JP2001128672A - Enzymatic decomposition of substrate - Google Patents

Enzymatic decomposition of substrate

Info

Publication number
JP2001128672A
JP2001128672A JP31302699A JP31302699A JP2001128672A JP 2001128672 A JP2001128672 A JP 2001128672A JP 31302699 A JP31302699 A JP 31302699A JP 31302699 A JP31302699 A JP 31302699A JP 2001128672 A JP2001128672 A JP 2001128672A
Authority
JP
Japan
Prior art keywords
enzyme
substrate
fsm
immobilized
mnp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31302699A
Other languages
Japanese (ja)
Inventor
Haruo Takahashi
治雄 高橋
Tsutomu Kajino
勉 梶野
Toshiya Sasaki
俊哉 笹木
Bou Ri
ボウ リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP31302699A priority Critical patent/JP2001128672A/en
Priority to CN 00815117 priority patent/CN1384889A/en
Priority to EP00970199A priority patent/EP1251184A1/en
Priority to CA002389212A priority patent/CA2389212A1/en
Priority to PCT/JP2000/007618 priority patent/WO2001031066A1/en
Publication of JP2001128672A publication Critical patent/JP2001128672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing a substrate by using an immobilized peroxidase exhibiting sufficient activity in the presence of a highly concentrated oxidant. SOLUTION: The substrate which is especially preferably that difficult to be decomposed is decomposed by immobilizing the peroxidase in a structural unit having a size approximately corresponding to the enzymatic size of the peroxidase and structural stability, especially preferably a mesoporous silica porous body, in the presence of the oxidant of high concentration permitted by the immobilization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は基質、とりわけ難分
解性物質である基質の酵素的分解方法に関し、更に詳し
くは、所定の方法で固定化された酸化酵素が高濃度の酸
化剤に対して著しく安定である、と言う新規な知見に基
づき成立した酵素的分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for enzymatically decomposing a substrate, especially a substrate which is a hardly decomposable substance. The present invention relates to an enzymatic decomposition method established based on a novel finding that it is extremely stable.

【0002】[0002]

【従来の技術】分解処理されることが望まれている基
質、特に、例えば紙パルプの着色物質であるリグニン
や、環境ホルモン類、特に毒性が強いと言われて問題視
されているダイオキシン等の難分解性物質を分解処理す
るに当たり、廃液処理等に問題を伴う塩素等の化学的漂
白剤の使用や環境負荷の大きい熱分解処理に代え、酸化
酵素ペルオキシダーゼによる環境に優しい酵素的分解方
法が注目されている。
2. Description of the Related Art Substrates which are desired to be decomposed, for example, lignin which is a coloring substance of paper pulp, and environmental hormones, especially dioxin which is regarded as a problem because of its high toxicity, are considered. When decomposing hardly decomposable substances, attention is paid to environmentally friendly enzymatic decomposition method using oxidase peroxidase instead of using chemical bleaching agents such as chlorine, which have problems in waste liquid treatment, etc. Have been.

【0003】例えば、特開平9−239396号公報に
は酸化酵素ペルオキシダーゼを用いた難分解性物質の分
解技術が開示されており、「紙パルプ技術協会誌 vol.
150,59-68(原園ら)」等の多くの公知文献にもリグニ
ンを分解対象とする酵素的なパルプ漂白技術が開示され
ている。
For example, Japanese Patent Application Laid-Open No. 9-239396 discloses a technique for decomposing hardly decomposable substances using oxidase peroxidase.
150, 59-68 (Harazono et al.) "Also discloses an enzymatic pulp bleaching technique for decomposing lignin.

【0004】一方、Gravski, A. C.ら(Appl. Biochem.
Biotechnol. 60. 1-17(1996) )は有機ポリマー粒子に
固定化したマンガンペルオキシダーゼについて、Fawer,
M.S.ら(Biochem. Biophys. Acta. 1076. 15-22(1991)
)やAther, M. ら(Appl.Biochem. Biotechnol. 38. 5
7-67(1993))はガラスビーズ,有機ポリマー,アガロー
スの各粒子に固定化したリグニンペルオキシダーゼを報
告している。
On the other hand, Gravski, AC et al. (Appl. Biochem.
Biotechnol. 60. 1-17 (1996)) reported on manganese peroxidase immobilized on organic polymer particles by Fawer,
MS et al. (Biochem. Biophys. Acta. 1076. 15-22 (1991)
) And Ather, M. et al. (Appl. Biochem. Biotechnol. 38.5
7-67 (1993)) report lignin peroxidase immobilized on glass beads, organic polymers, and agarose particles.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記特開平9
−239396号公報や紙パルプ技術協会誌に開示され
た技術は、高価なペルオキシダーゼを可溶化状態で反応
系に添加しているため、その回収・再利用が困難でコス
トが高くなると言う問題があった。
However, the method disclosed in Japanese Patent Application Laid-Open No.
The technology disclosed in JP-A-239396 and the Journal of the Japan Association of the Pulp and Paper Technology has a problem that the expensive peroxidase is added to the reaction system in a solubilized state. Was.

【0006】更に重要な問題として、酸化酵素活性の関
係で反応場の処理条件(温度やpH等)が狭い範囲に限
定される他、酸化反応に利用する酸化剤濃度の許容範囲
が非常な低濃度領域に限定されるために、第1に難分解
性物質に対して高濃度の酸化剤を投入して分解効率を上
げることができず、第2に酸化剤濃度の正確な制御が技
術的に困難であるため酸化剤濃度の上昇に基づく酸化酵
素の失活を招き易かった。
[0006] More importantly, the treatment conditions (temperature, pH, etc.) of the reaction field are limited to a narrow range due to the activity of the oxidase, and the allowable range of the concentration of the oxidizing agent used in the oxidation reaction is extremely low. Because the concentration is limited to the concentration range, firstly, it is impossible to increase the decomposition efficiency by adding a high concentration of oxidizing agent to the hardly decomposable substance, and secondly, it is necessary to control the oxidizing agent concentration accurately. Therefore, inactivation of the oxidase due to an increase in the oxidizing agent concentration was liable to occur.

【0007】一方、上記有機ポリマー粒子,ガラスビー
ズ,アガロース等に酸化酵素を固定化した場合には、該
固定化酵素の使用形態(カラムへの充填等)や、後処理
(濾別等)次第で酵素を有効に回収・再利用することが
可能である。又、酵素固定化の一般的なメリットとし
て、温度やpHに対する許容範囲も相対的に広くなると
考えられる。
On the other hand, when an oxidizing enzyme is immobilized on the above-mentioned organic polymer particles, glass beads, agarose, etc., depending on the use form of the immobilized enzyme (such as filling in a column) and post-treatment (such as filtration). It is possible to effectively collect and reuse the enzyme. In addition, as a general merit of the enzyme immobilization, it is considered that the allowable range for temperature and pH is relatively widened.

【0008】しかしながら本願発明者の研究によれば、
上記従来方式で固定化した酸化酵素においては、固定化
前に比較して酸化剤濃度に対する許容範囲が殆ど広がら
ないことが分かった。基質、特に難分解性物質である基
質を酸化剤の利用によって分解しようとする際、酸化剤
濃度を可及的に高めて分解効率の向上を図ることは重要
な技術的課題であり、この点に対応できない固定化酵素
は実用上致命的な欠陥を有していると言える。
However, according to the study of the present inventor,
It was found that in the oxidase immobilized by the above-mentioned conventional method, the allowable range for the oxidizing agent concentration was hardly widened as compared with before the immobilization. When trying to decompose substrates, especially substrates that are hardly decomposable substances, by using oxidizing agents, it is an important technical issue to improve the efficiency of decomposition by increasing the concentration of oxidizing agents as much as possible. It can be said that an immobilized enzyme that cannot cope with the above has a practically fatal defect.

【0009】従って本発明は、基質、特に難分解性物質
である基質の酸化酵素ペルオキシダーゼによる分解を、
高濃度の酸化剤の存在下に高効率に行い、しかもその際
に高価な酵素の失活を回避して有効に回収・再利用可能
とすることを、解決すべき課題とする。
[0009] Accordingly, the present invention provides a method for decomposing a substrate, particularly a substrate which is a hardly decomposable substance, by oxidase peroxidase.
It is an object of the present invention to perform the process efficiently in the presence of a high-concentration oxidizing agent, and at the same time, to avoid the deactivation of an expensive enzyme so that it can be effectively recovered and reused.

【0010】[0010]

【課題を解決するための手段】(第1発明の構成)上記
課題を解決するための本願第1発明(請求項1に記載の
発明)の構成は、酸化剤を用いて酸化酵素ペルオキシダ
ーゼにより酵素基質を分解する方法において、酵素サイ
ズとほぼ合致した大きさで構造安定性を有する構造ユニ
ット中に前記酸化酵素を固定化してなる固定化酵素を用
い、その固定化によって許容される濃度範囲の酸化剤の
存在下に前記基質を分解する、基質の酵素的分解方法で
ある。
Means for Solving the Problems The structure of the first invention of the present application (the invention according to claim 1) for solving the above-mentioned problems is that an enzyme is oxidized with an oxidase peroxidase using an oxidizing agent. In the method for decomposing a substrate, an immobilized enzyme obtained by immobilizing the oxidase in a structural unit having a size substantially matching the size of the enzyme and having structural stability is used, and an oxidized enzyme having a concentration range allowed by the immobilization is used. A method for enzymatically decomposing a substrate, wherein the substrate is decomposed in the presence of an agent.

【0011】(第2発明の構成)上記課題を解決するた
めの本願第2発明(請求項2に記載の発明)の構成は、
前記第1発明に係る基質が難分解性物質である、基質の
酵素的分解方法である。 (第3発明の構成)上記課題を解決するための本願第3
発明(請求項3に記載の発明)の構成は、前記第2発明
に係る難分解性物質がリグニンである、基質の酵素的分
解方法である。
(Structure of the Second Invention) The structure of the second invention of the present application (the invention according to claim 2) for solving the above problems is as follows.
A method for enzymatically decomposing a substrate, wherein the substrate according to the first invention is a hardly decomposable substance. (Structure of the third invention) A third invention of the present application for solving the above problems.
The structure of the invention (invention of claim 3) is a method for enzymatically decomposing a substrate, wherein the hardly decomposable substance according to the second invention is lignin.

【0012】(第4発明の構成)上記課題を解決するた
めの本願第4発明(請求項4に記載の発明)の構成は、
前記第1発明〜第3発明に係る構造ユニットがメソポー
ラスシリカ多孔体における細孔である、基質の酵素的分
解方法である。
(Structure of the Fourth Invention) The structure of the fourth invention of the present application (the invention according to claim 4) for solving the above problems is as follows.
An enzymatic decomposition method for a substrate, wherein the structural units according to the first to third inventions are pores in a mesoporous silica porous material.

【0013】[0013]

【発明の作用・効果】(第1発明の作用・効果)第1発
明で用いる固定化酵素は、前記従来の固定化酸化酵素に
比較して、温度やpHに対する安定性も相対的に高い
が、とりわけ過酸化水素等の酸化剤の濃度に対する許容
範囲が著しく広いことが判明した。
(Operation and Effect of the First Invention) The immobilized enzyme used in the first invention has a relatively high temperature and pH stability as compared with the above-mentioned conventional immobilized oxidase. In particular, it has been found that the tolerance for the concentration of the oxidizing agent such as hydrogen peroxide is extremely wide.

【0014】その理由は必ずしも明確ではないが、構造
ユニット中に固定化された酸化酵素の立体構造が外部環
境に対して全面的には露出しないこと、構造ユニットが
構造安定性を有するので酸化酵素に対する保護作用が強
いこと、構造ユニットが酸化酵素のサイズとほぼ合致し
た大きさであるため酸化酵素に対する適切な保護作用が
発現すること、等によるのではないか、と考えられる。
Although the reason is not clear, the steric structure of the oxidase immobilized in the structural unit is not completely exposed to the external environment, and the oxidase is structurally stable because the structural unit has structural stability. This may be due to the strong protective action against oxidase, and the fact that the structural unit has a size almost matching the size of the oxidase, so that an appropriate protective action against oxidase is exhibited.

【0015】第1発明においては、許容される酸化剤の
濃度範囲が著しく広いため、第1に基質に対して高濃度
の酸化剤を投入して分解効率を上げることができ、第2
に酸化剤濃度の正確な制御が技術的に困難であるとして
も酸化剤濃度の上昇に基づく酵素の失活を招き難い。
In the first invention, since the concentration range of the oxidizing agent that can be accepted is extremely wide, first, a high concentration of the oxidizing agent can be added to the substrate to increase the decomposition efficiency, and
Even if it is technically difficult to precisely control the oxidant concentration, the enzyme is hardly deactivated due to an increase in the oxidant concentration.

【0016】なお、固定化酵素の一般的な特徴として、
カラムへの充填、被処理液が流動する固定床への固定化
等の使用形態による場合や、固形分を含まない被処理液
中へ投入した固定化酵素を反応終了後に濾別する場合等
においては、酸化酵素の回収・再利用が可能であること
は言うまでもない。
The general characteristics of the immobilized enzyme are as follows:
In the case of the use form such as packing into a column, immobilization on a fixed bed in which the liquid to be treated flows, or in the case where the immobilized enzyme put into the liquid to be treated containing no solids is filtered off after the reaction is completed. It is needless to say that oxidase can be recovered and reused.

【0017】(第2発明の作用・効果)第2発明のよう
に、基質が難分解性物質である場合、その酵素反応にお
いて可及的に高濃度の酸化剤を投入して分解効率を上げ
ることが強く求められるので、特に発明の実用的価値が
大きい。
(Function / Effect of the Second Invention) When the substrate is a hardly decomposable substance as in the second invention, the oxidizing agent is added in a concentration as high as possible in the enzymatic reaction to increase the decomposition efficiency. In particular, the practical value of the invention is great.

【0018】(第3発明の作用・効果)第3発明のよう
に、上記難分解性物質がパルプ漂白のために分解される
べき着色物質リグニンである場合、特に産業界において
要求の高い酵素的分解方法を提供することができる。
(Action / Effect of Third Invention) As in the third invention, when the hardly decomposable substance is lignin, which is a coloring substance to be decomposed for pulp bleaching, enzymatic reaction which is particularly demanded in the industrial world. A disassembly method can be provided.

【0019】(第4発明の作用・効果)上記構造ユニッ
トが第4発明に係るメソポーラスシリカ多孔体における
細孔である場合、多孔体の多数の細孔に酸化酵素を固定
すると言う効率の良い実施形態で構造ユニットが提供さ
れるので、特に反応効率が良好であり、しかもシリカ多
孔体である構造ユニットは構造安定性が極めて高いと言
う利点がある。。
(Function / Effect of the Fourth Invention) In the case where the above-mentioned structural unit is a pore in the mesoporous silica porous material according to the fourth invention, an efficient implementation of fixing an oxidase to a large number of pores of the porous material. Since the structural unit is provided in the form, the structural unit is particularly advantageous in that the reaction efficiency is particularly good and the structural stability of the porous silica is extremely high. .

【0020】[0020]

【発明の実施の形態】次に、第1発明〜第4発明の実施
の形態について説明する。以下において単に「本発明」
と言うときは、第1発明〜第4発明を一括して指してい
る。
Next, embodiments of the first to fourth inventions will be described. In the following, simply "the present invention"
When it says, it points to 1st invention-4th invention collectively.

【0021】〔酸化酵素及び酸化剤〕本発明が対象とす
る酸化酵素は、酸化剤を利用して基質を分解するタイプ
の酸化酵素である。これらは通常はペルオキシダーゼと
呼ばれているが、酸化剤を利用するタイプの酸化酵素で
ある限りにおいて、その呼び名や酸化剤の種類に関わら
ず、本発明の酸化酵素に含まれる。
[Oxidase and oxidizing agent] The oxidizing enzyme to which the present invention is directed is a type of oxidizing enzyme that decomposes a substrate using an oxidizing agent. These are usually called peroxidases, but are included in the oxidase of the present invention regardless of their names and types of oxidants, as long as they are oxidases that utilize an oxidant.

【0022】このような酸化酵素の代表的なものとして
マンガンペルオキシダーゼ,リグニンペルオキシダー
ゼ,ラッカーゼ等が例示され、又、酸化剤としては過酸
化水素(H22)が代表的であるが、他に酸素,過酢酸
等の有機過酸化物等が例示される。
Typical examples of such oxidases include manganese peroxidase, lignin peroxidase, and laccase. Examples of the oxidizing agent include hydrogen peroxide (H 2 O 2 ). Organic peroxides such as oxygen and peracetic acid are exemplified.

【0023】酸化剤は、第1発明に係る固定化酵素によ
って許容される濃度範囲で使用されるものであり、その
濃度範囲は酸化酵素,酸化剤,難分解性物質の種類や、
温度,pH等の反応条件によって異なるので一律には規
定できないが、一例を挙げれば、固定化していないマン
ガンペルオキシダーゼでは0.1mMを超える過酸化水
素で失活し、前記従来の通常の態様により固定化したマ
ンガンペルオキシダーゼが0.5〜1mM程度の過酸化
水素で迅速に失活するのに対して、同じマンガンペルオ
キシダーゼを用いた第1発明の固定化酵素は、一般的に
その6倍〜12倍濃度である6mMの過酸化水素に対し
て相当時間失活しない。
The oxidizing agent is used in a concentration range permitted by the immobilized enzyme according to the first aspect of the present invention.
It cannot be specified uniformly because it differs depending on reaction conditions such as temperature and pH. However, for example, non-immobilized manganese peroxidase is inactivated by hydrogen peroxide exceeding 0.1 mM, and immobilized by the above-mentioned conventional method. While the immobilized manganese peroxidase is rapidly inactivated by about 0.5 to 1 mM of hydrogen peroxide, the immobilized enzyme of the first invention using the same manganese peroxidase generally has 6 to 12 times the amount. It does not inactivate for a long time against the concentration of 6 mM hydrogen peroxide.

【0024】このような点から、例えば、従来のマンガ
ンペルオキシダーゼを用いたパルプ等の漂白においては
上記のように0.1mM前後の極めて低く狭い過酸化水
素濃度での低効率の処理を余儀なくされ、しかも反応制
御の面から言えば、H22センサーの感度が0.1mM
程度以上であったために、グルコースオキシダーゼ等の
酵素でH22を発生させて制御を行う必要があった。し
かし、第1発明に係る固定化酵素を用いれば、H22
高濃度で使用できるし、又そのために安価な過酸化水素
水の使用で制御可能であると言う大きなメリットを持つ
ことになる。
From such a point, for example, in the conventional bleaching of pulp or the like using manganese peroxidase, as described above, low efficiency treatment at an extremely low and narrow hydrogen peroxide concentration of about 0.1 mM is required. In terms of reaction control, the sensitivity of the H 2 O 2 sensor is 0.1 mM.
Because of the above degree, it was necessary to control by generating H 2 O 2 with an enzyme such as glucose oxidase. However, the use of the immobilized enzyme according to the first invention has a great advantage that H 2 O 2 can be used at a high concentration and can be controlled by using inexpensive hydrogen peroxide water. Become.

【0025】〔固定化酵素〕酸化酵素は、その酵素サイ
ズとほぼ合致した大きさで構造安定性を有する構造ユニ
ット中に固定化して使用される。その際、酵素蛋白質分
子全体が構造ユニット中に固定化されても良く、酵素の
活性ユニット(活性部位を含む酵素の断片)が固定化さ
れても良い。
[Immobilized enzyme] The oxidase is used after being immobilized in a structural unit having a size substantially matching the enzyme size and having structural stability. At that time, the entire enzyme protein molecule may be immobilized in the structural unit, or the active unit of the enzyme (enzyme fragment containing the active site) may be immobilized.

【0026】構造ユニット中に固定化された酸化酵素の
一例を図1に概念化して示す。構造ユニット1はpH,
熱,流体の流動等の環境条件に対して構造安定性を有す
るものであり、その内部に酵素2(酵素の活性ユニット
であっても良い)を固定化している。構造ユニット1の
内径は酵素2の酵素サイズとほぼ合致した大きさである
ことが好ましい。
An example of the oxidase immobilized in the structural unit is schematically shown in FIG. Structural unit 1 has pH,
It has structural stability against environmental conditions such as heat and fluid flow, and has an enzyme 2 (which may be an active unit of the enzyme) immobilized therein. It is preferable that the inner diameter of the structural unit 1 is substantially the same as the enzyme size of the enzyme 2.

【0027】アンカーユニット3は本発明の固定化酵素
において必須の構成要素ではないが、構造ユニット1と
酵素2とを連結する要素であって、構造ユニット1の上
記構造安定性を酵素2に伝えて酵素2の立体構造の大き
な変化による失活を抑制すると共に、基質4との相互作
用に必要な活性部位の比較的小さな構造変化は許容する
程度の自由度を与える。アンカーユニット3を構成する
分子としては構造ユニットと基本的には同じ構造が好ま
しく、酵素に結合するためには例えば水酸基,アミノ
基,ピリジン基,ウレア基,カルボン酸基,ヒドロキシ
ル基等の官能基が結合していることが必要である。
Although the anchor unit 3 is not an essential component in the immobilized enzyme of the present invention, it is an element for linking the structural unit 1 and the enzyme 2, and transmits the structural stability of the structural unit 1 to the enzyme 2. Thus, the inactivation due to a large change in the three-dimensional structure of the enzyme 2 is suppressed, and a relatively small change in the structure of the active site required for the interaction with the substrate 4 gives an acceptable degree of freedom. The molecule constituting the anchor unit 3 preferably has basically the same structure as the structural unit. For binding to an enzyme, for example, functional groups such as a hydroxyl group, an amino group, a pyridine group, a urea group, a carboxylic acid group, and a hydroxyl group Must be connected.

【0028】構造ユニット中に固定化された酸化酵素の
他の一例を図2に概念化して示す。構造ユニット1と酵
素2とは、上記のようなアンカーユニットを介すること
なくvan der Waals 力等により結合している。個々の構
造ユニット1には1個又は少数個の酵素2が収容されて
いる。
Another example of the oxidase immobilized in the structural unit is schematically shown in FIG. The structural unit 1 and the enzyme 2 are bonded by van der Waals force or the like without passing through the anchor unit as described above. Each structural unit 1 contains one or a few enzymes 2.

【0029】図1又は図2に示す上記構造ユニット1は
無機材料あるいはポリマー等の有機材料を以て構成さ
れ、その材料種は、本発明の目的を阻害しない限りにお
いて特段に限定されない。
The structural unit 1 shown in FIG. 1 or FIG. 2 is made of an organic material such as an inorganic material or a polymer, and the kind of the material is not particularly limited as long as the object of the present invention is not hindered.

【0030】無機材料からなる構造ユニットとしては、
例えばケイ酸やアルミナ等の各種金属酸化物、SiとAl等
の金属との複合酸化物等によって構成することができ
る。例えばケイ酸からなる構造ユニットの形成方法とし
て、カネマイト等の層状シリケート,シリカゲル,水ガ
ラス,ケイ酸ソーダ等を好ましく用いることができる。
特に好ましいものは、ケイ酸からなる極めて多数の構造
ユニットの集合体として形成されたメソポーラスシリカ
多孔体である。
As a structural unit made of an inorganic material,
For example, it can be composed of various metal oxides such as silicic acid and alumina, and a composite oxide of a metal such as Si and Al. For example, as a method for forming a structural unit composed of silicic acid, a layered silicate such as kanemite, silica gel, water glass, sodium silicate, or the like can be preferably used.
Particularly preferred is a mesoporous silica porous body formed as an aggregate of an extremely large number of structural units made of silicic acid.

【0031】メソポーラスシリカ多孔体の作製方法は限
定されないが、好ましい例として、無機材料、例えばカ
ネマイト等の層状シリケートを、テンプレート物質であ
る界面活性剤(アルキルトリメチルアンモニウム等の陽
イオン性界面活性剤,アルキルスルホン酸塩等の陰イオ
ン性界面活性剤,ポリエチレングリコール等の非イオン
性界面活性剤を使用可能)と混合反応させ、界面活性剤
のミセルの周囲に無機の骨格が形成された界面活性剤/
無機複合体を形成させた後、例えば400〜600°C
での焼成や有機溶剤抽出等により界面活性剤を除去し、
界面活性剤のミセルと同じ形状のメソポア細孔を無機骨
格中に形成する、と言う方法を挙げることができる。
The method for producing the porous mesoporous silica material is not limited. However, as a preferred example, an inorganic material, for example, a layered silicate such as kanemite, may be added to a surfactant (a cationic surfactant such as alkyltrimethylammonium) as a template substance. (Anionic surfactants such as alkyl sulfonates and nonionic surfactants such as polyethylene glycol can be used.) A surfactant with an inorganic skeleton formed around the micelles of the surfactant /
After forming the inorganic composite, for example, 400 to 600 ° C
Removal of surfactants by baking in water or organic solvent extraction,
A method in which mesopore pores having the same shape as the micelles of the surfactant are formed in the inorganic skeleton.

【0032】カネマイト等の層状シリケートを用いて構
造ユニットを形成する場合、その細孔表面は疎水性とな
り、かつアニオン性を有する。疎水性表面は水和してい
ない酵素の安定的な固定化のために好ましく、アニオン
性表面は表面にアミノ基等のカチオンを有する酵素の固
定化のために好ましい。
When a structural unit is formed using a layered silicate such as kanemite, the surface of the pores becomes hydrophobic and anionic. Hydrophobic surfaces are preferred for stable immobilization of unhydrated enzymes, and anionic surfaces are preferred for immobilization of enzymes having cations such as amino groups on the surface.

【0033】前記のように、構造ユニットは酵素サイズ
とほぼ合致した大きさであることが好ましいが、メソポ
ーラスシリカ多孔体におけるこのような構造ユニットの
サイズ(即ち、細孔径)の調整は、界面活性剤のアルキ
ル鎖の長さを変えることによりミセルの径を調整するこ
とで可能となる。界面活性剤と併せ、トリメチルベンゼ
ン,トリプロピルベンゼン等の比較的疎水性の分子を添
加することにより、ミセルを膨潤させて結果的に大きな
構造ユニットを形成することもできる。細孔径は、通常
は1〜30nm、好ましくは2〜10nmである。
As described above, it is preferable that the size of the structural unit is substantially the same as the size of the enzyme. However, the adjustment of the size (ie, the pore diameter) of such a structural unit in the mesoporous silica porous body depends on the surface activity. It becomes possible by adjusting the micelle diameter by changing the length of the alkyl chain of the agent. By adding relatively hydrophobic molecules, such as trimethylbenzene and tripropylbenzene, in combination with the surfactant, the micelles can be swelled and consequently large structural units can be formed. The pore diameter is usually 1 to 30 nm, preferably 2 to 10 nm.

【0034】以上のようにして構成される固定化酵素の
形態としては、粉末状,顆粒状,シート状,バルク状,
膜状等があり、これを被処理材中への分散投入,被処理
液を通過させるカラムへの充填,被処理液を通過させる
固定床の構成,フィルム,多層集積等の態様で使用する
ことができる。
The form of the immobilized enzyme constituted as described above includes powder, granule, sheet, bulk, and the like.
There is a film form, etc., which is dispersed in the material to be treated, packed in a column through which the liquid to be treated passes, used as a fixed bed structure through which the liquid to be treated passes, integrated into a film or multilayer Can be.

【0035】〔基質〕本発明の処理対象となる基質の種
類は、要するに酸化剤を用いて酸化酵素ペルオキシダー
ゼにより分解可能である限りにおいて限定されず、例え
ばグアヤコール,ピロガロール等のフェノール類などを
任意に基質とすることができる。しかし本発明において
は、社会的に分解処理が望まれている難分解性物質を基
質とする場合が特に好適である。かかる難分解性物質の
2,3の例として、パルプの漂白処理において分解され
るべき着色物質であるリグニン、環境ホルモンとして問
題視されているダイオキシン,ビスフェノールA,ポリ
塩化ビフェニール類(PCB)等を挙げることができ
る。
[Substrate] The type of the substrate to be treated in the present invention is not particularly limited as long as it can be decomposed by the oxidizing enzyme peroxidase using an oxidizing agent. For example, phenols such as guaiacol and pyrogallol can be arbitrarily selected. It can be a substrate. However, in the present invention, it is particularly preferable to use a hardly decomposable substance for which a decomposition treatment is desired in society as a substrate. Examples of a few such hardly decomposable substances include lignin, which is a coloring substance to be decomposed in pulp bleaching, dioxin, bisphenol A, polychlorinated biphenyls (PCB) which are regarded as problems as environmental hormones, and the like. Can be mentioned.

【0036】[0036]

【発明の有益な実施態様】本発明は、以下の実施態様に
おいて、併記する作用・効果を伴って、好ましく実施す
ることができる。
Advantageous Embodiments of the Invention The present invention can be preferably carried out in the following embodiments, together with the actions and effects described below.

【0037】1)酸化酵素ペルオキシダーゼをほぼ合致
したサイズの安定な構造ユニット中に固定化してなる固
定化酵素を用い、その固定化によって許容される濃度範
囲の酸化剤の存在下に基質を分解する基質の酵素的分解
方法。この方法により、基質に対して高濃度の酸化剤を
投入して分解効率を上げることができる。
1) Oxidase Enzyme An immobilized enzyme obtained by immobilizing peroxidase in a stable structural unit of almost the same size is used, and the substrate is decomposed in the presence of an oxidizing agent in a concentration range allowed by the immobilization. A method for enzymatic degradation of a substrate. According to this method, the decomposition efficiency can be increased by adding a high-concentration oxidizing agent to the substrate.

【0038】2)上記基質が難分解性物質である基質の
酵素的分解方法。この場合に特に本発明の実用的価値が
大きい。
2) A method for enzymatically decomposing a substrate in which the substrate is a hardly decomposable substance. In this case, the practical value of the present invention is particularly large.

【0039】3)上記難分解性物質がリグニンである基
質の酵素的分解方法。この場合に特に実用的要求の高い
実施態様を提供できる。
3) A method for enzymatically decomposing a substrate in which the hardly decomposable substance is lignin. In this case, an embodiment with particularly high practical requirements can be provided.

【0040】4)上記ペルオキシダーゼがマンガンペル
オキシダーゼであり、上記酸化剤が過酸化水素である基
質の酵素的分解方法。この方法により、特に有効な酸化
酵素と酸化剤の実施態様が提供される。
4) A method for enzymatically decomposing a substrate wherein the peroxidase is manganese peroxidase and the oxidizing agent is hydrogen peroxide. This method provides particularly effective oxidase and oxidant embodiments.

【0041】5)上記マンガンペルオキシダーゼを用い
た固定化酵素に対して、酸化剤である過酸化水素を6m
Mまでの濃度で用いる基質の酵素的分解方法。この方法
により、酵素の失活回避と基質の高効率分解を特に有効
に両立できる。
5) Hydrogen peroxide as an oxidizing agent was added to the immobilized enzyme using manganese peroxidase for 6 m.
A method for the enzymatic degradation of substrates used at concentrations up to M. By this method, it is possible to particularly effectively avoid the inactivation of the enzyme and efficiently decompose the substrate.

【0042】6)上記構造ユニット中に、酵素又はその
活性ユニットがアンカーユニットを介して固定化されて
いる基質の酵素的分解方法。この場合、酵素の失活の抑
制と酵素作用に必要な立体構造変化とがより有効に確保
される。
6) A method for enzymatically decomposing a substrate in which an enzyme or an active unit thereof is immobilized via an anchor unit in the above structural unit. In this case, the suppression of the inactivation of the enzyme and the change in the three-dimensional structure required for the enzyme action are more effectively ensured.

【0043】7)上記構造ユニットが金属酸化物又は無
機の複合酸化物を以て構成される基質の酵素的分解方
法。この場合、構造ユニットの構造安定性等が特に優れ
る。
7) A method for enzymatically decomposing a substrate in which the above structural unit is composed of a metal oxide or an inorganic composite oxide. In this case, the structural stability of the structural unit is particularly excellent.

【0044】8)上記構造ユニットがメソポーラスシリ
カ多孔体における細孔である基質の酵素的分解方法。こ
の方法により、高い酵素密度による高効率反応と、細孔
表面の疎水性による安定した酵素固定を期待できる。
8) A method for enzymatically decomposing a substrate whose structural unit is a pore in a mesoporous silica porous material. By this method, a highly efficient reaction with a high enzyme density and a stable enzyme immobilization due to the hydrophobicity of the pore surface can be expected.

【0045】9)上記メソポーラスシリカ多孔体が層状
シリケートと界面活性剤を用いる方法で形成される基質
の酵素的分解方法。これによりメソポーラスシリカ多孔
体を効果的に作製できる。
9) A method of enzymatically decomposing a substrate in which the above porous mesoporous silica is formed by a method using a layered silicate and a surfactant. Thereby, a mesoporous silica porous body can be effectively produced.

【0046】10)上記界面活性剤のアルキル鎖長の選
択により構造ユニットのサイズ(細孔径)を酵素とほぼ
合致した大きさに調整する基質の酵素的分解方法。これ
により特に良好に酵素を安定化させることができる。
10) A method of enzymatically decomposing a substrate, wherein the size (pore diameter) of a structural unit is adjusted to a size substantially matching that of an enzyme by selecting the alkyl chain length of the surfactant. This makes it possible to stabilize the enzyme particularly well.

【0047】[0047]

【実施例】〔実施例1:メソポーラスシリカ多孔体の合
〕 (実施例1−1:FSM−50担体の合成)100mL
のビーカーに5.0g(0.028mol)のδ−Na
2Si25(カネマイト)、50mLのイオン交換水を
それぞれ入れ、約25°Cで3時間攪拌することにより
カチオン交換した。その後水溶液を濾過して、沈殿物で
あるδ−Na1.60.4Si25を得た。この沈殿物に5
0mLのイオン交換水を入れて均一な分散液になるまで
攪拌し、これをA液とした。
[ Example 1 ] Synthesis of porous mesoporous silica
Formation] (Example 1-1: Synthesis of FSM-50 support) 100 mL
5.0 g (0.028 mol) of δ-Na
Cation exchange was performed by adding 2 Si 2 O 5 (kanemite) and 50 mL of ion-exchanged water and stirring at about 25 ° C. for 3 hours. Thereafter, the aqueous solution was filtered to obtain a precipitate, δ-Na 1.6 H 0.4 Si 2 O 5 . 5
0 mL of ion-exchanged water was added, and the mixture was stirred until a uniform dispersion was obtained.

【0048】一方、100mLの三角フラスコに3.0
g(0.0082mol)のヘキサデシルトリメチルア
ンモニウムブロマイド(HDTMA−Br)と50mL
のイオン交換水を入れ、60°Cで攪拌して完全に透明
になってから、5.0g(0.025mol)のトリイ
ソプロピルベンゼン(TIPB)を添加して10分間激
しく攪拌し、これをB1液とした。
On the other hand, 3.0 was placed in a 100 mL Erlenmeyer flask.
g (0.0082 mol) of hexadecyltrimethylammonium bromide (HDTMA-Br) and 50 mL
Of ion-exchanged water and stirred at 60 ° C. to become completely transparent, and then 5.0 g (0.025 mol) of triisopropylbenzene (TIPB) was added, and the mixture was stirred vigorously for 10 minutes. Liquid.

【0049】上記A液を250mLの三口フラスコに移
して激しく攪拌しながら、B液を徐々に添加して80°
Cまで昇温させ、続けて3時間恒温反応させた。そして
この反応液のpHを2N塩酸を用いて8.5±0.1ま
で調整しつつ3時間攪拌した後、すぐに濾過して、20
0mLのイオン交換水で5回洗浄濾過した。
The solution A was transferred to a 250 mL three-necked flask, and while stirring vigorously, the solution B was gradually added to the flask to 80 ° C.
C, followed by a constant temperature reaction for 3 hours. After stirring for 3 hours while adjusting the pH of the reaction solution to 8.5 ± 0.1 using 2N hydrochloric acid, the solution was immediately filtered,
The mixture was washed and filtered five times with 0 mL of ion-exchanged water.

【0050】濾別された生成物(白い粉末)を45°C
で24時間風乾させ、その後550°Cの電気炉で6時
間焼成し、テンプレート物質を除いたメソポーラスシリ
カ多孔体約3.5gを得た。この多孔体の構造をX線回
折装置(理学RAD−B)で確認し、多孔体の細孔径や
表面積及び細孔総容積を窒素ガス吸着装置(Autosorbmp
-1 )で測定した。測定の詳細は省略するが、細孔径に
ついては、ほぼ均一に約50Åであった。この多孔体を
「FSM−50担体」と呼ぶ。
The product (white powder) filtered off is kept at 45 ° C.
For 24 hours, and then calcined in an electric furnace at 550 ° C. for 6 hours to obtain about 3.5 g of mesoporous silica porous material excluding the template substance. The structure of this porous body was confirmed with an X-ray diffractometer (Rigaku RAD-B), and the pore diameter, surface area and total pore volume of the porous body were measured using a nitrogen gas adsorber (Autosorbmp).
-1). Although the details of the measurement are omitted, the pore diameter was approximately 50 ° almost uniformly. This porous body is called “FSM-50 carrier”.

【0051】(実施例1−2:FSM−70担体の合
)上記実施例1−1と同じA液を準備する一方、10
0mLの三角フラスコに4.0g(0.01mol)の
ドコシルトリメチルアンモニウムクロライド(DTMA
−Cl)と50mLのイオン交換水を入れ、60°Cで
攪拌して完全に透明になってから、8.0g(0.04
mol)のTIPBを添加して、10分間激しく攪拌
し、この葉腋を60°Cで保持して、これをB2液とし
た。
Example 1-2: Combination of FSM-70 carrier
Adult) while preparing the same A solution to the aforementioned Example 1-1, 10
In a 0 mL Erlenmeyer flask, 4.0 g (0.01 mol) of docosyltrimethylammonium chloride (DTMA) was added.
-Cl) and 50 mL of ion-exchanged water, and stirred at 60 ° C. to become completely transparent.
mol) of TIPB, and the mixture was vigorously stirred for 10 minutes. The axilla was maintained at 60 ° C. to obtain a B2 solution.

【0052】A液及びB2液について、前記実施例1−
1におけるA液及びB1液について行ったのと同じ操作
を加え、得られた生成物を同様に風乾及び焼成して、メ
ソポーラスシリカ多孔体約4.5gを得た。この多孔体
について実施例1−1と同様の構造確認と測定を行っ
た。測定の詳細は省略するが、細孔径についてはほぼ均
一に約70Åであり、この多孔体を「FSM−70担
体」と呼ぶ。
For the solution A and the solution B2, the above-mentioned Example 1 was used.
The same operation as performed for the liquid A and the liquid B1 in 1 was added, and the obtained product was similarly air-dried and calcined to obtain about 4.5 g of a mesoporous silica porous material. This porous body was subjected to the same structure confirmation and measurement as in Example 1-1. Although the details of the measurement are omitted, the pore diameter is almost uniformly about 70 °, and this porous body is called “FSM-70 carrier”.

【0053】(実施例1−3:FSM−90担体の合
)上記実施例1−2においてB液の調製過程で使用し
たTIPBの使用量を8.0g(0.04mol)から
16.0g(0.08mol)に変更した点以外は全て
実施例1−2と同様の操作を行い、メソポーラスシリカ
多孔体約4.5gを得た。この多孔体について実施例1
−1と同様の構造確認と測定を行った。測定の詳細は省
略するが、細孔径についてはほぼ均一に約90Åであ
り、この多孔体を「FSM−90担体」と呼ぶ。
Example 1-3: Combination of FSM-90 carrier
All except that the amount of TIPB used in the preparation process of the liquid B in the adult) above Example 1-2 was changed from 8.0 g (0.04 mol) in 16.0 g (0.08 mol) Example 1 By performing the same operation as in Step 2, about 4.5 g of mesoporous silica porous material was obtained. Example 1 of this porous body
The same structure confirmation and measurement as in -1 were performed. Although the details of the measurement are omitted, the pore diameter is almost uniformly about 90 °, and this porous body is called “FSM-90 carrier”.

【0054】〔実施例2:FSM−MnP等の調製〕白
色腐朽菌を培養して得たマンガンペルオキシダーゼ(M
nP)をpH4.5の50mMコハク酸ナトリウム緩衝
液によって0.2mg/mLに調製した。そしてこの酵
素溶液それぞれ約70mLを、上記「FSM−50担
体」,「FSM−70担体」,「FSM−90担体」の
粉末それぞれ200mgに対して加え、4°Cで緩やか
に16時間以上混和してから遠心分離し、更に脱イオン
水で3回洗浄して、固定化酵素(MnPの結合した各F
SM担体)を得た。
[ Example 2: Preparation of FSM-MnP and the like ] Manganese peroxidase (M
nP) was adjusted to 0.2 mg / mL with 50 mM sodium succinate buffer at pH 4.5. Then, about 70 mL of each of the enzyme solutions is added to 200 mg of the powder of the above-mentioned "FSM-50 carrier", "FSM-70 carrier", and "FSM-90 carrier", and gently mixed at 4 ° C for 16 hours or more. After centrifugation, and washing three times with deionized water, the immobilized enzyme (MnP-bound F
SM carrier).

【0055】固定化担体が異なる(具体的には、メソポ
ーラスシリカ多孔体の細孔径が互いに異なる)上記3種
類の固定化酵素を一括して「FSM−MnP」と呼び、
又、これらを互いに呼び分けるときは、FSM−50担
体を用いたFSM−MnPを単に「FSM−50/Mn
P」、FSM−70担体を用いたFSM−MnPを単に
「FSM−70/MnP」、FSM−90担体を用いた
FSM−MnPを単に「FSM−90/MnP」と呼
ぶ。
The above three types of immobilized enzymes having different immobilized carriers (specifically, the pore diameters of the mesoporous silica porous materials are different from each other) are collectively referred to as “FSM-MnP”.
When these are referred to each other, FSM-MnP using FSM-50 carrier is simply referred to as “FSM-50 / MnP”.
P ", FSM-MnP using the FSM-70 support is simply referred to as" FSM-70 / MnP ", and FSM-MnP using the FSM-90 support is simply referred to as" FSM-90 / MnP ".

【0056】一方、「Applied Biochemistry and Biote
chnology,60巻、1−17ページ、1996年」に記
載の方法に従って、上記FSM−MnPの場合と同じマ
ンガンペルオキシダーゼを上記と同じ重量当たりの酵素
量となるようにポリマーに固定化した固定化酵素を準備
した。これを以下、「 Emphaze」と呼び、比較例用の固
定化酵素として用いる。
On the other hand, "Applied Biochemistry and Biote
chnology, vol. 60, pp. 1-17, 1996 ", the same manganese peroxidase as in the case of FSM-MnP was immobilized on a polymer so as to have the same amount of enzyme per weight as described above. Was prepared. This is hereinafter referred to as "Emphaze" and is used as an immobilized enzyme for a comparative example.

【0057】又、富士シリシア社製のシリカゲル5D
(平均細孔径190Å)を用いて、上記FSM−MnP
の場合と同じマンガンペルオキシダーゼを上記と同じ重
量当たりの酵素量となるように固定化した固定化酵素を
準備した。これを以下、「シリカゲル(silica gel)」
と呼び、これも比較例用の固定化酵素として用いる。
Also, silica gel 5D manufactured by Fuji Silysia Ltd.
(Average pore diameter 190 °) using the above FSM-MnP
An immobilized enzyme was prepared by immobilizing the same amount of manganese peroxidase as in the case of the above so that the amount of the enzyme per weight was the same as above. This is hereinafter referred to as "silica gel"
This is also used as an immobilized enzyme for a comparative example.

【0058】〔実施例3:FSM−MnPの評価〕 (実施例3−1:酸化剤存在下におけるFSM−MnP
のpH安定性)5mgのFSM−70/MnPに、50
mMの種々にpHの異なる緩衝液を90μL加えて、3
7°Cで1時間処理し、固形分を遠心分離した後に50
0μLのイオン交換水で洗浄した。このFSM−70/
MnPに、基質として0.5mMのMnSO4と2mM
のシュウ酸ナトリウム及び0.1mMの過酸化水素を含
む25mMのコハク酸緩衝液(pH4.5)950μL
を加えて、37°Cで5分間反応させ、その後5分間遠
心し、上清の270nmの吸光度(酵素反応生成物であ
る3価マンガンの錯体)を測定した。この測定値を以て
FSM−70/MnPの酵素活性を評価し、図1におい
て最大活性値を100とする相対数値(図1で「相対活
性」と表記した)によってプロットした。
Example 3 Evaluation of FSM-MnP Example 3-1: FSM-MnP in the Presence of an Oxidizing Agent
PH stability ) 5 mg of FSM-70 / MnP, 50
Add 90 μL of mM buffer solution with different pH, add
Treat at 7 ° C for 1 hour, and centrifuge the solid
Washing was performed with 0 μL of ion-exchanged water. This FSM-70 /
In MnP, 0.5 mM MnSO 4 as a substrate and 2 mM
950 μL of a 25 mM succinate buffer (pH 4.5) containing 0.1 mM of sodium oxalate and 0.1 mM of hydrogen peroxide
Was added, the mixture was reacted at 37 ° C. for 5 minutes, and then centrifuged for 5 minutes, and the absorbance of the supernatant at 270 nm (complex of trivalent manganese which is an enzyme reaction product) was measured. The enzyme activity of FSM-70 / MnP was evaluated based on the measured values, and plotted using relative values (shown as "relative activity" in FIG. 1) with the maximum activity value as 100 in FIG.

【0059】又、非固定化マンガンペルオキシダーゼ4
ユニットに50mMの種々にpHの異なる緩衝液を90
μL加えて、37°Cで1時間処理し、このうち5μL
を用いて同様の反応を行い、同様に吸光度を測定し、図
1に表記した。更に、上記の「 Emphaze」5mgについ
ても、FSM−70/MnPと同様に処理して反応さ
せ、同様に吸光度を測定し、図1に表記した。
Also, non-immobilized manganese peroxidase 4
The units are buffered with 50 mM of different pH buffer
Add 1 μL and treat at 37 ° C for 1 hour.
, And the absorbance was measured in the same manner as shown in FIG. Further, 5 mg of “Emphaze” was treated and reacted in the same manner as FSM-70 / MnP, and the absorbance was measured in the same manner, and the results are shown in FIG.

【0060】図1に示すように、図に「Native」として
表記する非固定化マンガンペルオキシダーゼと「 Empha
ze」とでは殆ど差異がなく、これらの両者に対して、
「FSM−70/MnP」はpH4を超える領域におい
て顕著なpH安定性が認められた。
As shown in FIG. 1, non-immobilized manganese peroxidase designated as “Native” and “Empha
ze "and there is almost no difference.
"FSM-70 / MnP" had remarkable pH stability in a region exceeding pH4.

【0061】(実施例3−2:酸化剤存在下におけるF
SM−MnPの経時的安定性)5mgのFSM−70/
MnPに25mMのコハク酸緩衝液(pH4.5)20
0μLを加えて、60°Cで種々に異なる時間処理し、
固形分を遠心分離した後に500μLの脱イオン水で洗
浄した。
( Example 3-2: F in the presence of an oxidizing agent)
Stability over time of SM-MnP ) 5 mg of FSM-70 /
25 mM succinate buffer (pH 4.5) 20 in MnP
Add 0 μL and treat at 60 ° C. for various times,
The solid was centrifuged and washed with 500 μL of deionized water.

【0062】このFSM−70/MnPに、基質として
0.5mMのMnSO4と2mMのシュウ酸ナトリウム
及び0.1mMの過酸化水素を含む25mMのコハク酸
緩衝液(pH4.5)950μLを加えて、37°Cで
5分間反応させ、その後5分間遠心し、上清の270n
mの吸光度(酵素反応生成物である3価マンガンの錯
体)を測定した。この測定値を以てFSM−70/Mn
Pの酵素活性を評価し、図2において最大活性値を10
0とする相対数値(図2で「相対活性」と表記した)に
よってプロットした。
To this FSM-70 / MnP was added 950 μL of a 25 mM succinate buffer (pH 4.5) containing 0.5 mM MnSO 4 , 2 mM sodium oxalate and 0.1 mM hydrogen peroxide as a substrate. , 37 ° C. for 5 minutes, and then centrifuged for 5 minutes.
m (the complex of trivalent manganese which is an enzyme reaction product) was measured. FSM-70 / Mn
The enzyme activity of P was evaluated.
It was plotted by a relative value of 0 (indicated as “relative activity” in FIG. 2).

【0063】又、非固定化マンガンペルオキシダーゼ4
ユニットに50mMのpH4.5のコハク酸緩衝液を5
0μL加えて、60°Cで上記同様の種々の時間処理
し、このうち2.5μLを用いて同様の反応を行い、同
様に吸光度を測定し、図2に表記した。更に、上記の
「 Emphaze」及び「silica gel」各5mgについても、
FSM−70/MnPと同様に処理して反応させ、同様
に吸光度を測定し、図2に表記した。
Further, non-immobilized manganese peroxidase 4
Add 5 mM 50 mM succinate buffer pH 4.5 to the unit.
0 μL was added and the mixture was treated at 60 ° C. for various times as described above. Among them, the same reaction was performed using 2.5 μL, and the absorbance was measured in the same manner, and the results are shown in FIG. Furthermore, for each of the above-mentioned "Emphaze" and "silica gel" 5 mg,
The same treatment and reaction as in FSM-70 / MnP were performed, and the absorbance was measured in the same manner, and the results are shown in FIG.

【0064】図2に示すように、図に「Native」として
表記する非固定化マンガンペルオキシダーゼは経時的安
定性が極めて低く、「 Emphaze」や「silica gel」にお
いてもかなり迅速に活性が低下するが、「FSM−70
/MnP」では2時間経過後においても約70%の相対
活性を維持していた。
As shown in FIG. 2, the non-immobilized manganese peroxidase, which is indicated as “Native” in the figure, has extremely low stability over time, and its activity is reduced quite rapidly even in “Emphaze” and “silica gel”. , "FSM-70
/ MnP "maintained a relative activity of about 70% even after 2 hours.

【0065】(実施例3−3:酸化剤存在下におけるF
SM−MnPの熱安定性)各5mgのFSM−50/M
nP,FSM−70/MnP及びFSM−90/MnP
に、それぞれ25mMのコハク酸緩衝液(pH4.5)
200μLを加えて、種々に異なる温度で1時間処理
し、遠心分離した後、更に500μLの脱イオン水で洗
浄した。
( Example 3-3: F in the presence of an oxidizing agent)
Thermal stability of SM-MnP ) FSM-50 / M of 5 mg each
nP, FSM-70 / MnP and FSM-90 / MnP
In each case, a 25 mM succinate buffer (pH 4.5)
After adding 200 μL, the mixture was treated at various temperatures for 1 hour, centrifuged, and further washed with 500 μL of deionized water.

【0066】これらの各FSM−MnPにそれぞれ、基
質として0.5mMのMnSO4と2mMのシュウ酸ナ
トリウム及び0.1mMの過酸化水素を含む25mMの
コハク酸緩衝液(pH4.5)950μLを加えて、3
7°Cで5分間反応させ、その後5分間遠心し、上清の
270nmの吸光度(酵素反応生成物である3価マンガ
ンの錯体)を測定した。この測定値を以て各FSM−M
nPの酵素活性を評価し、図3において最大活性値を1
00とする相対数値(図3で「相対活性」と表記した)
によってプロットした。
To each of these FSM-MnPs, 950 μL of a 25 mM succinate buffer (pH 4.5) containing 0.5 mM MnSO 4 , 2 mM sodium oxalate and 0.1 mM hydrogen peroxide as a substrate was added. And 3
The mixture was reacted at 7 ° C. for 5 minutes and then centrifuged for 5 minutes, and the absorbance of the supernatant at 270 nm (complex of trivalent manganese which is an enzyme reaction product) was measured. Each FSM-M
The enzyme activity of nP was evaluated, and in FIG.
Relative value of 00 (indicated as "relative activity" in FIG. 3)
Plotted by

【0067】又、非固定化マンガンペルオキシダーゼ4
ユニットに50mMのpH4.5のコハク酸緩衝液を5
0μL加えて、上記同様の種々に異なる温度で1時間処
理し、このうち2.5μLを用いて同様の反応を行い、
同様に吸光度を測定し、図3に表記した。
Further, non-immobilized manganese peroxidase 4
Add 5 mM 50 mM succinate buffer pH 4.5 to the unit.
0 μL was added thereto, and the mixture was treated for 1 hour at various different temperatures as described above, and the same reaction was carried out using 2.5 μL of the mixture.
The absorbance was measured in the same manner and shown in FIG.

【0068】図3に示すように、図に「Native」として
表記する非固定化マンガンペルオキシダーゼと各FSM
−MnPとでは、比較的高温度域において有意の差が認
められた。又、各FSM−MnP同士間では、マンガン
ペルオキシダーゼの酵素直径とほぼ合致する細孔径を有
する「FSM−70/MnP」が特に優れていた。
As shown in FIG. 3, non-immobilized manganese peroxidase indicated as “Native” in the figure and each FSM
A significant difference was observed between -MnP in a relatively high temperature range. Further, among the FSM-MnPs, “FSM-70 / MnP” having a pore diameter almost matching the enzyme diameter of manganese peroxidase was particularly excellent.

【0069】(実施例3−4:酸化剤存在下におけるF
SM−MnPの経時的安定性)各5mgのFSM−50
/MnP,FSM−70/MnP及びFSM−90/M
nPに、それぞれ200mMのコハク酸緩衝液(pH
4.5)200μLを加えて、60°Cで種々に異なる
時間処理し、遠心分離した後、更に500μLの脱イオ
ン水で洗浄した。
( Example 3-4: F in the presence of an oxidizing agent)
Stability over time of SM-MnP ) 5 mg FSM-50 each
/ MnP, FSM-70 / MnP and FSM-90 / M
nP was added to a 200 mM succinate buffer (pH
4.5) 200 μL was added, the mixture was treated at 60 ° C. for various times, centrifuged, and further washed with 500 μL of deionized water.

【0070】これらの各FSM−MnPにそれぞれ、基
質として0.5mMのMnSO4と2mMのシュウ酸ナ
トリウム及び0.1mMの過酸化水素を含む25mMの
コハク酸緩衝液(pH4.5)950μLを加えて、3
7°Cで5分間反応させ、その後5分間遠心し、上清の
270nmの吸光度(酵素反応生成物である3価マンガ
ンの錯体)を測定した。この測定値を以て各FSM−M
nPの酵素活性を評価し、図4において経過時間0にお
ける活性値を100とする相対数値(図4で「相対活
性」と表記した)によってプロットした。
To each of these FSM-MnPs, 950 μL of a 25 mM succinate buffer (pH 4.5) containing 0.5 mM MnSO 4 , 2 mM sodium oxalate and 0.1 mM hydrogen peroxide as a substrate was added. And 3
The mixture was reacted at 7 ° C. for 5 minutes and then centrifuged for 5 minutes, and the absorbance of the supernatant at 270 nm (complex of trivalent manganese which is an enzyme reaction product) was measured. Each FSM-M
The enzymatic activity of nP was evaluated, and plotted as a relative value (shown as "relative activity" in FIG. 4) with the activity value at elapsed time 0 as 100 in FIG.

【0071】又、非固定化マンガンペルオキシダーゼ4
ユニットに50mMのpH4.5のコハク酸緩衝液を5
0μL加えて、60°Cで上記同様の種々の時間処理
し、このうち2.5μLを用いて同様の反応を行い、同
様に吸光度を測定し、図4に表記した。
Further, non-immobilized manganese peroxidase 4
Add 5 mM 50 mM succinate buffer pH 4.5 to the unit.
0 μL was added, and the mixture was treated at 60 ° C. for various times as described above. Of these, 2.5 μL was used for the same reaction, and the absorbance was measured in the same manner, and the results were shown in FIG.

【0072】図4に示すように、図に「Native」として
表記する非固定化マンガンペルオキシダーゼと各FSM
−MnPとでは経時的安定性に顕著な差異が認められ
た。又、各FSM−MnP同士間では「FSM−70/
MnP」が特に優れていた。
As shown in FIG. 4, non-immobilized manganese peroxidase indicated as “Native” in the figure and each FSM
A remarkable difference in stability over time was observed with -MnP. Also, between each FSM-MnP, "FSM-70 /
MnP "was particularly excellent.

【0073】(実施例3−5:FSM−MnPの酸化剤
濃度に対する安定性)2mgのFSM−70/MnP
に、基質として、0.5mMのMnSO4と2mMのシ
ュウ酸ナトリウムを共通して含み、かつそれぞれ種々の
濃度の過酸化水素を含む25mMのコハク酸緩衝液(p
H4.5)950μLを加えて、37°Cで5分間反応
させ、その後5分間遠心し、上清の270nmの吸光度
(酵素反応生成物である3価マンガンの錯体)を測定し
た。この測定値を以てFSM−70/MnPの酵素活性
を評価し、図5において過酸化水素濃度が0であるとき
の吸光度に対する相対的な比吸光度(図5で「相対活
性」と表記した)によってプロットした。
( Example 3-5: Oxidizing agent for FSM-MnP)
Stability against concentration ) 2 mg of FSM-70 / MnP
In addition, as a substrate, a 25 mM succinate buffer (p.m.) containing 0.5 mM MnSO 4 and 2 mM sodium oxalate in common and containing various concentrations of hydrogen peroxide, respectively.
H4.5) 950 μL was added, the mixture was reacted at 37 ° C. for 5 minutes, and then centrifuged for 5 minutes, and the absorbance of the supernatant at 270 nm (complex of trivalent manganese which is an enzyme reaction product) was measured. The enzyme activity of FSM-70 / MnP was evaluated using these measured values, and plotted by the relative specific absorbance (shown as “relative activity” in FIG. 5) with respect to the absorbance when the hydrogen peroxide concentration was 0 in FIG. did.

【0074】又、非固定化マンガンペルオキシダーゼ3
ユニットに上記同様の種々の濃度の過酸化水素を含む緩
衝液を加え、同様の反応を行って吸光度を測定し、図5
に表記した。更に、上記の「 Emphaze」2mgについて
も、FSM−70/MnPと同様に処理して反応させ、
同様に吸光度を測定し、図5に表記した。
Further, non-immobilized manganese peroxidase 3
Buffers containing various concentrations of hydrogen peroxide as described above were added to the unit, and the same reaction was carried out, and the absorbance was measured.
Notation. Furthermore, 2 mg of the above “Emphaze” was also treated and reacted in the same manner as FSM-70 / MnP,
The absorbance was measured in the same manner and shown in FIG.

【0075】図5に示すように、図に「Native」として
表記する非固定化マンガンペルオキシダーゼと「 Empha
ze」は過酸化水素濃度0.5mMにおいて既に顕著な失
活を示すが、これらの両者に対して「FSM−70/M
nP」は最大6mMの過酸化水素濃度においても有効な
活性を維持している。
As shown in FIG. 5, non-immobilized manganese peroxidase indicated as “Native” in the figure and “Empha
"ze" already shows a significant inactivation at a hydrogen peroxide concentration of 0.5 mM, whereas both of these "FSM-70 / M"
"nP" maintains effective activity even at a maximum hydrogen peroxide concentration of 6 mM.

【0076】なお、各例とも過酸化水素の極めて低濃度
域では十分な活性を示さないが、これは酸化剤の絶対量
の不足によるものであり、酵素の活性低下を意味しな
い。
In each case, sufficient activity is not exhibited in a very low concentration region of hydrogen peroxide, but this is due to a shortage of the absolute amount of the oxidizing agent, and does not mean a decrease in the activity of the enzyme.

【0077】〔実施例4:パルプの漂白〕FSM−70
/MnPのやや粗い粒状体をカラムに充填し、これに3
9°Cの緩衝液〔50mMマロン酸バッファー(pH
4.5)、0.1mM硫酸マンガン、0.05%Twe
en80、0.1mM過酸化水素〕を200mL/h
r.の流速で1時間流下させることにより、連続的に3
価マンガンを生成させた。そしてこの流下液を1%未晒
しパルプの収容された反応槽に連続的に送り込むことに
より、パルプの漂白を行った。これらの操作はいずれも
39°Cで行った。
Example 4 Pulp Bleaching FSM-70
/ MnP is packed into a column with slightly coarse particles,
9 ° C buffer [50 mM malonic acid buffer (pH
4.5), 0.1 mM manganese sulfate, 0.05% Twe
en80, 0.1 mM hydrogen peroxide] at 200 mL / h
r. At a flow rate of 1 hour for 3 hours continuously.
Manganese manganese was produced. The effluent was bleached by continuously feeding 1% of the falling liquid to a reaction tank containing the pulp. All of these operations were performed at 39 ° C.

【0078】一方、比較例として、酵素が固定されてい
ないFSM−70担体のやや粗い粒状体を充填したカラ
ムにも同上の緩衝液の流下を行い、流下液を用いて同じ
パルプ漂白試験を行った。
On the other hand, as a comparative example, the same buffer solution was flowed down to a column packed with somewhat coarse granular material of the FSM-70 carrier on which the enzyme was not immobilized, and the same pulp bleaching test was performed using the flow-down solution. Was.

【0079】これらの結果を、漂白試験開始後の反応時
間の経過に対するパルプの白色度(%)の変化として、
図6のグラフ線図に示したが、「●」でプロットした本
実施例ではパルプの白色度が有効に向上し、「×」でプ
ロットした比較例に対して有意の差が認められた。
These results are expressed as changes in pulp whiteness (%) with respect to the elapse of the reaction time after the start of the bleaching test.
As shown in the graph of FIG. 6, the whiteness of the pulp was effectively improved in the present example plotted with “●”, and a significant difference was recognized from the comparative example plotted with “x”.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る固定化酵素の活性評価を示すグラ
フ線図である。
FIG. 1 is a graph showing the activity evaluation of an immobilized enzyme according to the present invention.

【図2】本発明に係る固定化酵素の活性評価を示すグラ
フ線図である。
FIG. 2 is a graph showing the evaluation of the activity of the immobilized enzyme according to the present invention.

【図3】本発明に係る固定化酵素の活性評価を示すグラ
フ線図である。
FIG. 3 is a graph showing the evaluation of the activity of the immobilized enzyme according to the present invention.

【図4】本発明に係る固定化酵素の活性評価を示すグラ
フ線図である。
FIG. 4 is a graph showing the evaluation of the activity of the immobilized enzyme according to the present invention.

【図5】本発明に係る固定化酵素の活性評価を示すグラ
フ線図である。
FIG. 5 is a graph showing the activity evaluation of the immobilized enzyme according to the present invention.

【図6】本発明に係る固定化酵素のパルプ漂白試験結果
を示すグラフ線図である。
FIG. 6 is a graph showing the results of a pulp bleaching test of the immobilized enzyme according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笹木 俊哉 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 リ ボウ 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4B033 NA01 NA23 NB03 NB12 NB24 NB68 NC04 NC12 ND04 4L055 AD10 AD17 AD20 AG05 AG94 AG95 AH50 BB20 BB25 EA18 FA05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshiya Sasaki 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory, Inc. No. 41 at Yokomichi 1 F-term in Toyota Central R & D Laboratories, Inc. (Reference) 4B033 NA01 NA23 NB03 NB12 NB24 NB68 NC04 NC12 ND04 4L055 AD10 AD17 AD20 AG05 AG94 AG95 AH50 BB20 BB25 EA18 FA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤を用いて酸化酵素ペルオキシダー
ゼにより酵素基質を分解する方法において、 酵素サイズとほぼ合致した大きさで構造安定性を有する
構造ユニット中に前記酸化酵素を固定化してなる固定化
酵素を用い、その固定化によって許容される濃度範囲の
酸化剤の存在下に前記基質を分解することを特徴とする
基質の酵素的分解方法。
1. A method for decomposing an enzyme substrate with an oxidase peroxidase using an oxidizing agent, comprising immobilizing the oxidase in a structural unit having a size substantially matching the size of the enzyme and having structural stability. A method for enzymatically decomposing a substrate, comprising decomposing the substrate using an enzyme in the presence of an oxidizing agent in a concentration range allowed by the immobilization.
【請求項2】 前記基質が難分解性物質であることを特
徴とする請求項1に記載の基質の酵素的分解方法。
2. The method according to claim 1, wherein the substrate is a hardly decomposable substance.
【請求項3】 前記難分解性物質がリグニンであること
を特徴とする請求項2に記載の基質の酵素的分解方法。
3. The method according to claim 2, wherein the hardly decomposable substance is lignin.
【請求項4】 前記構造ユニットがメソポーラスシリカ
多孔体における細孔であることを特徴とする請求項1〜
請求項3のいずれかに記載の基質の酵素的分解方法。
4. The method according to claim 1, wherein the structural unit is a pore in a mesoporous silica porous material.
A method for enzymatically decomposing a substrate according to claim 3.
JP31302699A 1999-10-28 1999-11-02 Enzymatic decomposition of substrate Pending JP2001128672A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31302699A JP2001128672A (en) 1999-11-02 1999-11-02 Enzymatic decomposition of substrate
CN 00815117 CN1384889A (en) 1999-10-28 2000-10-30 Reaction method, reaction apparatus and enzyme
EP00970199A EP1251184A1 (en) 1999-10-28 2000-10-30 Reaction method, reaction apparatus and enzyme
CA002389212A CA2389212A1 (en) 1999-10-28 2000-10-30 Reaction method, reaction apparatus and enzyme
PCT/JP2000/007618 WO2001031066A1 (en) 1999-10-28 2000-10-30 Reaction method, reaction apparatus and enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31302699A JP2001128672A (en) 1999-11-02 1999-11-02 Enzymatic decomposition of substrate

Publications (1)

Publication Number Publication Date
JP2001128672A true JP2001128672A (en) 2001-05-15

Family

ID=18036334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31302699A Pending JP2001128672A (en) 1999-10-28 1999-11-02 Enzymatic decomposition of substrate

Country Status (1)

Country Link
JP (1) JP2001128672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041973A (en) * 2008-08-14 2010-02-25 National Institute Of Advanced Industrial & Technology Microreactor carrying enzyme-silica-based nanoporous material composite and method for producing the same
US7919263B2 (en) 2003-08-19 2011-04-05 Canon Kabushiki Kaisha Organic material-immobiling structure and method for production of the same, and peptide and DNA therefor
JP2012143182A (en) * 2011-01-12 2012-08-02 Funai Electric Advanced Applied Technology Research Institute Inc Paper-like bio-device and bioreactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919263B2 (en) 2003-08-19 2011-04-05 Canon Kabushiki Kaisha Organic material-immobiling structure and method for production of the same, and peptide and DNA therefor
JP2010041973A (en) * 2008-08-14 2010-02-25 National Institute Of Advanced Industrial & Technology Microreactor carrying enzyme-silica-based nanoporous material composite and method for producing the same
JP2012143182A (en) * 2011-01-12 2012-08-02 Funai Electric Advanced Applied Technology Research Institute Inc Paper-like bio-device and bioreactor

Similar Documents

Publication Publication Date Title
Mahmoodi et al. Clean Laccase immobilized nanobiocatalysts (graphene oxide-zeolite nanocomposites): From production to detailed biocatalytic degradation of organic pollutant
Lou et al. Construction of co-immobilized laccase and mediator based on MOFs membrane for enhancing organic pollutants removal
Goradia et al. The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates
Shchukin et al. Photocatalytic processes in spatially confined micro-and nanoreactors
Bautista et al. Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene
Lei et al. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin− glutaraldehyde matrix on a glassy carbon electrode surface
Lei et al. Characterization of functionalized nanoporous supports for protein confinement
Balistreri et al. Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature and organic solvents
Raja et al. Oxyhalogenation of aromatics over copper phthalocyanines encapsulated in zeolites
Cheng et al. Polydopamine tethered CPO/HRP-TiO2 nano-composites with high bio-catalytic activity, stability and reusability: Enzyme-photo bifunctional synergistic catalysis in water treatment
Jung et al. Oxidation of indole using chloroperoxidase and glucose oxidase immobilized on SBA-15 as tandem biocatalyst
EP0158909A2 (en) Immobilized enzymes, processes for preparing same and use thereof
GB2313597A (en) Inorganic carrier, for the immobilisation of enzymes, comprising a coupling agent having a carboxylic ester linkage
Gao et al. Enhancing the catalytic performance of chloroperoxidase by co-immobilization with glucose oxidase on magnetic graphene oxide
Bódalo et al. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization
Yan et al. Recent progress on immobilization of enzymes on molecular sieves for reactions in organic solvents
Kurtuldu et al. Immobilization horseradish peroxidase onto UiO-66-NH2 for biodegradation of organic dyes
Morishita et al. Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation
JP2001128672A (en) Enzymatic decomposition of substrate
Xu et al. Recent advances in enzyme immobilization based on nanoflowers
Ikeda et al. Asymmetrically modified titanium (IV) oxide particles having both hydrophobic and hydrophilic parts of their surfaces for liquid–liquid dual-phase photocatalytic reactions
Aoun et al. Noncovalent immobilization of chloroperoxidase onto talc: Catalytic properties of a new biocatalyst
Lu et al. Enzymatic-photocatalytic synergetic effect on the decolorization of dyes by single chloroperoxidase molecule immobilization on TiO2 mesoporous thin film
Czyzewska et al. A catalytic membrane used for H2O2 decomposition
CN116409885A (en) Hydrogen bond organic framework enzyme biological composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303