方法として効果的とされる吸着法に
ついては、吸着剤にモノシランも同時に吸着してしまう
ことが問題となり、特公昭52−27625号公報、特
開昭62−212215号公報等ではゼオライトのイオ
ン交換を行うことで、吸着量の低減を行っているが、モ
ノシランの吸着量が0になった訳ではない。
[0004] However, since hydrocarbons, which are considered to be caused by the alkyl group of the alkoxysilane, are generated in relatively large amounts as impurity gases, these must be separated. Generally, methods such as distillation and adsorption are used for separating hydrocarbons. However, the level of impurity gas in monosilane used as a semiconductor gas has a remarkable difference from a general level, and has a purity that cannot be reached by a distillation method utilizing a temperature difference. In addition, regarding the adsorption method which is considered to be effective as a method for removing a trace amount of impurity gas, there is a problem in that monosilane is also adsorbed to the adsorbent at the same time. In these methods, the amount of adsorption is reduced by ion exchange of zeolite, but this does not mean that the amount of adsorption of monosilane has become zero.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、アル
コキシシラン法により製造する不純物ガスを含むモノシ
ラン中から、ロスするモノシランの量を極力抑えて不純
物ガスを分離し、効率よくモノシランを精製する方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to purify monosilane efficiently by separating impurity gas from monosilane containing impurity gas produced by the alkoxysilane method while minimizing the amount of lost monosilane. It is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、アルコキ
シシラン法により製造する不純物ガスを含むモノシラン
中から、ロスするモノシランの量を極力抑えて不純物ガ
スを分離し、効率よくモノシランを精製する方法につい
て鋭意検討した結果、分離精製方法として、不純物ガス
を含むモノシランを純水と接触することで、この目的を
達することを見い出した。
Means for Solving the Problems The present inventors separate out impurity gas from monosilane containing impurity gas produced by the alkoxysilane method while minimizing the amount of lost monosilane, and purify monosilane efficiently. As a result of intensive studies on the method, it was found that as a separation and purification method, monosilane containing an impurity gas was brought into contact with pure water to achieve this purpose.

【0007】すなわち、本発明は一般式HnSi(O
R)4-n[式中nは1、2または3であり、Rはアルキ
ル基もしくはシクロアルキル基を示す]で表されるアル
コキシシランを触媒の存在下で不均化し、得られるモノ
シランの精製方法において、不純物ガスを含むモノシラ
ンと純水を接触、吸収させることを特徴とするモノシラ
ンの精製方法に関する。
That is, the present invention relates to the general formula H n Si (O
R) 4-n [where n is 1, 2 or 3 and R represents an alkyl group or a cycloalkyl group] disproportionation in the presence of a catalyst, and purification of the resulting monosilane The present invention relates to a method for purifying monosilane, comprising contacting and absorbing monosilane containing impurity gas with pure water.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で使用する原料は、一般式HnSi(OR)
4-n[式中nは1、2または3であり、Rはアルキル基
もしくはシクロアルキル基を示す]で表されるアルコキ
シシランである。具体的にはトリメトキシシラン、ジメ
トキシシラン、トリエトキシシラン、ジエトキシシラン
等が挙げられるがこれに限定されるものではない。ま
た、必ずしも単一組成である必要はなく、不均化反応で
副生するテトラアルコキシシラン類を含む物であって
も、本発明に何ら不都合は生じないが、単一組成である
方が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Raw materials used in the present invention have the general formula H n Si (OR)
4-n wherein n is 1, 2 or 3, and R represents an alkyl group or a cycloalkyl group. Specific examples include, but are not limited to, trimethoxysilane, dimethoxysilane, triethoxysilane, diethoxysilane, and the like. Further, the composition does not necessarily have to be a single composition, and even if the composition contains tetraalkoxysilanes by-produced in the disproportionation reaction, no inconvenience occurs in the present invention, but a single composition is preferable. .

【0009】本発明において、不均化反応に使用する触
媒は、高収率でモノシランが得られれば特に規定はしな
いが、一般式MOHもしくはM(OH)2[式中Mはア
ルカリ金属もしくはアルカリ土類金属を示す]で表され
る金属水酸化物や、一般式MOR[式中Mはアルカリ金
属もしくはアルカリ土類金属を示し、Rは炭素数1〜6
のアルキル基またはシクロアルキル基を示す]で表され
るアルコキシド又は、コバルト、ニッケル、白金属の金
属又はその化合物を使用することが望ましい。具体的に
は、水酸化リチウム、水酸化ナトリウム、水酸化カリウ
ム、水酸化マグネシウム、水酸化カルシウム、水酸化バ
リウム、ナトリウム メトキシド、ナトリウムエトキシ
ド、カリウムメトキシド、カリウムエトキシド、NiF
4、CoF2等が挙げられる。
In the present invention, the catalyst used for the disproportionation reaction is used.
The medium is not particularly limited as long as monosilane can be obtained in high yield.
But the general formula MOH or M (OH)Two[Where M is a
Indicates a rukari metal or an alkaline earth metal]
Metal hydroxide or a general formula MOR [where M is alkali gold
Genus or alkaline earth metal, wherein R is 1-6 carbon atoms
Represents an alkyl group or a cycloalkyl group of the formula]
Alkoxide or cobalt, nickel, or white metal gold
It is desirable to use a genus or a compound thereof. Specifically
Are lithium hydroxide, sodium hydroxide, potassium hydroxide
, Magnesium hydroxide, calcium hydroxide,
Lium, sodium Methoxide, sodium ethoxy
, Potassium methoxide, potassium ethoxide, NiF
Four, CoFTwoAnd the like.

【0010】触媒の使用量は、不均化反応が十分効率よ
く進行し、モノシランが効率よく発生すればよく、一般
的には原料アルコキシシランに対し0.01〜1重量%
が好ましい。反応は比較的穏和な条件で進行するため、
通常、常圧において40〜80℃が好ましい。また、通
常は、窒素などの不活性ガスの雰囲気下で行われるのが
好ましい。
The amount of the catalyst used may be such that the disproportionation reaction proceeds sufficiently efficiently and monosilane is generated efficiently, and generally 0.01 to 1% by weight based on the raw material alkoxysilane.
Is preferred. Since the reaction proceeds under relatively mild conditions,
Usually, 40 to 80 ° C. at normal pressure is preferred. Usually, it is preferable to perform the reaction under an atmosphere of an inert gas such as nitrogen.

【0011】本発明における不均化反応では、溶媒を用
いても用いなくても反応を行うことができるが、用いる
方がよりが好ましい。用いる溶媒としては例えば、不均
化反応の副生物として生成するテトラアルコキシシラ
ン、ヘキサン、ヘプタン等の脂肪族飽和炭化水素、シク
ロヘキサン等の脂環式飽和炭化水素等が挙げられる。以
上のような条件で反応が進行すると、不均化反応により
不純物ガスを含むモノシランが得られるため、この不純
物ガスを含むモノシランを精製することにより高純度の
モノシランが得られる。
In the disproportionation reaction in the present invention, the reaction can be carried out with or without a solvent, but it is more preferable to use it. Examples of the solvent used include tetraalkoxysilane, hexane, heptane and other aliphatic saturated hydrocarbons, and alicyclic saturated hydrocarbons such as cyclohexane and the like generated as by-products of the disproportionation reaction. When the reaction proceeds under the above conditions, monosilane containing an impurity gas is obtained by the disproportionation reaction. Therefore, by purifying the monosilane containing the impurity gas, high-purity monosilane can be obtained.

【0012】本発明において、不純物ガスを含むモノシ
ランの精製は純水と接触し、吸収させることにより行
う。ここで純水とは、蒸留により脱塩精製し、蒸留を繰
り返し純水になったものや、イオン交換樹脂により精製
された水をいう。モノシランは通常、純水とは反応せ
ず、溶解もしない。これに対し、炭化水素類は溶解度は
低いものの、水に対する溶解性があるため、この差を利
用し炭化水素類を純水に溶解させることでモノシランの
精製を行う。不純物ガスを含むモノシランと純水の接触
に用いる装置としては、一般的に用いられる棚段塔、充
填塔、気泡塔、スプレー塔等を用いることで何ら問題な
い。
In the present invention, the purification of monosilane containing an impurity gas is carried out by bringing it into contact with pure water and absorbing it. Here, the pure water refers to water purified by desalting by distillation and then repeatedly distilled to obtain pure water, or water purified by an ion exchange resin. Monosilane usually does not react with or dissolve in pure water. On the other hand, although hydrocarbons have low solubility, they have solubility in water. Therefore, utilizing this difference, hydrocarbons are dissolved in pure water to purify monosilane. As a device used for contacting monosilane containing an impurity gas with pure water, a commonly used plate column, packed column, bubble column, spray column or the like can be used without any problem.

【0013】本発明において用いる純水は、循環させる
ことにより一定のpH値、温度に保つのが好ましい。具
体的にはpH値は、6.90〜7.10、好ましくは
6.95〜7.05が好適である。純水と接触する温度
は0〜15℃、好ましくは0〜5℃になるように調整す
るのが好ましい。pH値が6.90より小さい、又は
7.10より大きい場合は、モノシランの加水分解が起
こり、収率が低下するので好ましくない。また、純水の
温度が15℃を越えると、不純物ガスの純水に対する溶
解度が低下し、分離できない不純物ガス量が増加するの
で好ましくない。
The pure water used in the present invention is preferably maintained at a constant pH value and temperature by circulating. Specifically, the pH value is preferably 6.90 to 7.10, and more preferably 6.95 to 7.05. It is preferable to adjust the temperature of contact with pure water to be 0 to 15 ° C, preferably 0 to 5 ° C. When the pH value is smaller than 6.90 or larger than 7.10, hydrolysis of monosilane occurs and the yield is undesirably reduced. On the other hand, if the temperature of pure water exceeds 15 ° C., the solubility of the impurity gas in pure water decreases, and the amount of impurity gas that cannot be separated increases, which is not preferable.

【0014】以上のような原料、触媒、溶媒を用い、不
均化反応により得られる不純物ガスを含むモノシランを
特定のpH値、温度の純水と接触することにより、不純
物ガスを含むモノシラン中に含まれる不純物ガスをモノ
シランと分離精製することが出来る。
Using the raw materials, catalysts and solvents as described above, the monosilane containing the impurity gas obtained by the disproportionation reaction is brought into contact with pure water having a specific pH value and a specific temperature, so that the monosilane containing the impurity gas becomes The impurity gas contained can be separated and purified from monosilane.

【0015】[0015]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 窒素ガス導入管、生成ガス排出管、原料仕込み管及び溶
媒抜き出し管を備えた内容積200mlの耐圧ガラス製
容器に、触媒として水酸化カリウムを0.05g、溶媒
としてテトラメトキシシランを60g仕込み、マグネチ
ックスターラーにより撹拌し、窒素で容器内を十分置換
した。ガラス容器は、ウオーターバスにより加熱し、溶
媒温度を60℃の一定温度とした。その後、トリメトキ
シシラン60gを液仕込み管より導入し添加終了後に、
仕込み管のバルブを閉じた。反応は水酸化カリウムとト
リメトキシシランが接触した時点から、モノシランが発
生した。発生したモノシランは、全量ステンレス製のボ
ンベに捕集した。反応は3時間実施し、3時間後にガス
クロマトグラフィー(GC−8A島津製作所製)により
モノシランが生成しなくなったことを確認した。モノシ
ラン中の不純物ガス(炭化水素類)を測定した結果、メ
タン20ppm、エタン11ppm、プロパン、6pp
m、ブタン4ppm、エチレン7ppmが検出された。
その後、捕集したモノシランガスを充填塔式吸収塔に接
続し、pH=7.00、温度3℃に調整した純水中を常
圧下20cc/minの割合で流通させ、ガスの洗浄を
行った。吸収塔出口のガスをガスクロマトグラフィー
(GC―FID島津製作所製)で測定したところ、炭化
水素類は全て検出限界以下であった。
The present invention will be described below in detail with reference to examples. Example 1 0.05 g of potassium hydroxide as a catalyst and 60 g of tetramethoxysilane as a solvent were placed in a pressure-resistant glass container having a 200 ml internal volume equipped with a nitrogen gas inlet tube, a generated gas outlet tube, a raw material charging tube, and a solvent extraction tube. The mixture was charged and stirred with a magnetic stirrer, and the inside of the container was sufficiently replaced with nitrogen. The glass container was heated by a water bath to keep the solvent temperature at a constant temperature of 60 ° C. Thereafter, 60 g of trimethoxysilane was introduced from a liquid charging tube, and after the addition was completed,
The valve of the charging pipe was closed. In the reaction, monosilane was generated from the time when potassium hydroxide and trimethoxysilane came into contact. The generated monosilane was entirely collected in a stainless steel cylinder. The reaction was carried out for 3 hours, and after 3 hours, it was confirmed by gas chromatography (GC-8A manufactured by Shimadzu Corporation) that no monosilane was generated. As a result of measuring impurity gas (hydrocarbons) in monosilane, methane 20 ppm, ethane 11 ppm, propane, 6 pp
m, 4 ppm of butane and 7 ppm of ethylene were detected.
Thereafter, the collected monosilane gas was connected to a packed tower type absorption tower, and was passed through pure water adjusted to pH = 7.00 and a temperature of 3 ° C. under a normal pressure at a rate of 20 cc / min to wash the gas. When the gas at the outlet of the absorption tower was measured by gas chromatography (GC-FID, manufactured by Shimadzu Corporation), all hydrocarbons were below the detection limit.

【0016】比較例1 実施例1と同様の方法で合成した不純物ガスを含むモノ
シランを−80℃に設定した吸着塔にゼオライトMS−
5Aを充填、接続し、常圧下20cc/minの割合で
流通させた。吸着塔出口のガスをガスクロマトグラフィ
ーで測定したところ、メタン10ppm、エタン0.5
ppm、プロパン、1ppm、ブタン1ppm、エチレ
ン0.5ppmが検出された。
Comparative Example 1 Monosilane containing an impurity gas synthesized in the same manner as in Example 1 was charged in an adsorption tower set at -80 ° C. with zeolite MS-.
5A was charged and connected, and allowed to flow at a rate of 20 cc / min under normal pressure. When the gas at the outlet of the adsorption tower was measured by gas chromatography, it was found that methane was 10 ppm and ethane was 0.5 ppm.
ppm, propane, 1 ppm, butane 1 ppm, and ethylene 0.5 ppm were detected.

【0017】[0017]

【発明の効果】本発明による精製方法により不純物ガス
を含むモノシランの精製を行うと、モノシランをロスす
ることなく精製することができ、また、不純物ガスを極
めて高純度に分離することが可能となるため本発明の工
業的意義は大きい。
According to the purification method of the present invention, when monosilane containing an impurity gas is purified, the monosilane can be purified without loss, and the impurity gas can be separated with extremely high purity. Therefore, the industrial significance of the present invention is great.

フロントページの続き Fターム(参考) 4G069 AA06 BB05B BC03B CB41 DA02 4H039 CA92 CJ30 4H049 VN01 VP01 VQ21 VR44 VS21 VT03 VT23 VV01 VV20 VW09 VW36 Continued on front page F-term (reference) 4G069 AA06 BB05B BC03B CB41 DA02 4H039 CA92 CJ30 4H049 VN01 VP01 VQ21 VR44 VS21 VT03 VT23 VV01 VV20 VW09 VW36

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式HnSi(OR)4-n[式中nは
1、2または3であり、Rはアルキル基もしくはシクロ
アルキル基を示す]で表されるアルコキシシランを触媒
の存在下で不均化し、得られるモノシランの精製方法に
おいて、不純物ガスを含むモノシランと純水を接触、吸
収させることを特徴とするモノシランの精製方法。
1. A general formula H n Si (OR) 4- n [n wherein is 1, 2 or 3, R represents an alkyl group or cycloalkyl group] presence of a catalyst an alkoxysilane represented by A method for purifying a monosilane, comprising disproportionating under the following conditions, wherein the monosilane containing an impurity gas and pure water are contacted and absorbed.
【請求項2】 純水のpHが、6.90〜7.10で
あるモノシランの精製方法。
2. A method for purifying monosilane, wherein the pure water has a pH of 6.90 to 7.10.
【請求項3】 不純物ガスを含むモノシランと接触、
吸収させる純水の温度が、0〜15℃であるモノシラン
の精製方法。
3. Contacting with monosilane containing impurity gas,
A method for purifying monosilane, wherein the temperature of pure water to be absorbed is 0 to 15 ° C.
JP30832099A 1999-10-29 1999-10-29 Purification method of monosilane Pending JP2001131187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30832099A JP2001131187A (en) 1999-10-29 1999-10-29 Purification method of monosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30832099A JP2001131187A (en) 1999-10-29 1999-10-29 Purification method of monosilane

Publications (1)

Publication Number Publication Date
JP2001131187A true JP2001131187A (en) 2001-05-15

Family

ID=17979645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30832099A Pending JP2001131187A (en) 1999-10-29 1999-10-29 Purification method of monosilane

Country Status (1)

Country Link
JP (1) JP2001131187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795693B1 (en) * 2005-07-15 2008-01-17 주식회사 소디프신소재 Method for the purification of monosilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795693B1 (en) * 2005-07-15 2008-01-17 주식회사 소디프신소재 Method for the purification of monosilane

Similar Documents

Publication Publication Date Title
CA2851242C (en) Apparatus and method for the condensed phase production of trisilylamine
JP5122700B1 (en) Monosilane purification method
GB2151224A (en) Process for producing cyclic alcohols
JP2001131187A (en) Purification method of monosilane
JPH04230291A (en) Removal of chlorine compound in alkoxysilane
US20030135062A1 (en) Process for producing an alkoxysilane
JPH0471007B2 (en)
WO2018199292A1 (en) Recovered-carbon-dioxide purifying method and methionine manufacturing method including recovered-carbon-dioxide purifying step
JP2001019418A (en) Production of monosilane and tetraalkoxysilane
JP2001019419A (en) Production of monosilane and tetraalkoxysilane
JP4498152B2 (en) Method for purifying trimethylsilane
CN107055551B (en) A kind of refining methd of silicone oil silicon tetrachloride
RU2329196C1 (en) Method of obtaining high purity monosilane and polycrystalline silicon
CN112661112B (en) Based on organosilicon and H 2 Method for preparing Cheng Weiqi FTrPSA hydrogen by reactive SiC-CVD epitaxy and recycling
RU2390494C1 (en) Method of producing monosilane
EP1323722A1 (en) Process for producing alkoxysilanes
JPH0218286B2 (en)
CN114656497A (en) Preparation method of phenyl silane
JPS60255612A (en) Production of silicon hydride
RU2129984C1 (en) Method of preparing high-purity monosilane
JPH0328367B2 (en)
JP5215600B2 (en) Method for producing N-alkylborazine
JPS61275125A (en) Stabilizing method for hexachlorodisilane
JPS6270217A (en) Purification of monosilane
JPH0931080A (en) High-purity tetramethoxysilane and its production