JP2001129553A - Electrode coating type electrolyzing system - Google Patents

Electrode coating type electrolyzing system

Info

Publication number
JP2001129553A
JP2001129553A JP35213799A JP35213799A JP2001129553A JP 2001129553 A JP2001129553 A JP 2001129553A JP 35213799 A JP35213799 A JP 35213799A JP 35213799 A JP35213799 A JP 35213799A JP 2001129553 A JP2001129553 A JP 2001129553A
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
activated carbon
carbon
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35213799A
Other languages
Japanese (ja)
Inventor
Kinichi Takahashi
金一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN SEIJU KK
Original Assignee
GREEN SEIJU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN SEIJU KK filed Critical GREEN SEIJU KK
Priority to JP35213799A priority Critical patent/JP2001129553A/en
Publication of JP2001129553A publication Critical patent/JP2001129553A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrode coating type electrolyzing system solving such a problem that secondary environmental pollution is generated and much money is required in maintenance taking out adsorbed matter in a conventional method for performing flocculation and sedimentation utilizing a flocculant or performing adsorption and separation using an ion exchange membrane or activated carbon in order to remove colloid or the like in an aqueous solution or to lower BOD or SS of waste water and providing a treatment method not generating secondary environmental pollution and low in cost. SOLUTION: (1) An electrode wherein a carbon rod is coated with porous conductive activated carbon is produced to be used in electrolysis and (2) the pH of a treated liquid is lowered and (3) colloid particles are gathered and sedimented by electrolysis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 生活排水や工場排水、農業排水
などの廃水の処理や、工業用水の製造処理に関する。
[Industrial application fields] The present invention relates to treatment of wastewater such as domestic wastewater, industrial wastewater, and agricultural wastewater, and production treatment of industrial water.

【0002】[0002]

【従来の技術】 廃水の処理においては活性汚泥法など
の生物化学的な処理方法が行われ、曝気処理の後浮上汚
泥や沈殿汚泥として汚れを抜き取り、処理液のBODや
SSを一定の基準値以下として、河川、湖沼、海域の公
共用水域に放流している。
2. Description of the Related Art In the treatment of wastewater, a biochemical treatment method such as an activated sludge method is performed. After aeration treatment, dirt is extracted as floating sludge and settled sludge, and the BOD and SS of the treatment liquid are set to a certain standard value. The water is released into rivers, lakes and marshes, and public water bodies in the sea.

【0003】しかし、一定の基準値以下にして放流した
処理水中の汚濁物質が河川等を流れる過程で、再溶出し
河川水を汚染させたり、赤潮などの原因となったりする
ことがあり、また食物連鎖による濃縮作用が有害物質を
生物的、生化学的に水系内に蓄積することがあり、環境
や健康保護の面からもこの基準を更に厳しくしなければ
ならないという社会的な要請もある。
However, pollutants in treated water discharged below a certain reference value may re-elute and contaminate river water or cause red tide, etc., in the process of flowing through rivers and the like. Concentration by the food chain can cause harmful substances to accumulate biologically and biochemically in water systems, and there is a social demand that this standard must be stricter in terms of environmental protection and health protection.

【0004】そうした中で、これまでは廃水処理におい
て、生物化学的処理によっては取りきれない有害物質な
どを取り除く方法として、塩素やオゾン、強酸などに
よって化学的に酸化分解する方法、凝集剤を加えるこ
とによって不溶化し凝集分離する方法、活性炭などを
使い吸着する方法、などの理化学的な方法が取られてき
た。
Under these circumstances, in wastewater treatment, a method of chemically oxidizing and decomposing with chlorine, ozone, a strong acid, or the like, or a flocculant is used as a method of removing harmful substances that cannot be removed by biochemical treatment. Accordingly, physicochemical methods such as a method of insolubilizing and coagulating and separating, and a method of adsorbing using activated carbon or the like have been adopted.

【0005】しかし、酸化分解処理は概して反応が遅
く、他の触媒を加えたり、加熱したりする必要があり、
またその過程で有毒な生成物が発生することもあり、凝
集分離する方法では沈殿した無機物が返送汚泥として処
理されると、生物化学処理に阻害要因となることがあ
り、吸着処理では吸着物の除去などのメンテナンスが大
変になる等、それぞれ問題をかかえていた。
[0005] However, the oxidative decomposition treatment is generally slow in reaction, and requires addition of another catalyst or heating.
In addition, toxic products may be generated in the process, and if the precipitated inorganic substance is treated as return sludge in the method of coagulation and separation, it may become a hindrance factor in biochemical treatment. Each of them had problems, such as difficult maintenance such as removal.

【0006】そこで、本願発明者らは廃水処理での生物
化学的処理において、曝気処理における供給酸素量を最
大限高めるための陣笠方式(特願平10−30307)
や、微細気泡を発生させる差圧利用方式(特願平11−
45227)、更に利用微生物の「誘導期」、「対数
期」、「定常期」、「減少期」という生成変化に対応さ
せた処理方式(特願平11−120313)を提案し、
曝気処理、浮上・沈殿処理によって中水程度(BOD≒
300ppm、SS≒360ppm)にまで処理でき、
沈殿汚泥を自己消化できる画期的な廃水、汚水の微生物
処理方法を提案してきた。
[0006] In view of the above, the inventors of the present application have proposed a Jinkasa method for maximizing the amount of oxygen supplied during aeration in biochemical treatment of wastewater treatment (Japanese Patent Application No. 10-30307).
Or a method using a differential pressure to generate fine bubbles (Japanese Patent Application No.
45227), and further propose a processing method (Japanese Patent Application No. 11-120313) corresponding to the production change of the utilization microorganisms such as “induction phase”, “log phase”, “stationary phase”, and “decrease phase”.
About aqua water (BOD ≒)
300ppm, SS ≒ 360ppm)
We have proposed an innovative method for treating microorganisms in wastewater and sewage, which can self-digest settled sludge.

【0007】こうした生物化学的処理に加え、電気化学
的な処理方法として処理液中に高濃度に含有されるイオ
ン化傾向の大きいK、Caなどを除去する逆電気分解法
(特願平11−45228)も提案し、生態系にやさし
い処理方法を開発してきた。
In addition to such a biochemical treatment, a reverse electrolysis method (Japanese Patent Application No. 11-45228) for removing K, Ca, etc., which are contained in a treatment solution at a high concentration and have a high ionization tendency, as an electrochemical treatment method. ), And developed ecosystem-friendly treatment methods.

【0008】こうした中で、問題として残ってきたのが
処理水中のコロイド粒子の除去ということである。コロ
イド粒子は、直径がおよそ10−5cmから10−7
mのものを言うが、大きく分けて、主として無機物質
(金、銀、白金、炭素、硫黄、AgCl、As
BaSO、Fe(OH)、Al(OH)、など)
からなる「疎水コロイド」と、主として有機化合物(セ
ッケン、デンプン、寒天、タンパク質、など)からなる
「親水コロイド」がある。
[0008] In these circumstances, the remaining problem is the removal of colloid particles from the treated water. The colloidal particles are approximately 10-5 cm to 10-7 c in diameter.
m, mainly divided into inorganic substances (gold, silver, platinum, carbon, sulfur, AgCl, As 2 S 3 ,
BaSO 4 , Fe (OH) 3 , Al (OH) 3 , etc.)
And "hydrocolloids" mainly composed of organic compounds (soap, starch, agar, protein, etc.).

【0009】これらは水溶液中に浮遊しているため、浮
上汚泥としても、沈殿汚泥としても分離することができ
ず、廃水の場合はBOD及びSSを下げることを困難に
してきていた。また工業用水として考えた時、不純物を
取り除く際に大きな障害となっていた。
Since these are suspended in an aqueous solution, they cannot be separated as floating sludge or settled sludge, and it has been difficult to reduce BOD and SS in the case of wastewater. Also, when considered as industrial water, it was a major obstacle in removing impurities.

【0010】「疎水コロイド」及び「親水コロイド」
は、電解質からなる凝集剤を少量、或いは多量に加えた
りすることによって集合沈殿させたり、陽イオンや陰イ
オンに分離し、イオン交換膜等を使って除去することは
できるが、後処理の必要性が出たり、凝集剤自体のコス
トやメンテナンス費用などの点から問題が残っていた。
"Hydrocolloid" and "hydrocolloid"
Can be aggregated and precipitated by adding a small amount or a large amount of an electrolyte flocculant, separated into cations and anions, and removed using an ion-exchange membrane. However, problems still remain in terms of the properties, the cost of the coagulant itself and the maintenance cost.

【0011】[0011]

【発明が解決しようとする課題】 廃水の処理や工業用
水の不純物除去処理において、問題となっていたコロイ
ド粒子の除去を、従来の凝集剤等を使った処理方法では
ない、新たな電気化学的な方法で沈殿除去することを考
えた。
SUMMARY OF THE INVENTION In the treatment of waste water and the removal of impurities in industrial water, the removal of colloidal particles, which has been a problem, is not a conventional treatment method using a flocculant or the like. To remove the precipitate by a simple method.

【0012】[0012]

【課題を解決するための技術】 炭素棒を電極とし、多
孔質で導電性のある活性炭でこれを覆って両極を作り、
水溶液を電気分解すると、水溶液の上面から時間経過と
共にpHが低く変化して行くことが分かった。
[Technology to solve the problem] A carbon rod is used as an electrode, covered with porous and conductive activated carbon to make both electrodes,
It was found that when the aqueous solution was electrolyzed, the pH changed from the upper surface of the aqueous solution to lower with time.

【0013】また水溶液のpHが変化していくと、「疎
水コロイド」を構成しているコロイド表面に、電気的に
二重層をもち同極性電荷で反発しているイオンが中和さ
れ、分子間力が働きコロイドは集合し沈降することも分
かった。
When the pH of the aqueous solution changes, ions that have an electrically double layer and are repelled by the same polarity charge are neutralized on the colloid surface constituting the “hydrophobic colloid”, and the intermolecular It was also found that the colloids aggregated and settled when force was applied.

【0014】更に、「親水コロイド」はpHの変化によ
ってアルカリから酸性になると陰イオンから陽イオンに
変わろうとする。その変わろうとする過程で電荷がゼロ
となり、分子間力が働きコロイドは集合し沈降すること
も分かった。
Further, "hydrocolloid" tends to change from an anion to a cation when it becomes acidic from alkaline due to a change in pH. In the process of the change, the charge became zero, and it was found that the intermolecular force worked and the colloids aggregated and settled.

【0015】そこで、水溶液を前記の炭素電極被覆型の
電極で電気分解を行うことによりpHを変化させ、コロ
イドを沈殿分離(除去)する方法で上述した課題を解決
する。
Therefore, the above-mentioned problem is solved by a method of changing the pH by electrolyzing an aqueous solution using the above-mentioned carbon electrode-coated electrode to precipitate and separate (remove) colloid.

【0016】[0016]

【発明の具体的な実施例】 以下、本発明の具体例を図
面によって説明する。図1は本発明による電極被覆型電
気分解装置の一実施例である。(2)及び(4)は炭素
棒(6)、(8)を導電性の活性炭で被覆した電極で、
(2)は陽電極、(4)は陰電極である。(10)は電
源、(12)は電解槽、(14)は斜めに傾斜を付けた
電解槽の底斜面、(16)は水溶液、(18)、(2
0)は排水口である。
Hereinafter, specific examples of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of an electrode-coated electrolysis apparatus according to the present invention. (2) and (4) are electrodes obtained by coating carbon rods (6) and (8) with conductive activated carbon.
(2) is a positive electrode, and (4) is a negative electrode. (10) is a power source, (12) is an electrolytic cell, (14) is a bottom slope of the electrolytic cell with a slant, (16) is an aqueous solution, (18), (2)
0) is a drain port.

【0017】図2は図1に示した電極(2)、(4)の
拡大断面図である。この電極は、細長い円錐状(φ1
0)の炭素棒(6)を取り囲む太い円柱状(φ100)
の活性炭(2)と、炭素棒(6)と活性炭(2)との接
触密度を高めるための、数μの大きさからなる炭素粉末
(22)から構成されている。このように白金を使った
電極などと比べ安い炭素棒で作りながら、炭素棒が電気
分解過程で徐々に形くずれを起こすことに対し、被覆し
た活性炭と充填した炭素粉末によってそれを防ぐ構造を
考えた。
FIG. 2 is an enlarged sectional view of the electrodes (2) and (4) shown in FIG. This electrode has an elongated conical shape (φ1
Thick cylindrical shape (φ100) surrounding the carbon rod (6) of 0)
Of the activated carbon (2) and a carbon powder (22) having a size of several μm to increase the contact density between the carbon rod (6) and the activated carbon (2). In this way, we consider a structure that prevents carbon rods from gradually deforming during the electrolysis process while using carbon rods that are cheaper than electrodes using platinum, etc. Was.

【0018】これを作る時には、導電性の活性炭(2)
の円柱の中心部に、炭素棒(6)の直径より略大きい円
柱状の穴があくように作る。この穴に炭素粉末(22)
を充填し、ここに先端が鋭利状になった炭素棒(6)を
突き立てて作る。
When making this, conductive activated carbon (2)
In the center of the column, there is formed a cylindrical hole substantially larger than the diameter of the carbon rod (6). In this hole carbon powder (22)
Is filled, and a carbon rod (6) having a sharpened tip is protruded into it.

【0019】一つの実施例だが、図1に示した電解槽
(12)の水溶液(16)として、廃水を生物化学処理
した後の処理水(BOD及びSSが共に5000〜14
000ppm、pHは8〜10)を投入し、電源(1
0)によって直流電圧(20〜22V)、直流電流(1
A)をかけ、この処理水を電気分解した。
In one embodiment, as the aqueous solution (16) of the electrolytic cell (12) shown in FIG. 1, treated water (BOD and SS are both 5,000 to 14) after biochemical treatment of wastewater.
000 ppm, pH 8-10), and power supply (1
0), the DC voltage (20 to 22 V) and the DC current (1
A) was applied and the treated water was electrolyzed.

【0020】コロイド粒子が浮遊する処理水が、空気と
接触している上面部から徐々にpHが下がり始め、pH
が変化すると共にこのコロイド粒子が集合し沈殿して行
く。24時間電気分解を続けたところ、水溶液(16)
の上面部のpHは約1.5〜2.0となり、排水口(1
8)からの処理水もpH2ぐらいになった。
The pH of the treated water, in which the colloid particles float, gradually begins to decrease from the upper surface in contact with the air.
As the particle size changes, the colloid particles aggregate and precipitate. When electrolysis was continued for 24 hours, the aqueous solution (16)
The pH of the upper surface of the water was about 1.5 to 2.0, and the
The treated water from 8) also had a pH of about 2.

【0021】沈殿物は底斜面(14)に沿って蓄積さ
れ、これは排水口(20)から取り出す。この時の沈殿
物のpHは10〜12ぐらいである。そして処理液のB
OD及びSSは20〜30ppmとなった。
[0021] The sediment accumulates along the bottom slope (14), which is removed from the drain (20). The pH of the precipitate at this time is about 10 to 12. And B of processing solution
OD and SS were 20 to 30 ppm.

【0022】排水中のコロイド粒子は、炭素、硫黄など
の無機質を主成分とする「疎水コロイド」、デンプン、
タンパク質などの有機質を主成分とする「親水コロイ
ド」の両成分を含む。BOD及びSSが20〜30pp
mに減少したということは、本願方式による電気分解に
よって、両方のコロイドとも集合沈殿させることができ
たと言える。
The colloidal particles in the waste water are composed of “hydrophobic colloid” mainly composed of inorganic substances such as carbon and sulfur, starch,
Both components of "hydrocolloid" mainly composed of organic matter such as protein are included. BOD and SS are 20-30pp
The decrease to m means that both colloids were able to collectively precipitate by electrolysis according to the method of the present invention.

【0023】この実施例から、コロイド粒子が集合沈殿
するメカニズムは以下のように考えることができる。こ
の処理液はナトリウム(Na)イオン、塩素(C
)イオンを比較的高濃度に含むため、NaClで反
応を考える。
From this example, the mechanism by which the colloid particles aggregate and precipitate can be considered as follows. This treatment solution contains sodium (Na + ) ions and chlorine (C
l -) to include a relatively high concentration of ions, consider a reaction with NaCl.

【0024】電気分解によって、水(HO)は水素イ
オンと水酸基(OH)イオンとなる。水素イオンは陰
極に引き寄せられて、電子が供給され水素ガスを発生す
る。 また塩化ナトリウム(NaCl)も、ナトリウム(Na
)イオンと塩素(Cl)イオンに分かれ、塩素イオ
ンは陽極に引き寄せられて、電子を供給し塩素ガスが発
生する。
By the electrolysis, water (H 2 O) is converted into hydrogen ions and hydroxyl (OH ) ions. The hydrogen ions are attracted to the cathode, and electrons are supplied to generate hydrogen gas. Also, sodium chloride (NaCl)
+ ) Ions and chlorine (Cl ) ions, and the chlorine ions are attracted to the anode to supply electrons and generate chlorine gas.

【0025】しかしながら、陽極、陰極とも多孔質の活
性炭で被覆されているため、陰極での水素ガスの発生と
陽極での塩素ガスの発生は抑えられる。実際に測定した
ところ通常の発生量の1/10以下であった。また水溶
液の温度はこの電気分解の条件だと、通常の電極だと5
0〜60℃に温度上昇するが、本実施例では30〜40
℃にしか上がらず、こうした反応を裏付けていた。
However, since both the anode and the cathode are covered with porous activated carbon, generation of hydrogen gas at the cathode and generation of chlorine gas at the anode can be suppressed. When actually measured, it was 1/10 or less of the normal generation amount. In addition, the temperature of the aqueous solution is 5 under the condition of the electrolysis and 5 under the normal electrode.
Although the temperature rises to 0 to 60 ° C., in this embodiment, it is 30 to 40 ° C.
The temperature rose to only ° C, confirming such a reaction.

【0026】この結果水溶液中には水素イオンの濃度が
増し、pHを減少させる変化が水溶液中で起こったと考
えられる。
As a result, it is considered that the concentration of hydrogen ions in the aqueous solution increased, and a change to decrease the pH occurred in the aqueous solution.

【0027】コロイドのうち「疎水コロイド」は、表面
では同一種の電荷が反発し、電気的に二重の層ができて
いるため沈降せず浮遊しているが、水素イオンや水酸基
イオンが増えた結果、電荷が中和され反発力がなくな
り、粒子が集合沈殿することになったと考えられる。
Among the colloids, the “hydrophobic colloid” floats without sedimentation because the same kind of charge is repelled on the surface and an electrically double layer is formed, but hydrogen ions and hydroxyl ions increase. As a result, it is considered that the charge was neutralized, the repulsion was lost, and the particles were settled and settled.

【0028】「親水コロイド」はpHが変化することに
より、陽イオンになったり陰イオンになったりする。た
とえばアミノ酸の場合、溶液がアルカリの場合陰イオ
ン、酸性の場合陽イオンの働きをする。今回の処理水の
場合、元々pH8〜10のアルカリ性だったため、pH
が酸性に変化する過程で陰イオンから陽イオンに変化す
る。この時イオン価ゼロを通過するため、その時には電
荷による反発力がなくなり、ファンデルワールスの分子
の引力が働き集合沈降したと考えられる。
"Hydrocolloids" become cations or anions by changing the pH. For example, in the case of an amino acid, it acts as an anion when the solution is alkaline and as a cation when it is acidic. In the case of this treated water, the pH was originally 8 to 10 alkaline,
Is changed from an anion to a cation in the process of becoming acidic. At this time, since the ionic value passes through zero, the repulsive force due to the electric charge disappears at that time, and it is considered that the attractive force of the molecule of Van der Waals acts to collectively settle.

【0029】[0029]

【発明の効果】 以上本願では炭素棒を電極の核とし、
これを導電性の活性炭で被覆する従来にない方法で電気
分解することにより、水溶液の上面からpHが暫時低下
し変化させることができ、このpHの変化を利用すれば
コロイド粒子を集合沈殿させ、廃水の処理液などのBO
DやSSを大きく下げることができた。この方法では被
覆した多孔質の活性炭の働きで、電気分解に使用する電
力消費量を極端に抑えることができ、また沈殿させたコ
ロイド粒子は下部の排水口から容易に取り出すことがで
きる。またこの電気分解装置は炭素棒を核とした、しか
も持ちが良くなるように構成され、被覆素材も活性炭で
あり、コストのかからぬ素材と構成で作られているた
め、従来の凝集、吸着、などに比べても、工業的に利用
しやすいものになっている。
As described above, in the present application, the carbon rod is used as the core of the electrode,
By electrolyzing this with an unconventional method of coating with conductive activated carbon, the pH can be temporarily lowered and changed from the upper surface of the aqueous solution, and if this change in pH is used, colloid particles are collected and precipitated, BO such as wastewater treatment liquid
D and SS could be greatly reduced. In this method, the power consumption used for the electrolysis can be extremely suppressed by the action of the coated porous activated carbon, and the precipitated colloid particles can be easily taken out from the lower drain port. In addition, this electrolyzer is composed of a carbon rod as a core and is designed to have good durability.The coating material is also activated carbon, and it is made of a low-cost material. It is easier to use industrially than it is.

【0030】廃水の処理水を河川などに放流するだけな
らば、BOD、SSが20〜30ppmで充分と言える
が、この電気分解方法をもう少し時間をかけて行うと、
BOD及びSSをゼロないし測定不能の領域まで低下さ
せることができる。その時の処理水は腐敗要因がなくな
っているため、たとえ長期間放置(密封)しても腐敗し
ない高度に不純物を除去した処理水となっている。
If the treated wastewater is only discharged to a river or the like, BOD and SS of 20 to 30 ppm can be said to be sufficient, but if this electrolysis method is carried out for a little more time,
BOD and SS can be reduced to zero or unmeasurable region. Since the treated water at that time has no decay factor, the treated water is highly treated and has no impurities even if left for a long time (sealed).

【0031】この方法を使用すれば、不純物の除去が高
精度に求められる工業用水を製造する時にも応用でき
る。尚、以上の説明の中で行った実施例は、あくまでも
一実施例であり、本願発明はこの実施例に限定されるも
のではない。
The use of this method can be applied to the production of industrial water in which removal of impurities is required with high precision. The embodiment described in the above description is merely an example, and the present invention is not limited to this embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本願発明による電極被覆型電気分解方式に
よる電気分解装置を示す図面である。
FIG. 1 is a view showing an electrolysis apparatus using an electrode coating type electrolysis system according to the present invention.

【図2】は、その電極の構造を示す図面である。FIG. 2 is a drawing showing the structure of the electrode.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D061 DA01 DA08 DB16 DC06 EA07 EB16 EB29 EB35 EB37 EB39 GA22 GC18 4K021 AA01 AB25 BA02 BB02 DA10 DA13 DC15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D061 DA01 DA08 DB16 DC06 EA07 EB16 EB29 EB35 EB37 EB39 GA22 GC18 4K021 AA01 AB25 BA02 BB02 DA10 DA13 DC15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素棒を電極とし、活性炭等の多孔性の導
電物質で該炭素棒を被覆した、電極被覆型電気分解方
式。
1. An electrode-coated electrolysis system in which a carbon rod is used as an electrode and the carbon rod is coated with a porous conductive material such as activated carbon.
【請求項2】電気エネルギーの印加時間の経過と共に、
電解溶液上面よりpHを変化させることを特徴とする電
極を、活性炭等の多孔性の導電物質で被覆したことを特
徴とする、電極被覆型電気分解方式。
2. The method according to claim 1, further comprising the step of:
An electrode-coated electrolysis system, wherein an electrode characterized by changing the pH from the upper surface of an electrolytic solution is coated with a porous conductive material such as activated carbon.
【請求項3】水溶液中のコロイドが浮遊する条件を、前
記pHの変化による電気化学的変化によって取り除き、
集合沈殿させることを特徴とする特許請求事項第二項に
示した電極被覆型電気分解方式を使ってなる、水溶液の
不純物除去システム。
3. The method according to claim 1, wherein the condition in which the colloid in the aqueous solution floats is removed by an electrochemical change due to the pH change.
A system for removing impurities from an aqueous solution, comprising using an electrode-coated electrolysis system as set forth in claim 2, wherein the system is subjected to collective sedimentation.
JP35213799A 1999-11-08 1999-11-08 Electrode coating type electrolyzing system Pending JP2001129553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35213799A JP2001129553A (en) 1999-11-08 1999-11-08 Electrode coating type electrolyzing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35213799A JP2001129553A (en) 1999-11-08 1999-11-08 Electrode coating type electrolyzing system

Publications (1)

Publication Number Publication Date
JP2001129553A true JP2001129553A (en) 2001-05-15

Family

ID=18422035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35213799A Pending JP2001129553A (en) 1999-11-08 1999-11-08 Electrode coating type electrolyzing system

Country Status (1)

Country Link
JP (1) JP2001129553A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212560A (en) * 2005-02-04 2006-08-17 Sanetsu:Kk Method and apparatus for separating silver-based waste
WO2006132160A1 (en) * 2005-06-08 2006-12-14 Tanah Process Ltd. METHOD FOR ADJUSTING Ph OF LIQUID AND pH ADJUSTOR
US8529737B2 (en) 2008-03-25 2013-09-10 Tanah Process Ltd. Portable device for regulating hardness of drinking water
CN109179595A (en) * 2018-10-24 2019-01-11 南京元亨化工科技有限公司 Sewage treatment electrolysis unit
CN114028874A (en) * 2021-11-23 2022-02-11 青岛科技大学 Method for regulating and controlling particle size of colloid in aqueous solution, colloid obtained by method and application of colloid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212560A (en) * 2005-02-04 2006-08-17 Sanetsu:Kk Method and apparatus for separating silver-based waste
JP4563203B2 (en) * 2005-02-04 2010-10-13 株式会社サンエツ Silver waste separation method and equipment
WO2006132160A1 (en) * 2005-06-08 2006-12-14 Tanah Process Ltd. METHOD FOR ADJUSTING Ph OF LIQUID AND pH ADJUSTOR
US8529737B2 (en) 2008-03-25 2013-09-10 Tanah Process Ltd. Portable device for regulating hardness of drinking water
CN109179595A (en) * 2018-10-24 2019-01-11 南京元亨化工科技有限公司 Sewage treatment electrolysis unit
CN114028874A (en) * 2021-11-23 2022-02-11 青岛科技大学 Method for regulating and controlling particle size of colloid in aqueous solution, colloid obtained by method and application of colloid

Similar Documents

Publication Publication Date Title
Mollah et al. Electrocoagulation (EC)—science and applications
Drogui et al. Review of electrochemical technologies for environmental applications
Belkacem et al. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique
Poon Electroflotation for groundwater decontamination
Ho et al. The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent
JP2882727B2 (en) Water treatment method
US6274028B1 (en) Electrolytic wastewater treatment method and apparatus
US20020134687A1 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
Siringi et al. Is electrocoagulation (EC) a solution to the treatment of wastewater and providing clean water for daily use
EP2303783A2 (en) Electrochemical system and method for the treatment of water and wastewater
CN101104537A (en) Electrocatalysis separation film water treatment device
Mansoorian et al. Practical assessment of electrocoagulation process in removing nickel metal from aqueous solutions using iron-rod electrodes
ALSamman et al. Arsenic oxidation and its subsequent removal from water: An overview
Mickova Advanced electrochemical technologies in wastewater treatment part I: electrocoagulation
CN101970072A (en) Activated metal salt flocculant and process for producing same
KR100319022B1 (en) Wastewater Treatment System Using Electrolytic Injury Method
WO2020122762A1 (en) Method of electrochemical purification of household water, drinking water and industrial water
Balarak et al. Survey electrocoagulation process in removal of norfloxacin antibiotic from aqueous solutions
JP2001129553A (en) Electrode coating type electrolyzing system
Abbas et al. Phenol deterioration in refinery wastewater through advanced electrochemical oxidation reactions using different carbon fiber and graphite electrodes configurations
Wang et al. Performance of COD removal from oxide chemical mechanical polishing wastewater using iron electrocoagulation
CN107176729A (en) A kind of AEC electric flocculations waste water treatment process
CN110885151A (en) Waste water treatment device
Shanthi et al. Domestic sewage treatment using batch stirred tank electrochemical reactor
KR101778259B1 (en) Effluent Treatment Apparatus Comprising Nanocatalytic Anode Plate and Cathode Plate for Phosphorus Removal by Electrolysis Floating and Flocculation Process and Treatment Method Using the Same