JP2001129574A - Method for converting colored fermented waste water into organic fertilizer - Google Patents

Method for converting colored fermented waste water into organic fertilizer

Info

Publication number
JP2001129574A
JP2001129574A JP31154499A JP31154499A JP2001129574A JP 2001129574 A JP2001129574 A JP 2001129574A JP 31154499 A JP31154499 A JP 31154499A JP 31154499 A JP31154499 A JP 31154499A JP 2001129574 A JP2001129574 A JP 2001129574A
Authority
JP
Japan
Prior art keywords
fermentation
wastewater
colored
organic fertilizer
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31154499A
Other languages
Japanese (ja)
Inventor
Tatsuma Mori
達摩 森
Michio Sakimoto
道男 崎元
Toshimasa Suzuki
敏征 鈴木
Satoshi Nakaoka
敏 中岡
Kimihiko Kono
公彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Osaka Prefecture
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd, Osaka Prefecture filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP31154499A priority Critical patent/JP2001129574A/en
Publication of JP2001129574A publication Critical patent/JP2001129574A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/006Waste from chemical processing of material, e.g. diestillation, roasting, cooking
    • C05F5/008Waste from biochemical processing of material, e.g. fermentation, breweries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease environmental pollution caused by coloring ingredients and odorants in a colored fermented waste water by low cost. SOLUTION: A method 1 for treating waste water with a process A wherein a colored fermented waste water generated in a fermentation process and an activated clay are mixed and a process B wherein a mixture obtained by the process A is fermented, a method 2 for converting the colored fermented waste water into an organic fertilizer which additionally has a process for recovering the fermented substance fermented in the process B as an organic fertilizer and the organic fertilizer 3 obtained by the method for making the organic fertilizer, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、着色発酵廃水の廃
水処理方法に関し、詳しくは、高度に着色した廃水中の
着色成分を活性白土に吸着させ、発酵によって該着色成
分を分解することで、着色発酵廃水による環境汚染を軽
減化することのできる廃水処理法に関する。さらに本発
明は、かかる廃水処理方法を利用する着色発酵廃水の有
機質肥料化法、及び該有機質肥料化法により得られる有
機質肥料に関する。
TECHNICAL FIELD The present invention relates to a method for treating wastewater of colored fermentation wastewater. More specifically, the present invention relates to a method of adsorbing coloring components in highly colored wastewater onto activated clay and decomposing the coloring components by fermentation. The present invention relates to a wastewater treatment method capable of reducing environmental pollution caused by colored fermentation wastewater. Further, the present invention relates to a method of converting colored fermentation wastewater into an organic fertilizer using the wastewater treatment method, and an organic fertilizer obtained by the method.

【0002】[0002]

【従来の技術】パン酵母発酵、アルコール発酵やアミノ
酸発酵等の過程で生じる廃水は、微生物分解を受けにく
いフミン質と呼ばれる黒褐色の有機物を大量に含有する
着色発酵廃水であり、それらの処理には困難を極めてい
るのが現状である。現在、着色発酵廃水の処理方法とし
て、メタン発酵による嫌気的微生物処理や活性汚泥等を
用いた好気的微生物処理が行われているが、これらの処
理法ではフミン質がほとんど分解されずに残存し、処理
水が黒褐色に着色したままであるため、大量の水で希釈
しないと放流できない問題点があった。着色発酵廃水の
処理方法の一つに液肥として土壌散布する方法がある
が、着色発酵廃水は低級脂肪酸やアンモニアを含むため
に、土壌に散布すると悪臭を放ち環境を汚染する問題点
があった。また、着色発酵廃水中にはアンモニアやその
他の植物生育障害をおこす成分が含まれるため、土壌散
布できない問題点があった。さらには、土壌散布した着
色発酵廃水が流出し、河川やため池等の水域を褐色に着
色する水質汚染を引き起こす危険性があった。着色発酵
廃水の処理方法の一つである「酸処理」と「戻り粉方
式」によって有機化成肥料とする方法は、硫酸を使って
90〜100℃で加熱処理し、500〜700℃で凝固
物を乾燥・造粒する必要があり、処理施設の条件に制約
を受けることとプラント規模も大きくなることに加え、
エネルギーコストがかかる欠点があった。
2. Description of the Related Art Wastewater generated in the course of baker's yeast fermentation, alcoholic fermentation, amino acid fermentation, etc. is colored fermentation wastewater containing a large amount of black-brown organic substances called humic substances which are not easily susceptible to microbial degradation. At present, it is extremely difficult. Currently, anaerobic microbial treatment by methane fermentation and aerobic microbial treatment using activated sludge, etc., are being used as treatment methods for colored fermentation wastewater. However, since the treated water is still colored blackish brown, there is a problem that it cannot be discharged unless it is diluted with a large amount of water. One of the methods for treating colored fermentation wastewater is to spray the soil as liquid fertilizer. However, since the colored fermentation wastewater contains lower fatty acids and ammonia, when it is sprayed on the soil, it has a problem that it emits a bad smell and pollutes the environment. In addition, since the colored fermentation wastewater contains ammonia and other components that cause plant growth disorders, there was a problem that the soil could not be sprayed. Further, there is a risk that the colored fermentation wastewater sprayed on the soil flows out and causes water pollution, which causes water bodies such as rivers and ponds to be colored brown. One method of treating colored fermentation wastewater is to use organic acid fertilizer by "acid treatment" and "return powder method". Heat treatment at 90-100C using sulfuric acid and coagulation at 500-700C. Must be dried and granulated, which limits the conditions of the processing facility and increases the plant scale.
There was a disadvantage that energy cost was required.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたもので、パン酵母発酵、アルコール発酵やア
ミノ酸発酵等の過程で生じる着色発酵廃水を処理する方
法であり、その目的とするところは、着色発酵廃水の着
色成分や悪臭物質による環境汚染を低コストで低減化す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a method for treating colored fermentation wastewater generated in the course of baker's yeast fermentation, alcoholic fermentation, amino acid fermentation, and the like. An object of the present invention is to reduce environmental pollution at low cost by coloring components and malodorous substances of colored fermentation wastewater.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
を達成すべく種々の研究を重ねた結果、着色発酵廃水を
活性白土、特に低コストで入手できる、動植物油脂精製
の際に発生する使用済み活性白土(以下、廃白土とい
う。)に吸着させることによって、微生物による着色発
酵廃水の発酵が可能になることを見出し、本発明を完成
するに至った。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors have found that colored fermentation wastewater is produced during the purification of animal and vegetable oils and fats, which can be obtained with activated clay, especially at low cost. It has been found that the fermentation of colored fermentation wastewater by microorganisms becomes possible by adsorbing it on used activated clay (hereinafter referred to as waste clay). Thus, the present invention has been completed.

【0005】即ち、本発明の要旨は、〔1〕 工程A:
発酵過程で発生する着色発酵廃水と活性白土とを混合す
る工程、及び工程B:工程Aで得られる混合物を発酵さ
せる工程を有する廃水処理方法、〔2〕 工程A:発酵
過程で発生する着色発酵廃水と活性白土とを混合する工
程、工程B:工程Aで得られる混合物を発酵させる工
程、及び工程C:工程Bで発酵された発酵処理物を有機
質肥料として回収する工程を有する着色発酵廃水の有機
質肥料化法、並びに、〔3〕 上記〔2〕記載の有機質
肥料化法により得られる有機質肥料、に関する。
That is, the gist of the present invention is as follows: [1] Step A:
A step of mixing the colored fermentation wastewater generated in the fermentation process with the activated clay, and a step B: a wastewater treatment method having a step of fermenting the mixture obtained in the step A; [2] Step A: a colored fermentation generated in the fermentation process Colored fermentation wastewater having a step of mixing wastewater and activated clay, a step B: a step of fermenting the mixture obtained in step A, and a step C: a step of recovering the fermented product fermented in step B as an organic fertilizer. The present invention relates to an organic fertilizer method and [3] an organic fertilizer obtained by the organic fertilizer method according to the above [2].

【0006】[0006]

【発明の実施の形態】1.廃水処理方法 以下、図1に示す廃水処理方法の概略工程図を参照しつ
つ、説明する。 (1)工程A 本発明で処理対象になる着色発酵廃水としては、パン酵
母発酵、アルコール発酵、アミノ酸発酵、有機酸発酵、
核酸発酵、抗生物質発酵、メタン発酵等の発酵過程で発
生する廃水が挙げられる。着色発酵廃水のpHは特に限
定されないが、5〜9の中性付近であることが好まし
い。本発明では、着色発酵廃水が、フミン質を含有する
着色度80以上の廃水である高度着色発酵廃水に対して
特に効果が顕著である。
BEST MODE FOR CARRYING OUT THE INVENTION The wastewater treatment method will be described below with reference to the schematic process diagram of the wastewater treatment method shown in FIG. (1) Step A As the colored fermentation wastewater to be treated in the present invention, baker's yeast fermentation, alcoholic fermentation, amino acid fermentation, organic acid fermentation,
Wastewater generated in fermentation processes such as nucleic acid fermentation, antibiotic fermentation, and methane fermentation can be mentioned. The pH of the colored fermentation wastewater is not particularly limited, but is preferably around 5 to 9 neutral. In the present invention, the colored fermentation wastewater is particularly effective for highly colored fermentation wastewater that is a wastewater containing a humic substance and having a coloring degree of 80 or more.

【0007】即ち、本発明の処理方法は、従来の処理方
法では処理が困難であった着色度の高い廃水、例えば、
着色度:80〜50000、水分:50重量%以上、B
OD(生物化学的酸素要求量):120〜50000m
g/L、COD(化学的酸素要求量):120〜500
00mg/L、総窒素:120〜50000mg/L、
低級脂肪酸0〜100000mg/L、リン:0〜50
000mg/L、カリ:0〜50000mg/Lといっ
た廃水に対して好ましく適用できる。中でも着色度が1
00〜50000の廃水に対してより好ましく適用で
き、1000〜20000の廃水に対して特に好ましく
適用できる。
That is, the treatment method of the present invention is a highly colored wastewater which has been difficult to treat with conventional treatment methods, for example,
Coloring degree: 80 to 50,000, moisture: 50% by weight or more, B
OD (biochemical oxygen demand): 120-50,000m
g / L, COD (chemical oxygen demand): 120-500
00 mg / L, total nitrogen: 120 to 50,000 mg / L,
Lower fatty acid 0-100,000 mg / L, phosphorus: 0-50
000 mg / L, potash: 0 to 50,000 mg / L, which can be preferably applied to wastewater. Among them, the degree of coloring is 1
It can be applied more preferably to wastewater of 00 to 50,000, and particularly preferably to wastewater of 1000 to 20,000.

【0008】本発明において廃水の着色度は希釈法によ
って求まる値である。かかる希釈法は和歌山市排出水の
色等規制条例・規則に採用されており、その測定は、三
好らの方法(東京都環境科学研究所年報、1991、p.160-
164)に準じて行った。
In the present invention, the degree of coloring of wastewater is a value determined by a dilution method. Such a dilution method is adopted in the ordinances and regulations on the color of wastewater discharged from Wakayama City, and the measurement is performed by the method of Miyoshi et al. (Tokyo Institute of Environmental Science Annual Report, 1991, p.
164).

【0009】本発明に用いる活性白土は市販品を使用し
ても良く、廃白土を使用しても良い。安価に入手できる
ことから、廃白土を使用することがより好ましい。活性
白土のpHは特に限定されないが、1.0〜12.0の
ものを好ましく用いることができ、2.0〜9.0のも
のをより好ましく用いることができる。活性白土の水分
量は特に限定されないが、20重量%以下のものが好ま
しく、10重量%以下のものがより好ましい。また、活
性白土には脂肪や灰分が含まれていても良い。脂肪の含
有量は1〜90重量%が好ましく、10〜50重量%が
より好ましい。灰分の含有量は1〜90重量%が好まし
く、10〜60重量%がより好ましい。
The activated clay used in the present invention may be a commercially available product or a waste clay. It is more preferable to use waste clay since it can be obtained at low cost. The pH of the activated clay is not particularly limited, but a pH of 1.0 to 12.0 can be preferably used, and a pH of 2.0 to 9.0 can be more preferably used. The water content of the activated clay is not particularly limited, but is preferably 20% by weight or less, more preferably 10% by weight or less. The activated clay may contain fat and ash. The content of fat is preferably 1 to 90% by weight, more preferably 10 to 50% by weight. The ash content is preferably from 1 to 90% by weight, more preferably from 10 to 60% by weight.

【0010】着色発酵廃水と活性白土との混合物の水分
を調節するために、おがくず、もみ殻、ふすま、米糠、
乾燥糞、堆肥、剪定枝、チップ等を混合物に加えても良
い。また、堆肥、家畜ふん、土壌等を混合物に加えても
良い。高温発酵菌は自然界に広く存在し、自然発生的に
増殖するため、工程Bでの発酵をより確実に行わせるこ
とができる。また、混合物に、高温発酵菌を接種しても
良い。
In order to control the water content of the mixture of colored fermentation wastewater and activated clay, sawdust, rice husk, bran, rice bran,
Dry feces, compost, pruned branches, chips and the like may be added to the mixture. Further, compost, livestock dung, soil and the like may be added to the mixture. Since high-temperature fermentation bacteria are widely present in nature and multiply spontaneously, fermentation in step B can be performed more reliably. Further, the mixture may be inoculated with a high-temperature fermenter.

【0011】工程Aでは、図1に示すように、着色発酵
廃水と活性白土、及び必要に応じてその他の成分を混合
する。着色発酵廃水と活性白土との混合割合は特に限定
されないが、発酵を確実に行わせる観点から、着色発酵
廃水100重量部に対して活性白土は10〜300重量
部が好ましく、10〜100重量部がより好ましく、3
0〜70重量部が特に好ましい。また、おがくず等の水
分を調節するための成分を添加する場合、その添加量
は、着色発酵廃水100重量部に対して1〜300重量
部が好ましく、10〜300重量部がより好ましく、1
0〜100重量部が特に好ましい。堆肥等の成分を添加
する場合、その添加量は、着色発酵廃水100重量部に
対して0.01〜10重量部が好ましく、0.1〜10
重量部がより好ましく、1〜10重量部が特に好まし
い。
In the step A, as shown in FIG. 1, the colored fermentation wastewater, the activated clay, and other components as necessary are mixed. The mixing ratio of the colored fermentation wastewater and the activated clay is not particularly limited, but from the viewpoint of ensuring fermentation, the activated clay is preferably 10 to 300 parts by weight, and more preferably 10 to 100 parts by weight, based on 100 parts by weight of the colored fermentation wastewater. Is more preferable, and 3
Particularly preferred is 0 to 70 parts by weight. In addition, when adding a component for controlling water content such as sawdust, the addition amount is preferably 1 to 300 parts by weight, more preferably 10 to 300 parts by weight, based on 100 parts by weight of the colored fermentation wastewater.
Particularly preferred is 0 to 100 parts by weight. When components such as compost are added, the addition amount is preferably 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the colored fermentation wastewater.
A part by weight is more preferable, and 1 to 10 parts by weight is particularly preferable.

【0012】工程Aで得られる、着色発酵廃水と活性白
土とを含有してなる混合物は、発酵に適した水分量であ
ることが好ましい。発酵に適した水分量としては、混合
物の30〜80重量%が好ましく、40〜75重量%が
より好ましく、60〜70重量%が特に好ましい。混合
物の水分量が多すぎても少なすぎても、発酵が進まない
傾向がある。混合物の温度としては特に限定されない
が、10〜60℃の範囲が好ましく、20〜40℃の範
囲がより好ましい。混合物のpHとしては特に限定され
ないが、2.0〜9.0の範囲が好ましく、4.0〜
8.0の範囲がより好ましい。
The mixture containing the colored fermentation wastewater and the activated clay obtained in step A preferably has a water content suitable for fermentation. The amount of water suitable for fermentation is preferably 30 to 80% by weight of the mixture, more preferably 40 to 75% by weight, and particularly preferably 60 to 70% by weight. If the water content of the mixture is too high or too low, the fermentation tends not to proceed. The temperature of the mixture is not particularly limited, but is preferably in the range of 10 to 60C, more preferably in the range of 20 to 40C. The pH of the mixture is not particularly limited, but is preferably in the range of 2.0 to 9.0, and is preferably 4.0 to 9.0.
A range of 8.0 is more preferred.

【0013】着色発酵廃水は窒素に富むものの、水分が
高く、95重量%を超えるものもある。そのため、着色
発酵廃水単独での発酵は困難である。活性白土は水分は
低いものの、窒素をほとんど含有しないため、これも単
独での発酵は困難である。本発明においては、着色発酵
廃水と活性白土とを混合して着色発酵廃水を活性白土に
吸着させることによって水分、窒素の量を調整し、これ
ら混合物の発酵を可能にするものである。
[0013] The colored fermentation wastewater is rich in nitrogen, but high in water, some of which exceed 95% by weight. Therefore, it is difficult to perform fermentation using colored fermentation wastewater alone. Activated clay has low water content, but hardly contains nitrogen, so that it is difficult to ferment it alone. In the present invention, the colored fermentation wastewater and the activated clay are mixed to adsorb the colored fermentation wastewater to the activated clay, whereby the amounts of water and nitrogen are adjusted to enable the fermentation of these mixtures.

【0014】(2)工程B 図1に示すように、工程Aで得られた混合物は、やがて
発酵し始める。ここで、混合物を容器に投入して発酵さ
せることが好ましい。容器としては保温容器がより好ま
しい。外部環境の発酵温度に与える影響を小さくするこ
とができるからである。本発明においては、混合物が好
ましくは40〜80℃、より好ましくは50〜70℃と
いう高温下で発酵(「高温発酵」という。)する。混合
物が高温発酵することにより、着色物質や悪臭物質の除
去や水分の蒸発が低コストかつ短期間で行われるという
利点がある。混合物の発酵を維持させるためには、例え
ば、アンモニア、硫酸アンモニウム、硝酸アンモニウ
ム、ペプトン等の窒素源を補填したり、保温のために断
熱効果のある材料で周辺を囲う等の手段を設けることが
好ましい。また、混合物の発酵を起こさせるための微生
物は、家畜糞尿や土壌、汚水、河川やため池等の自然界
に多数存在するものであり、かかる微生物を特に添加し
なくても、通常、発酵は自発的に始まる。
(2) Step B As shown in FIG. 1, the mixture obtained in Step A starts to ferment over time. Here, it is preferable that the mixture is put into a container and fermented. As the container, a heat insulating container is more preferable. This is because the influence on the fermentation temperature of the external environment can be reduced. In the present invention, the mixture is fermented at a high temperature of preferably 40 to 80 ° C, more preferably 50 to 70 ° C (referred to as “high temperature fermentation”). High temperature fermentation of the mixture has the advantage that removal of coloring substances and malodorous substances and evaporation of water are performed at low cost and in a short period of time. In order to maintain the fermentation of the mixture, it is preferable to provide, for example, a means for supplementing a nitrogen source such as ammonia, ammonium sulfate, ammonium nitrate, peptone, or for surrounding the periphery with a heat insulating material for keeping the temperature. In addition, microorganisms for causing fermentation of the mixture are many in the natural world such as livestock manure and soil, sewage, rivers and ponds, and fermentation usually occurs spontaneously without particularly adding such microorganisms. Starts with

【0015】発酵に要する時間は、混合物の量等に依存
するために一概には言えないが、5〜40日間が好まし
く、10〜30日間がより好ましい。発酵の過程におい
ては、通常、一旦上昇した発酵温度は外部環境の温度と
同程度にまで低下する。この時点を工程Bが終了した時
点とする。このようにして着色発酵廃水を処理すること
ができる。上記のようにして得られる発酵処理物は、着
色度が好ましくは処理前の30〜70%にまで低減され
ている。さらに発酵処理物は、水分量が好ましくは40
重量%以下の固形物となり、取扱いが容易な状態であ
る。また発酵処理物は、悪臭成分や植物の発芽等を阻害
する成分が低減されている。これは着色発酵廃水中の着
色成分等が発酵により分解され、さらに発酵によって水
分が蒸発したことによるものと考えられる。
The time required for fermentation cannot be unconditionally determined because it depends on the amount of the mixture and the like, but is preferably 5 to 40 days, more preferably 10 to 30 days. In the course of fermentation, the fermentation temperature once increased usually drops to the same level as the temperature of the external environment. This time is defined as the time when the process B is completed. In this way, the colored fermentation wastewater can be treated. The degree of coloration of the fermented product obtained as described above is preferably reduced to 30 to 70% before the treatment. Further, the fermented product preferably has a water content of 40
It becomes a solid matter of not more than weight%, and is in a state where it is easy to handle. Further, the fermented product has a reduced amount of malodorous components and components that inhibit plant germination and the like. It is considered that this is because the coloring components and the like in the colored fermentation wastewater were decomposed by fermentation, and the water was evaporated by the fermentation.

【0016】2.着色発酵廃水の有機質肥料化法 本発明の有機質肥料化法は、工程A、工程B及び工程
C:工程Bで発酵された発酵処理物を有機質肥料として
回収する工程を有する方法である。回収の具体的な操作
は特に限定されない。発酵処理物は、1)水分量が少な
いため、回収や取扱いが容易な固形物である、2)着色
物質や悪臭物質が低減されているため、環境中に散布し
ても環境に与える悪影響が少ない、3)窒素分に富む、
という利点があるだけでなく、4)植物生育障害をおこ
す成分も除去されているため、そのままの形態で有機質
肥料として利用することができる。また、得られる発酵
処理物は有機質肥料として利用することができるため、
重金属やシアン化合物等の有害成分を含まないことが好
ましい。さらに本発明は、本発明の有機質肥料化法によ
り得られる有機質肥料を包含する。
2. Organic fertilizer method of colored fermentation wastewater The organic fertilizer method of the present invention is a method including a step of recovering the fermented product fermented in step A, step B, and step C: step B as an organic fertilizer. The specific operation of the recovery is not particularly limited. Fermented products are 1) solids that are easy to collect and handle due to low water content. 2) Colored substances and malodorous substances are reduced. Less, 3) rich in nitrogen,
In addition to this, 4) components that cause plant growth disorders are also removed, so that it can be used as it is as an organic fertilizer. In addition, the resulting fermented product can be used as organic fertilizer,
It is preferable not to contain harmful components such as heavy metals and cyanide compounds. Further, the present invention includes an organic fertilizer obtained by the method of the present invention.

【0017】[0017]

【実施例】以下、実施例等により本発明をさらに詳細に
説明するが、本発明はかかる実施例等により何ら限定さ
れるものではない。以下、着色発酵廃水として、表1に
示されるパン酵母発酵廃水を使用した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Hereinafter, the baker's yeast fermentation wastewater shown in Table 1 was used as the coloring fermentation wastewater.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、有害物質である、全水銀、カドミウ
ム、鉛、クロム、ヒ素、シアン化合物については、検出
限界以下であった。外観、pH、BOD、COD、アン
モニア性窒素、リン、カリウム、全水銀、カドミウム、
鉛、クロム、ヒ素、シアン化合物については、工業排水
試験方法(JISハンドブック環境測定、日本規格協
会)に記載された方法で測定した。総窒素については、
下水道試験方法(社団法人日本下水道協会)に記載され
た方法で測定した。低級脂肪酸(ここでは、プロピオン
酸、酪酸、イソ吉草酸。)については、森らの方法(日
本畜産学会報、61:p.796-800,1990)に準じ、ADA
M試薬(フナコシ株式会社、東京)で誘導体化し、高速
液体クロマトグラフィーを用いて測定した。水分の測定
法は、新・食品分析法(1996、社団法人日本食品科学工
学会編、p.6 )に記載された常圧加熱乾燥法を用いた。
発熱量の測定法は新・食品分析法(同上、p.108)に記載
された換算係数、すなわち脂質量に係数9.21(kg
/g)を乗じた値とした。また、以下で使用する廃白土
の水分、pH、成分組成は表2の通りである。
The harmful substances of all mercury, cadmium, lead, chromium, arsenic and cyanide were below the detection limit. Appearance, pH, BOD, COD, ammonia nitrogen, phosphorus, potassium, total mercury, cadmium,
Lead, chromium, arsenic, and cyanide were measured by the method described in the Industrial Wastewater Test Method (JIS Handbook Environmental Measurement, Japan Standards Association). For total nitrogen,
It measured by the method described in the sewer test method (Japan Sewer Association). For lower fatty acids (here, propionic acid, butyric acid, and isovaleric acid), ADA was used according to the method of Mori et al. (Journal of the Society of Animal Husbandry, 61: 796-800, 1990).
It was derivatized with M reagent (Funakoshi Co., Ltd., Tokyo) and measured using high performance liquid chromatography. The atmospheric pressure heating and drying method described in the New Food Analysis Method (1996, edited by Japan Society for Food Science and Technology, p.6) was used for the measurement of moisture.
The calorific value is measured by the conversion factor described in the New Food Analysis Method (ibid., P.
/ G). Table 2 shows the moisture, pH, and component composition of the waste clay used below.

【0020】[0020]

【表2】 [Table 2]

【0021】なお、有害物質であるカドミウム、全シア
ン、鉛、六価クロム、全クロム、ヒ素、全水銀、アンチ
モン、ポリ塩化ビフェニル、トリクロロエチレン及びテ
トラクロロエチレンについては、検出限界以下であっ
た。カドミウム、全シアン、鉛、六価クロム、全クロ
ム、ヒ素、全水銀、アンチモン、ポリ塩化ビフェニル、
トリクロロエチレン及びテトラクロロエチレンについて
は、昭和48年環境庁告示第13号による方法で測定し
た。pHは、廃白土5gを蒸留水50mLに入れ、よく
攪拌し、30分放置した後、pHメータで測定した。窒
素については、詳解肥料分析法(中村輝雄監修、第3
版、昭和44年発行、養賢堂、p.14) に記載された硫酸
分解法で測定した。二酸化ケイ素、酸化アルミニウム、
酸化第二鉄、酸化カルシウム、酸化マグネシウム、三酸
化硫黄、酸化ナトリウム、酸化カリウム、塩素について
は、社団法人セメント協会化学分析専門委員会「けい酸
質原料の分析方法」に準じて測定した。水分及び発熱量
の測定法は上記と同じ方法を採用した。脂肪の測定は、
新・食品分析法(同上、p.45-48 )に記載されたエーテ
ル抽出法を用いた。灰分の測定法は、新・食品分析法
(同上、p.99-101)に記載された直接灰化法を用いた。
The harmful substances cadmium, total cyanide, lead, hexavalent chromium, total chromium, arsenic, total mercury, antimony, polychlorinated biphenyl, trichloroethylene and tetrachloroethylene were below the detection limit. Cadmium, all cyanide, lead, hexavalent chromium, all chromium, arsenic, all mercury, antimony, polychlorinated biphenyl,
Trichloroethylene and tetrachlorethylene were measured by the method of Notification No. 13 of the Environment Agency in 1973. The pH was measured with a pH meter after 5 g of waste clay was placed in 50 mL of distilled water, stirred well, and allowed to stand for 30 minutes. Nitrogen is described in detail in Fertilizer Analysis Method (supervised by Teruo Nakamura, No. 3
It was measured by the sulfuric acid decomposition method described in Ykendo, p.14), published in 1969. Silicon dioxide, aluminum oxide,
Ferric oxide, calcium oxide, magnesium oxide, sulfur trioxide, sodium oxide, potassium oxide, and chlorine were measured in accordance with the Japan Society of Cement Association “Analysis method for siliceous raw materials”. The same method as described above was used for measuring the moisture and the calorific value. The measurement of fat is
The ether extraction method described in the New Food Analysis Method (ibid., Pp. 45-48) was used. The ash was measured using the direct incineration method described in the New Food Analysis Method (ibid., P.99-101).

【0022】試験例1 本発明の方法における発酵温度の推移を調べた。結果を
図2に示す。試料としては着色発酵廃水及び廃白土の混
合物(図2の黒塗り三角印)、蒸留水及び廃白土の混合
物(図2の黒塗り四角印)、並びにおがくず及び着色発
酵廃水の混合物(図2の黒塗り丸印)を用いた。液体成
分(着色発酵廃水及び水)は約1.5kg用い、固体成
分(廃白土及びおがくず)は約1.5kg用いて混合物
を得た。混合直後の、着色発酵廃水及び廃白土の混合物
のpHは3.4であった。
Test Example 1 The transition of the fermentation temperature in the method of the present invention was examined. The results are shown in FIG. Samples include a mixture of colored fermentation wastewater and waste clay (black triangles in FIG. 2), a mixture of distilled water and waste clay (black squares in FIG. 2), and a mixture of sawdust and colored fermentation wastewater (FIG. 2). (Black circle). About 1.5 kg of a liquid component (colored fermentation wastewater and water) was used, and about 1.5 kg of a solid component (waste clay and sawdust) was used to obtain a mixture. Immediately after mixing, the pH of the mixture of colored fermentation wastewater and waste clay was 3.4.

【0023】上記の組み合わせの混合物を、室内に設け
たステンレス槽に投入し、混合物内部のほぼ中心部の温
度(発酵温度)を測定した。測定期間を通して、室温は
20〜30℃の間であった。図2のグラフから、着色発
酵廃水と廃白土との混合物は、2日目から発酵温度が5
7.6℃に上昇し、3日目に60℃に達した。10日目
まで50℃以上を維持し、25日目まで30℃を維持し
た。一方、廃白土と蒸留水との混合物や着色発酵廃水と
おがくずとの混合物は発酵温度が全く上昇しなかった。
このことから、着色発酵廃水と廃白土を混合することに
よって発酵が可能となることが分かった。
The mixture of the above combinations was put into a stainless steel tank provided in a room, and the temperature (fermentation temperature) at the approximate center of the mixture was measured. Room temperature was between 20-30 ° C. throughout the measurement period. From the graph of FIG. 2, the mixture of colored fermentation wastewater and waste clay has a fermentation temperature of 5 from the second day.
The temperature rose to 7.6 ° C. and reached 60 ° C. on the third day. The temperature was maintained at 50 ° C. or higher until the 10th day, and was maintained at 30 ° C. until the 25th day. On the other hand, the mixture of waste clay and distilled water and the mixture of colored fermentation wastewater and sawdust did not raise the fermentation temperature at all.
From this, it was found that fermentation was possible by mixing colored fermentation wastewater and waste clay.

【0024】実施例1 試験例1における着色発酵廃水と廃白土との混合物の処
理過程における、水分、着色度及び悪臭物質である低級
脂肪酸含量の変化を調べた。結果を表3に示す。「処理
前」とは本発明の廃水処理を受ける前の段階をいい、こ
こでは、処理前の着色発酵廃水5mLを採り、50mL
の蒸留水でこれを24時間抽出して得られた抽出液につ
いて、着色度及び低級脂肪酸量を測定した。「廃白土吸
着処理後」とは、着色発酵廃水と廃白土との混合直後の
段階をいい、ここでは、5mLの着色発酵廃水を含む量
の混合物を50mLの蒸留水で同様に抽出して得られた
抽出液について、着色度等を測定した。「発酵処理後」
とは、発酵温度が室温と同程度となった段階、即ち、発
酵が終了した段階をいう。本実施例では、発酵温度が室
温と同程度となった、混合後30日目の混合物(発酵処
理物)について、着色度等を測定した。ここでは、廃白
土吸着処理後の混合物の採取量と同量の発酵処理物を採
り、上記と同様にして得られた抽出液について、着色度
等を測定した。水分の測定法は、新・食品分析法(同
上、p.6 )に記載された常圧加熱乾燥法を用いた。
Example 1 In the process of treating a mixture of colored fermentation wastewater and waste clay in Test Example 1, changes in moisture, coloring degree and lower fatty acid content as a malodorous substance were examined. Table 3 shows the results. “Before treatment” refers to a stage before receiving the wastewater treatment of the present invention, and here, 5 mL of colored fermentation wastewater before treatment is taken, and 50 mL is taken.
Was extracted with distilled water for 24 hours, and the degree of coloring and the amount of lower fatty acids were measured for the extract obtained. "After waste clay adsorption treatment" refers to a stage immediately after mixing of colored fermentation wastewater and waste clay, and here, a mixture containing 5 mL of colored fermentation wastewater is similarly extracted with 50 mL of distilled water. About the obtained extract, the degree of coloring and the like were measured. "After fermentation"
The term refers to a stage at which the fermentation temperature has become approximately equal to room temperature, that is, a stage at which the fermentation has been completed. In this example, the degree of coloring and the like were measured for a mixture (fermented product) 30 days after mixing, in which the fermentation temperature was almost the same as room temperature. Here, the same amount of fermentation product as the amount of the mixture after the waste clay adsorption treatment was taken, and the degree of coloring and the like were measured for the extract obtained in the same manner as above. The atmospheric pressure drying method described in the New Food Analysis Method (ibid., P. 6) was used for the moisture measurement.

【0025】[0025]

【表3】 [Table 3]

【0026】着色発酵廃水、混合物及び発酵処理物につ
いて、それぞれ3回ずつ抽出液を得て測定を実施した。
表3中の数値は3回の平均値±標準偏差で示している。
また、表3中のかっこ内の数値は、処理前の数値と比較
した除去率を示す。なお、低級脂肪酸量は、抽出液1L
あたりの量である。着色度は、上記と同じ希釈法によっ
て測定した。各低級脂肪酸の量は、高速液体クロマトグ
ラフィーを用いる上記の方法により測定した。
For the colored fermentation wastewater, the mixture, and the fermented product, extracts were obtained three times each for measurement.
Numerical values in Table 3 are shown as an average value of three times ± standard deviation.
The values in parentheses in Table 3 indicate the removal rates as compared with the values before the treatment. In addition, the amount of lower fatty acid is 1 L of the extract.
Per volume. The degree of coloring was measured by the same dilution method as described above. The amount of each lower fatty acid was measured by the above method using high performance liquid chromatography.

【0027】表3からわかるように、廃白土吸着処理後
の混合物の抽出液の着色度は、処理前の着色発酵廃水の
抽出液のそれと比べると33.3%低下した。また、得
られた発酵処理物の抽出液の着色度は、処理前の抽出液
のそれと比べると67%減少した。このことから、発酵
処理によって着色発酵廃水の着色成分が分解し、着色発
酵廃水による環境汚染を軽減化することができることが
わかる。
As can be seen from Table 3, the coloring degree of the extract of the mixture after the waste clay adsorption treatment was reduced by 33.3% as compared with that of the colored fermentation wastewater extract before the treatment. In addition, the coloring degree of the extract of the obtained fermentation treatment product was reduced by 67% as compared with that of the extract before the treatment. From this, it is understood that the coloring component of the colored fermentation wastewater is decomposed by the fermentation treatment, and environmental pollution due to the colored fermentation wastewater can be reduced.

【0028】悪臭物質である低級脂肪酸の含有量の変化
についても調べた。蒸留水で抽出されたプロピオン酸量
と酪酸量は、廃白土吸着処理によってそれぞれ16.0
%と15.0%低下した。発酵処理物の抽出液のプロピ
オン酸、酪酸及びイソ吉草酸の含有量は、処理前の抽出
液のそれと比べていずれも70%以上減少した。また、
着色発酵廃水は水分が95重量%あり、取り扱い難い状
態であったのに対し、発酵処理後は水分が36重量%に
低下し、より取扱が容易な固形物粉体となった。以上の
ことから、発酵処理によって着色発酵廃水の水分が蒸発
し、悪臭物質が分解され、取扱に適した固形物とするこ
とができ、このことによって着色発酵廃水による環境汚
染を軽減化できることが分かった。
Changes in the content of lower fatty acids, which are malodorous substances, were also examined. The amounts of propionic acid and butyric acid extracted with distilled water were respectively 16.0 by the waste clay adsorption treatment.
% And 15.0%. The content of propionic acid, butyric acid, and isovaleric acid in the extract of the fermented product was reduced by 70% or more as compared with that of the extract before the treatment. Also,
The colored fermentation wastewater had a water content of 95% by weight and was difficult to handle. On the other hand, after the fermentation treatment, the water content was reduced to 36% by weight, resulting in a solid powder that was easier to handle. From the above, it can be seen that the fermentation treatment evaporates the moisture of the colored fermentation wastewater, decomposes the offensive odor substance, and makes it a solid suitable for handling, thereby reducing the environmental pollution by the colored fermentation wastewater. Was.

【0029】実施例2 発酵処理後の固形物について、有機質肥料としての利用
可能性を検討した。実施例1で得られた発酵処理物(固
形物粉体)の肥料成分についての分析を行った。分析
は、水分、pH、窒素、有機質、灰分、リン、カリにつ
いて測定した。水分、pH、灰分、リン(バナドモリブ
デン酸法)については肥料分析法(養賢堂、東京、19
69)に記載された方法で測定したものである。窒素含
量はCNコーダーを用いて測定した。カリウムについて
は原子吸光法で測定した。有機質は、混合物から水分を
完全に除去した乾物の量から灰分を引いた値とした。結
果を表4に示す。
Example 2 The possibility of using a solid after fermentation as an organic fertilizer was examined. The fermentation product (solid powder) obtained in Example 1 was analyzed for fertilizer components. Assays were measured for moisture, pH, nitrogen, organics, ash, phosphorus, and potash. For water, pH, ash, and phosphorus (vanado molybdic acid method), fertilizer analysis method (Yokendo, Tokyo, 19
69) was measured by the method described in (69). Nitrogen content was measured using a CN coder. Potassium was measured by the atomic absorption method. Organic matter was obtained by subtracting ash from the amount of dry matter from which water was completely removed from the mixture. Table 4 shows the results.

【0030】[0030]

【表4】 [Table 4]

【0031】表4からわかるように、発酵処理物は、そ
のpHは中性領域であり、有機物を50重量%以上含有
し、植物の生育に必要な窒素、リン及びカリを含有する
ため、かかる混合物は有機質肥料として好ましく利用で
きることが明らかである。
As can be seen from Table 4, the pH of the fermented product is in a neutral range, contains 50% by weight or more of organic matter, and contains nitrogen, phosphorus and potash necessary for plant growth. It is clear that the mixture can be preferably used as an organic fertilizer.

【0032】実施例3 次に、発酵処理物の植物に対する安全性を確認するため
に発芽試験を行った。発芽試験は次のように行った。実
施例1の、廃白土吸着処理後の混合物及び発酵処理物を
それぞれ10gとり、それぞれ100mLの蒸留水にて
60℃で3時間抽出して抽出液を得た。抽出液8mLを
濾紙3枚を引いたシャーレに加え、その上にコマツナ
(品種名:おそめ)25粒を播種し、25℃暗黒条件下
で培養し、3日後の発芽率を調査した。その結果を表5
に示す。
Example 3 Next, a germination test was performed to confirm the safety of the fermented product against plants. The germination test was performed as follows. 10 g of the mixture and the fermentation product after the waste clay adsorption treatment in Example 1 were taken, and extracted with 100 mL of distilled water at 60 ° C. for 3 hours to obtain an extract. 8 mL of the extract was added to a petri dish from which three filter papers were pulled, and 25 komatsuna (variety name: Osome) seeds were sown thereon, cultured at 25 ° C in the dark, and the germination rate after 3 days was examined. Table 5 shows the results.
Shown in

【0033】[0033]

【表5】 [Table 5]

【0034】表5が示すように、廃白土吸着処理後の混
合物の抽出液は発芽率が0%と全く発芽せず、着色発酵
廃水中に発芽を阻害する成分が大量に含まれていること
が分かった。これに対して、発酵処理物の抽出液は発芽
率が97%以上であり、対照として用いた蒸留水と同様
であり、発芽を阻害する成分は含有されていないことが
わかった。このことから、発酵処理によって、着色発酵
廃水中の発芽を阻害する成分は分解除去され、得られた
固形物は植物にとって安全であることが明らかとなっ
た。
As shown in Table 5, the extract of the mixture after the adsorption treatment of the waste clay had no germination rate of 0%, and the coloring fermentation wastewater contained a large amount of a component inhibiting germination. I understood. On the other hand, the extract of the fermented product had a germination rate of 97% or more, which was the same as that of distilled water used as a control, and it was found that no component inhibiting germination was contained. From this, it was clarified that the components that inhibit germination in the colored fermentation wastewater were decomposed and removed by the fermentation treatment, and the obtained solid was safe for plants.

【0035】実施例4 次に、発酵処理物の有機質肥料としての効果を確認する
ために、コマツナによるポット栽培試験を行った。試験
例1で得た発酵処理物5gを真砂土495gに混合し
(添加区)、これをノイバウエルポットに入れた。この
上にコマツナ(品種名:おそめ)25粒を播種した。対
照として真砂土500g(無添加区)を用い、同様にノ
イバウエルポットに入れ、コマツナを播種した。両区と
も同様の操作で3ポットずつ作製した。これらに適当な
水分を与えて25℃暗黒条件下で3日間培養し発芽させ
た後、自然光のもとで10日間栽培した。栽培終了後、
コマツナの草丈、葉径及び地上部乾燥重量を測定し、各
区ごとの平均値を算出した。平均値を表6に示す。
Example 4 Next, in order to confirm the effect of the fermented product as an organic fertilizer, a pot cultivation test using Komatsuna was performed. 5 g of the fermented product obtained in Test Example 1 was mixed with 495 g of masago (addition section), and the mixture was placed in a Neubauer pot. 25 seeds of Komatsuna (variety name: Osome) were sowed on this. As a control, 500 g of masago (untreated group) was similarly placed in a Neubauer pot, and seeded with Komatsuna. In both sections, three pots were prepared by the same operation. They were given appropriate water, cultured under dark conditions at 25 ° C. for 3 days, germinated, and then cultivated under natural light for 10 days. After cultivation,
The plant height, leaf diameter and aboveground dry weight of Komatsuna were measured, and the average value for each section was calculated. Table 6 shows the average values.

【0036】[0036]

【表6】 [Table 6]

【0037】表6が示すように、添加区の草丈は24.
1cmで、無添加区の2.09cmと比べ15.3%上
回り、生育がよかった。添加区の葉径は1.39cm
で、無添加区の1.31cmと比べると6%増収効果が
認められた。また地上部乾燥重量は、添加区が10.1
6mgで、無添加区の8.52mgと比べると19.2
%増収効果が認められた。以上のことからわかるよう
に、本発明の方法によって処理された発酵処理物は、有
機質肥料として利用でき、植物の生育を促進することが
明らかとなった。
As shown in Table 6, the plant height of the added group was 24.
At 1 cm, it was 15.3% higher than 2.09 cm in the non-added group, and the growth was good. Leaf diameter of addition section is 1.39cm
As compared with 1.31 cm in the non-added section, a 6% increase effect was recognized. The above-ground dry weight was 10.1
6 mg, 19.2 compared to 8.52 mg in the non-added group.
% Increase effect was recognized. As can be seen from the above, it has been clarified that the fermented product treated by the method of the present invention can be used as an organic fertilizer and promotes plant growth.

【0038】[0038]

【発明の効果】着色発酵廃水と活性白土との発酵を利用
する本発明の廃水処理方法により、低コストかつ簡易な
操作で着色発酵廃水が原因の環境汚染を低減化し、ま
た、取り扱いが容易な有機質肥料を製造することができ
る。また、本発明の方法により得られた有機質肥料は、
発芽等を阻害する成分が除かれており、肥料として有用
である。本発明は、廃棄物の利用と微生物による処理を
機軸とした方法であり、硫酸等の劇物や乾燥装置等の大
型器機を用いる従来の方法に比べて極めて安価に着色発
酵廃水を簡易に処理することができる方法である。
According to the wastewater treatment method of the present invention utilizing the fermentation of colored fermentation wastewater and activated clay, environmental pollution caused by the colored fermentation wastewater can be reduced with low cost and simple operation, and the handling is easy. Organic fertilizer can be manufactured. Further, the organic fertilizer obtained by the method of the present invention,
Components that inhibit germination and the like have been removed and are useful as fertilizers. The present invention is a method based on the utilization of waste and treatment with microorganisms, and can easily treat colored fermentation wastewater at extremely low cost as compared with the conventional method using a large amount of equipment such as a harmful substance such as sulfuric acid or a drying apparatus. That's how you can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃水処理方法の概略図である。FIG. 1 is a schematic diagram of a wastewater treatment method of the present invention.

【図2】発酵日数と発酵温度との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between fermentation days and fermentation temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 崎元 道男 大阪府羽曳野市尺度442 大阪府農林技術 センター内 (72)発明者 鈴木 敏征 大阪府羽曳野市尺度442 大阪府農林技術 センター内 (72)発明者 中岡 敏 兵庫県加古川市西神吉町岸854 (72)発明者 河野 公彦 兵庫県明石市二見町西二見739−12 Fターム(参考) 4D027 BA03 BA06 4D038 AA08 AB03 BB19 4D040 DD01 DD11 4H061 AA01 AA02 CC45 CC51 DD20 EE43 GG48 GG56 HH35 HH42 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Michio Sakimoto, Osaka Prefecture Agriculture and Forestry Research Center, Scale 442, Osaka Prefecture Agriculture and Forestry Research Center (72) Inventor Satoshi Nakaoka 854 Nishijinyoshicho, Kakogawa-shi, Hyogo Pref. (72) Inventor Kimihiko Kono 739-12 Futami-cho, Futami-cho, Akashi-shi, Hyogo F term (reference) 4D027 BA03 BA06 4D038 AA08 AB03 BB19 4D040 DD01 DD11 4H061 AA01 AA02 CC45 CC51 DD20 EE43 GG48 GG56 HH35 HH42

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 工程A:発酵過程で発生する着色発酵廃
水と活性白土とを混合する工程、及び 工程B:工程Aで得られる混合物を発酵させる工程を有
する廃水処理方法。
1. A wastewater treatment method comprising: a step A: a step of mixing colored fermentation wastewater generated in a fermentation process with activated clay; and a step B: a step of fermenting the mixture obtained in step A.
【請求項2】 着色発酵廃水がパン酵母発酵過程で発生
する廃水である請求項1記載の廃水処理方法。
2. The wastewater treatment method according to claim 1, wherein the colored fermentation wastewater is wastewater generated in a baker's yeast fermentation process.
【請求項3】 活性白土が動植物油脂精製の際に発生す
る使用済み活性白土である請求項1又は2記載の廃水処
理方法。
3. The wastewater treatment method according to claim 1, wherein the activated clay is used activated clay generated during refining of animal and vegetable oils and fats.
【請求項4】 着色発酵廃水が、フミン質を含有する着
色度80以上の廃水である請求項1〜3いずれか記載の
廃水処理方法。
4. The wastewater treatment method according to claim 1, wherein the colored fermentation wastewater is a wastewater containing a humic substance and having a coloring degree of 80 or more.
【請求項5】 工程A:発酵過程で発生する着色発酵廃
水と活性白土とを混合する工程、 工程B:工程Aで得られる混合物を発酵させる工程、及
び 工程C:工程Bで発酵された発酵処理物を有機質肥料と
して回収する工程を有する着色発酵廃水の有機質肥料化
法。
5. Step A: a step of mixing colored fermentation wastewater generated in the fermentation process with activated clay, Step B: a step of fermenting the mixture obtained in Step A, and Step C: a fermentation fermented in Step B. A method for converting colored fermentation wastewater into an organic fertilizer, comprising a step of recovering the treated product as an organic fertilizer.
【請求項6】 請求項5記載の有機質肥料化法により得
られる有機質肥料。
6. An organic fertilizer obtained by the method according to claim 5.
JP31154499A 1999-11-01 1999-11-01 Method for converting colored fermented waste water into organic fertilizer Pending JP2001129574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31154499A JP2001129574A (en) 1999-11-01 1999-11-01 Method for converting colored fermented waste water into organic fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31154499A JP2001129574A (en) 1999-11-01 1999-11-01 Method for converting colored fermented waste water into organic fertilizer

Publications (1)

Publication Number Publication Date
JP2001129574A true JP2001129574A (en) 2001-05-15

Family

ID=18018522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31154499A Pending JP2001129574A (en) 1999-11-01 1999-11-01 Method for converting colored fermented waste water into organic fertilizer

Country Status (1)

Country Link
JP (1) JP2001129574A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014042076A1 (en) * 2012-09-14 2016-08-18 国立大学法人東京工業大学 Process for producing polyhydroxyalkanoate using modified oil and fat composition
CN107540182A (en) * 2017-10-20 2018-01-05 天津壹新环保工程有限公司 A kind of method and apparatus of sludge organic fertilizer
CN109574254A (en) * 2018-12-29 2019-04-05 上海源耀生物股份有限公司 A kind of method of probiotics degradation sewage color

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014042076A1 (en) * 2012-09-14 2016-08-18 国立大学法人東京工業大学 Process for producing polyhydroxyalkanoate using modified oil and fat composition
CN107540182A (en) * 2017-10-20 2018-01-05 天津壹新环保工程有限公司 A kind of method and apparatus of sludge organic fertilizer
CN109574254A (en) * 2018-12-29 2019-04-05 上海源耀生物股份有限公司 A kind of method of probiotics degradation sewage color

Similar Documents

Publication Publication Date Title
Alavi et al. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite
Liu et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting
He et al. Impact of vermiculite on ammonia emissions and organic matter decomposition of food waste during composting
Wang et al. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition
Galliou et al. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting
Zorpas et al. Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus
Muscolo et al. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem
Yuan et al. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting
Hait et al. Vermistabilization of primary sewage sludge
Wang et al. Converting digested residue eluted from dry anaerobic digestion of distilled grain waste into value-added fertilizer by aerobic composting
Li et al. Effects of recyclable ceramsite as the porous bulking agent during the continuous thermophilic composting of dairy manure
Massaccesi et al. Chemical characterisation of percolate and digestate during the hybrid solid anaerobic digestion batch process
CA2380797A1 (en) Manure treatment method
Insam et al. Control of GHG emission at the microbial community level
Boutchich et al. Characterization of activated sludge from domestic sewage treatment plants and their management using composting and co-composting in aerobic silos
Guerra-Rodríguez et al. Evaluation of heavy metal contents in co-composts of poultry manure with barley wastes or chestnut burr/leaf litter
Bougarne et al. Consequences of surface water eutrophication: remedy and environmental interest
Francavilla et al. Waste cleaning waste: Ammonia abatement in bio-waste anaerobic digestion by soluble substances isolated from bio-waste compost
Chowdhury et al. Sludge treatment: An approach toward environmental remediation
Wu et al. Effective utilisation of trickling liquid discharged from a bio-trickling filter as a moisture conditioning agent for composting
Akbar et al. Anaerobic digestate: a sustainable source of bio-fertilizer
Zorpas et al. Intergraded applied methodology for the treatment of heavy polluted waste waters from olive oil industries
JP2001129574A (en) Method for converting colored fermented waste water into organic fertilizer
Pandey et al. Microbiological monitoring in the biodegradation of food waste
Fei-Baffoe et al. Co-composting of organic solid waste and sewage sludge–a waste management option for University Campus