JP2001126905A - Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor - Google Patents

Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor

Info

Publication number
JP2001126905A
JP2001126905A JP30943599A JP30943599A JP2001126905A JP 2001126905 A JP2001126905 A JP 2001126905A JP 30943599 A JP30943599 A JP 30943599A JP 30943599 A JP30943599 A JP 30943599A JP 2001126905 A JP2001126905 A JP 2001126905A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
ferrite
wave absorbing
plate
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30943599A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tamai
敏幸 玉井
Toshihiro Kuroki
俊宏 黒木
Shuichi Arakawa
修一 荒川
Norishige Hayashi
則茂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP30943599A priority Critical patent/JP2001126905A/en
Publication of JP2001126905A publication Critical patent/JP2001126905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thin-plate material which has sufficient electromagnetic wave absorptivity and is collectively formed integrally by dispersively mixing ferrite of low cost into a matrix and molding its mixture. SOLUTION: A thin-plate material having electromagnetic wave absorptivity contains cement, a siliceous material, a fiber stiffener and ferrite, and the content of the ferrite is set at 20-80 wt.%. In this manufacturing method of the thin-plate material having electromagnetic wave absorptivity, a kneading material where water is added in a powder material in which cement, the siliceous material, the fiber stiffener and ferrite are mixed is extrusion-molded, and the thin-plate material is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁波吸収性能、
不燃性能および断熱性能等を備えた薄板材とその製造方
法に関するもので、たとえば、この薄板材は、建築物の
換気用あるいはブラインド用のルーバとして利用でき
る。
TECHNICAL FIELD The present invention relates to an electromagnetic wave absorption performance,
The present invention relates to a thin plate having non-combustibility, heat insulating performance, and the like and a method of manufacturing the same. For example, the thin plate can be used as a louver for ventilation or blinds of a building.

【0002】[0002]

【従来の技術】近年、大都市に限らず地方都市において
も数多くの高層ビルが建設されている。また、経済諸活
動においてコミュニケーションが活発になり、数多くの
通信機器が使用されている。このような、高層建築物の
急増および通信活動の活発化に伴って、電磁波を受信す
る通信機器や映像機器に多くの受信障害が発生してい
る。この受信障害によって、例えば、テレビ画面に二重
の画像が映るゴースト現象や、携帯電話や無線LANの
誤動作を招くことがある。
2. Description of the Related Art In recent years, many high-rise buildings have been constructed not only in large cities but also in local cities. In addition, communication has become active in economic activities, and many communication devices have been used. With such a rapid increase in high-rise buildings and an increase in communication activities, many reception failures have occurred in communication devices and video devices that receive electromagnetic waves. The reception failure may cause, for example, a ghost phenomenon in which a double image is displayed on a television screen or a malfunction of a mobile phone or a wireless LAN.

【0003】高層建築物の外壁として、フェライト等の
磁性材料を埋め込んだ電磁波吸収壁は数多く開発されて
おり、電磁波吸収壁の軽量化について、本発明者は超軽
量ケイ酸カルシウム水和物を含有させた電磁波吸収材と
その製造方法を特願平11−200940号に開示をし
た。また、電磁波吸収性能が必要な箇所は外壁のみなら
ず、換気用ルーバ、ブラインド等にも求められており、
ブラインド用ルーバに電磁波吸収性能を付与した発明も
数多く開示されている。例えば、特開平5−5385号
公報では、一対の板状の電磁波吸収体の間に導電性反射
体が介在されて構成されている。また、特開平5−15
6877号公報では、光の透過を規制する遮断部がハニ
カム状の構造を備えるとともに、遮断部の一方の面に電
磁波シールド層を備えたことを特徴としている。
[0003] As an outer wall of a high-rise building, many electromagnetic wave absorbing walls in which a magnetic material such as ferrite is embedded have been developed. Regarding the weight reduction of the electromagnetic wave absorbing wall, the present inventor has included ultralight calcium silicate hydrate. The obtained electromagnetic wave absorbing material and its manufacturing method are disclosed in Japanese Patent Application No. 11-200940. In addition, places where electromagnetic wave absorption performance is required are required not only for outer walls, but also for louvers for ventilation, blinds, etc.
Many inventions have been disclosed in which an electromagnetic wave absorbing performance is imparted to a blind louver. For example, in JP-A-5-5385, a conductive reflector is interposed between a pair of plate-like electromagnetic wave absorbers. Also, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 6877 is characterized in that a blocking portion for regulating light transmission has a honeycomb-like structure and an electromagnetic wave shielding layer is provided on one surface of the blocking portion.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
5−5385号公報では、導電性反射体を電磁波吸収体
によりサンドイッチ構造に加工する工程が必要となり、
生産性に不利である。また、特開平5−156877号
公報に記載されているハニカム構造を備えた遮断部の材
料には不織布、布、紙、プラスチック等で、ルーバの表
面に蒸着や塗布、或いは金属箔を貼り付ける方法であ
り、加工する工程が必要であり、大量生産に不向きであ
る。
However, in Japanese Patent Laid-Open No. 5-5385, it is necessary to process a conductive reflector into a sandwich structure using an electromagnetic wave absorber.
It is disadvantageous for productivity. Also, a method of depositing or applying a metal foil on the surface of a louver with a nonwoven fabric, cloth, paper, plastic, or the like as a material of a blocking portion having a honeycomb structure described in JP-A-5-156877. In addition, a processing step is required, which is not suitable for mass production.

【0005】そこで、本発明は、十分な電磁波吸収性能
を備えるとともに、安価なフェライトをマトリックスに
分散混合した後、成形することにより一体型の電磁波吸
収性能を備えた薄板材を得ることを目的とする。また、
ケイ酸カルシウムをマトリックスとすることで、不燃性
能および断熱性能も付与された薄板材を供給することを
目的とする。
Accordingly, an object of the present invention is to provide a thin sheet material having an integral electromagnetic wave absorbing performance by dispersing and mixing inexpensive ferrite in a matrix and forming the same while providing sufficient electromagnetic wave absorbing performance. I do. Also,
By using calcium silicate as a matrix, an object is to supply a thin plate material which is also provided with nonflammability performance and heat insulation performance.

【0006】[0006]

【課題を解決するための手段】本発明の第1発明に係る
電磁波吸収性能を備えた薄板材は、セメント、シリカ質
原料、繊維補強材およびフェライトを含有し、前記フェ
ライトの含有量が20〜80wt%であることを特徴と
する。
According to a first aspect of the present invention, there is provided a thin sheet material having an electromagnetic wave absorbing performance, comprising cement, a siliceous raw material, a fiber reinforcing material, and ferrite, wherein the content of the ferrite is 20 to 50%. It is characterized by being 80% by weight.

【0007】ここで、前記繊維補強材としては、有機系
および無機系の繊維補強材を使用できる。有機系繊維補
強材には、セルロース繊維、ポリプロピレン繊維、アラ
ミド繊維等が含まれる。無機系繊維補強材には、ガラス
繊維、炭素繊維、炭化ケイ素繊維、ステンレス繊維、ア
ルミニウム繊維等が含まれる。
Here, as the fiber reinforcing material, organic and inorganic fiber reinforcing materials can be used. Organic fiber reinforcing materials include cellulose fibers, polypropylene fibers, aramid fibers, and the like. The inorganic fiber reinforcing material includes glass fiber, carbon fiber, silicon carbide fiber, stainless steel fiber, aluminum fiber and the like.

【0008】本発明は、大板パネルの製造法を目的とし
ておらず、ルーバ板材のような比較的持ち運びのし易い
サイズの薄板材製造法を提供している。したがって、カ
サ比重が高くなっても1枚あたりの総重量が持ち運び可
能な重量であればよく、大板パネルに比べると、フェラ
イトの含有量を増やすことが可能である。したがって、
前記フェライトの含有量は、20〜80wt%が好まし
く、特に30〜70wt%が好ましい。これは、20w
t%以下の場合では、十分な電磁波吸収性能が得られ
ず、80wt%以上では、電磁波吸収板材の重量化を招
くこととなる。また、フェライトの高充填は切断等の加
工性に不利である。
The present invention does not aim at a method of manufacturing a large panel, but provides a method of manufacturing a thin plate material such as a louver plate which is relatively easy to carry. Therefore, even if the bulk specific gravity is increased, the total weight per sheet may be a portable weight, and the ferrite content can be increased as compared with a large panel. Therefore,
The content of the ferrite is preferably 20 to 80 wt%, and particularly preferably 30 to 70 wt%. This is 20w
If it is less than t%, sufficient electromagnetic wave absorbing performance cannot be obtained, and if it is more than 80 wt%, the weight of the electromagnetic wave absorbing plate material will be increased. Further, high filling of ferrite is disadvantageous to workability such as cutting.

【0009】電磁波吸収板材には、フェライトが含有さ
れているので、電磁波吸収板材内部に入射した電磁波
は、フェライトの持つ透磁率により熱エネルギーに変換
され、入射電磁波が電磁波吸収材内に吸収される。従っ
て、ケイ酸カルシウム製の板材に電磁波吸収性能を確保
することができる。
Since the electromagnetic wave absorbing plate contains ferrite, the electromagnetic wave incident on the inside of the electromagnetic wave absorbing plate is converted into thermal energy by the magnetic permeability of the ferrite, and the incident electromagnetic wave is absorbed in the electromagnetic wave absorbing material. . Therefore, it is possible to ensure the electromagnetic wave absorbing performance of the plate made of calcium silicate.

【0010】さらに、各板材が別体となって複合的に組
み合わされた電磁波吸収複合板と異なり、上記の原料を
もとに形成されたスラリーを成形して、電磁波吸収板材
を構成するので、電磁波吸収板材の成形が容易になり、
その分、製造効率を高めることができる。
Further, unlike an electromagnetic wave absorbing composite plate in which the respective plate members are separately combined and combined, the electromagnetic wave absorbing plate member is formed by molding a slurry formed based on the above-described raw materials. Electromagnetic wave absorbing plate material can be easily formed,
The manufacturing efficiency can be increased accordingly.

【0011】本発明の第2発明に係る電磁波吸収性能を
備えた薄板材の製造方法は、セメント、シリカ質原料、
繊維補強材およびフェライトを混合した粉体原料に、水
を加えた混練物を押し出し成形して、電磁波吸収性能を
備えた薄板材を製造することを特徴とする。
According to a second aspect of the present invention, there is provided a method for producing a thin plate having electromagnetic wave absorbing performance, comprising:
A kneaded product obtained by adding water to a powder raw material obtained by mixing a fiber reinforcing material and ferrite is extruded to produce a thin plate having electromagnetic wave absorbing performance.

【0012】具体的には、粉体原料に適量の水を加え
て、ゲル状などの流動性を帯びた混練物を作り、押し出
し成形により得られた板状成形体を水熱処理を施すこと
で、電磁波吸収板材を製造することができる。すなわ
ち、電磁波吸収板材の製造に、従来からある水熱処理法
を適用することができるので、電磁波吸収板材の製造が
容易になり、製造効率を高めることができる。
Specifically, an appropriate amount of water is added to the powder raw material to form a kneaded material having fluidity such as a gel, and the plate-like molded body obtained by extrusion molding is subjected to hydrothermal treatment. And an electromagnetic wave absorbing plate can be manufactured. That is, since a conventional hydrothermal treatment method can be applied to the manufacture of the electromagnetic wave absorbing plate, the manufacture of the electromagnetic wave absorbing plate can be facilitated and the manufacturing efficiency can be increased.

【0013】ここで、前記繊維補強材の具体的内容は、
第1発明に関連して前に記載した通りである。
Here, specific contents of the fiber reinforcing material are as follows:
As described above in relation to the first invention.

【0014】このような第2発明に係る電磁波吸収性能
を備えた薄板材の製造方法によれば、混練物を板状に押
し出し成形することで、表面が平坦な板材、表面模様が
比較的浅い板材、立体構造部材などを効果的に製造する
ことができる。
According to the method of manufacturing a thin plate having electromagnetic wave absorbing performance according to the second aspect of the present invention, the kneaded material is extruded into a plate shape to form a plate having a flat surface and a relatively shallow surface pattern. Plate materials, three-dimensional structural members, and the like can be effectively manufactured.

【0015】本発明の第3発明は、第1発明、第2発明
の特徴を生かし、建築物の換気用ルーバあるいはブライ
ンド用ルーバなどに用いられる薄板材を提供することに
ある。本発明で採用している押し出し成形は、各原料の
比重差による不均一が少ない成形方法であるので、高比
重のフェライトを均一に充填するには最も適した方法で
ある。また、板の製造厚みは所望の厚みに調整が可能で
ある
[0015] A third invention of the present invention is to provide a thin plate material used as a louver for ventilation of a building or a louver for a blind, utilizing the features of the first invention and the second invention. The extrusion molding employed in the present invention is a molding method with less non-uniformity due to the difference in specific gravity of each raw material, and is the most suitable method for uniformly filling ferrite with high specific gravity. Further, the production thickness of the plate can be adjusted to a desired thickness.

【0016】ブラインド用ルーバの場合、薄板であれば
フェライトの混合率を増加させないと電磁波吸収性能が
発揮されず、また、フェライトの増加は切断等の加工性
を悪くする。逆に板材の重量化を防ぐためフェライトの
混合率を低下させると電磁波吸収性能が低下するため厚
板にする必要がある。ルーバの場合、外壁材と異なり大
板ではないので多少の重量化でも施工の際の運搬作業に
影響は与えないが、特願平11−200940号に開示
の超軽量ケイ酸カルシウム水和物を混合する方法で軽量
化することも可能である。また、軽量化により熱伝導率
が低下し断熱性能が向上される。
In the case of a blind louver, if it is a thin plate, the electromagnetic wave absorbing performance is not exhibited unless the mixing ratio of ferrite is increased, and the increase in ferrite deteriorates workability such as cutting. Conversely, if the mixing ratio of ferrite is reduced in order to prevent the weight of the plate material from being reduced, the electromagnetic wave absorption performance is reduced, so that it is necessary to use a thick plate. In the case of the louver, unlike the outer wall material, it is not a large plate, so even if the weight is slightly increased, it does not affect the transportation work at the time of construction, but the ultralight calcium silicate hydrate disclosed in Japanese Patent Application No. 11-200940 is used. It is also possible to reduce the weight by a method of mixing. In addition, the heat conductivity is reduced by the weight reduction, and the heat insulation performance is improved.

【0017】ルーバ板材として、本発明の電磁波吸収性
能を備えた薄板材を単体で使用することは、工程の簡素
化をもたらす。また、必要に応じて、導電性反射体を本
発明にいう薄板材に裏貼りすることで、室内への電磁波
侵入防止効果を更に向上させることは可能である。ここ
でいう導電性反射体としては、アルミニウム、スズ、銅
合金等の金属であり、それら金属の薄板、金網、メッシ
ュ網、フィルム、箔等が挙げられる。
The use of a thin plate having the electromagnetic wave absorbing performance of the present invention alone as a louver plate simplifies the process. Further, if necessary, the effect of preventing electromagnetic waves from entering a room can be further improved by attaching a conductive reflector to the thin plate material according to the present invention. The conductive reflector referred to herein is a metal such as aluminum, tin, and copper alloy, and examples thereof include a thin plate, a wire net, a mesh net, a film, and a foil.

【0018】[0018]

【発明の実施の形態】セメント、シリカ質原料、繊維補
強材、含有率20〜80wt%のフェライトを混合した
粉体原料に、適量の水を加え、セルロース系誘導体の押
し出し助剤と一緒に混合撹拌して混練した混練物を得た
後、この混合原料を押し出し成形機に投入して板状に押
し出して製板する。次に、製板された板状体に高温高圧
のオートクレーブ養成を施して反応硬化させ、本実施形
態の電磁波吸収性能を備えた薄板材を製造する。
BEST MODE FOR CARRYING OUT THE INVENTION An appropriate amount of water is added to a powdered raw material obtained by mixing cement, a siliceous raw material, a fiber reinforcing material, and a ferrite having a content of 20 to 80% by weight, and mixed together with a cellulose derivative extrusion aid. After obtaining the kneaded material by stirring and kneading, the mixed raw material is put into an extruder and extruded into a plate shape to make a plate. Next, the formed plate-shaped body is subjected to high-temperature and high-pressure autoclave culturing and reaction-hardening to produce a thin plate having electromagnetic wave absorbing performance according to the present embodiment.

【0019】[0019]

【実施例】次に、本発明に係る実施例を説明する。な
お、本発明は以下の実施例に限定されるものではない。
以下の説明において、有機質繊維は、パルプとポリプロ
ピレン繊維、混和材は鉱物微粉末である。また、フェラ
イト粒は、Zn系フェライト焼結粒で直径が0.1〜
2.0mmのものを使用した。
Next, an embodiment according to the present invention will be described. Note that the present invention is not limited to the following embodiments.
In the following description, the organic fibers are pulp and polypropylene fibers, and the admixture is mineral fine powder. Ferrite grains are sintered Zn-based ferrite grains having a diameter of 0.1 to
The thing of 2.0 mm was used.

【0020】[0020]

【実施例1】粉体原料を、セメント22重量部、フライ
アッシュ10重量部、有機質繊維7重量部、フェライト
粒40重量部、メチルセルロース1重量部、混和材20
重量部の配合とした。前記粉体原料の固形物100に対
して外割で水が51重量部となるように調製し、モルタ
ルミキサーによって、撹拌数50rpmの状態で、10
分間混練した後、押し出し成形によって長さ800m
m、幅50mm、厚さ20mmの板材を得た。この後、
得られた板材を5kgf/cm、10時間で水熱養成
を行い、電磁波吸収板材を得た。
Example 1 Powdered raw materials were 22 parts by weight of cement, 10 parts by weight of fly ash, 7 parts by weight of organic fibers, 40 parts by weight of ferrite grains, 1 part by weight of methylcellulose, admixture 20
It was blended in parts by weight. Water was prepared so that the weight of the solid was 100 parts by weight with respect to the solid 100 of the powder raw material, and 10 parts were stirred with a mortar mixer at 50 rpm.
After kneading for a minute, the length is 800m by extrusion.
m, a width of 50 mm and a thickness of 20 mm were obtained. After this,
The obtained plate was subjected to hydrothermal training at 5 kgf / cm 2 for 10 hours to obtain an electromagnetic wave absorbing plate.

【0021】[0021]

【実施例2】粉体原料をセメント22重量部、有機質繊
維7重量部、フェライト粒60重量部、メチルセルロー
ス1重量部、混和材10重量部の配合とした。前記粉体
原料の固形物100に対して外割で水が57重量部とな
るように調製し、モルタルミキサーによって、撹拌数5
0rpmの状態で、10分間混練した後、押し出し成形
によって長さ800mm、幅50mm、厚さ10mmの
板材を得た。この後、得られた板材を5kgf/c
、10時間で水熱養成を行い、電磁波吸収板材を得
た。
EXAMPLE 2 A powder raw material was compounded with 22 parts by weight of cement, 7 parts by weight of organic fibers, 60 parts by weight of ferrite grains, 1 part by weight of methylcellulose, and 10 parts by weight of an admixture. Water was adjusted to be 57 parts by weight on a solid basis with respect to the solid material 100 of the powder raw material, and the stirring rate was 5
After kneading at 0 rpm for 10 minutes, a plate material having a length of 800 mm, a width of 50 mm and a thickness of 10 mm was obtained by extrusion molding. After that, the obtained plate material is weighed at 5 kgf / c.
Hydrothermal training was performed at m 2 for 10 hours to obtain an electromagnetic wave absorbing plate.

【0022】(物性の測定)さらに、上記実施例1〜2
において得られた電磁波吸収板材のかさ比重、曲げ強
度、吸水率、吸水長さ変化率を測定した。また、比強度
を(曲げ強度)/(かさ比重)で算出した測定結果を
表1にする。
(Measurement of Physical Properties) Further, the above Examples 1 and 2
Was measured for the bulk specific gravity, bending strength, water absorption and water absorption length change rate of the electromagnetic wave absorbing plate material obtained in the above. Table 1 shows the measurement results of the specific strength calculated by (bending strength) / (bulk specific gravity) 2 .

【0023】[0023]

【表1】 [Table 1]

【0024】ここで、前記かさ比重の測定は、JIS
A5430に準拠して測定した。前記曲げ強度の測定
は、JIS A1408に準拠して測定した。前記吸水
率の測定は、JIS A5430に準拠して測定した。
前記吸水長さ変化率の測定は、JIS A5430に準
拠して測定した。
The bulk specific gravity is measured according to JIS.
It measured according to A5430. The bending strength was measured according to JIS A1408. The water absorption was measured in accordance with JIS A5430.
The water absorption length change rate was measured according to JIS A5430.

【0025】(電磁波吸収材の電磁波吸収性能)また、
上記実施例におけるフェライトを含有した電磁波吸収板
材の電磁波吸収性能の測定結果を図1及び図2に示す。
ここで、図1は、フェライト40wt%、60wt%含
有した実施例1,2における電磁波吸収板材の電磁波に
対する反射損失を示し、横軸に電磁波吸収板材に入射す
る電磁波の周波数(Hz)を、縦軸に電磁波吸収板材を
反射した電磁波の反射損失(dB)を設定している。
(Electromagnetic wave absorbing performance of electromagnetic wave absorbing material)
FIGS. 1 and 2 show the measurement results of the electromagnetic wave absorbing performance of the electromagnetic wave absorbing plate material containing ferrite in the above embodiment.
Here, FIG. 1 shows the reflection loss of the electromagnetic wave absorbing plate material with respect to the electromagnetic wave in Examples 1 and 2 containing 40 wt% and 60 wt% of ferrite, and the horizontal axis represents the frequency (Hz) of the electromagnetic wave incident on the electromagnetic wave absorbing plate material, and the vertical axis represents the frequency. The reflection loss (dB) of the electromagnetic wave reflected from the electromagnetic wave absorbing plate is set on the axis.

【0026】[0026]

【発明の効果】本発明にいう電磁波吸収性能を備えた薄
板材は、20〜80wt%のフェライトが含有されてい
るので、電磁波吸収板材内部に入射した電磁波は、フェ
ライトの持つ透磁率により熱エネルギーに変換され、入
射電磁波が電磁波吸収板材内に吸収させることができる
ので、ケイ酸カルシウム製の板材に電磁波吸収性能を確
保させることができる効果を有する。
According to the present invention, since the thin plate having the electromagnetic wave absorbing performance according to the present invention contains 20 to 80% by weight of ferrite, the electromagnetic wave incident on the inside of the electromagnetic wave absorbing plate is subjected to thermal energy due to the magnetic permeability of the ferrite. And the incident electromagnetic wave can be absorbed in the electromagnetic wave absorbing plate, so that the plate made of calcium silicate has an effect of ensuring the electromagnetic wave absorbing performance.

【0027】また、本発明にいう薄板材は、上記の原料
をもとにスラリーを成形して、電磁波吸収板材を構成す
るものであるので、電磁波吸収板材の成形が容易にな
り、その分、製造効率を高めることができる。
Further, the thin plate material according to the present invention is formed by forming a slurry on the basis of the above-mentioned raw materials to form the electromagnetic wave absorbing plate material. Therefore, the forming of the electromagnetic wave absorbing plate material is facilitated. Manufacturing efficiency can be increased.

【0028】本発明の第2発明にいうところの電磁波吸
収板材の製造方法は、セメント、シリカ質原料、繊維補
強材およびフェライトを混合した粉体原料に、水を加え
た混練物を押し出し成形して、電磁波吸収性能を備えた
薄板材を製造するものであるから、従来から一般に知ら
れてた水熱処理法を適用することができ、電磁波吸収板
材の製造が極めて容易になり、製造効率を高めることが
できる効果を有する。
The method for producing an electromagnetic wave absorbing plate material according to the second invention of the present invention is a method of extruding a kneaded material obtained by adding water to a powder material obtained by mixing cement, a siliceous material, a fiber reinforcing material and ferrite. Therefore, since a thin plate having electromagnetic wave absorption performance is manufactured, a conventionally known hydrothermal treatment method can be applied, and the manufacture of the electromagnetic wave absorption plate becomes extremely easy, and the manufacturing efficiency is improved. Has the effect that can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた電磁波吸収板材の電磁波吸
収性能測定図。
FIG. 1 is a view showing an electromagnetic wave absorption performance measurement of an electromagnetic wave absorbing plate material obtained in Example 1.

【図2】実施例2で得られた電磁波吸収板材の電磁波吸
収性能測定図。
FIG. 2 is a view showing an electromagnetic wave absorption performance measurement of the electromagnetic wave absorbing plate material obtained in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 俊宏 香川県三豊郡詫間町大字香田80番地 神島 化学工業株式会社詫間工場内 (72)発明者 荒川 修一 大阪府大阪市中央区高麗橋4丁目2番7号 神島化学工業株式会社内 (72)発明者 林 則茂 香川県坂出市府中町南谷4806−3 Fターム(参考) 2E001 DB02 DH01 GA22 GA23 GA32 HA20 HB01 HB04 HB05 JA01 JA04 JA06 JA22 JA29 JB07 JC03 JD04 JD05 2E036 JA01 KA03 KB00 5E040 AB03 CA13 HB05 NN02 5E321 AA41 BB32 BB34 BB53 GG05 GG07 GG11 5J020 EA02 EA06 EA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiro Kuroki 80, Kada, Takuma-cho, Mitoyo-gun, Kagawa Prefecture Inside the Takuma Plant of Kamishima Chemical Industry Co., Ltd. No. 7 Kamijima Chemical Industry Co., Ltd. JA01 KA03 KB00 5E040 AB03 CA13 HB05 NN02 5E321 AA41 BB32 BB34 BB53 GG05 GG07 GG11 5J020 EA02 EA06 EA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セメント、シリカ質原料、繊維補強材お
よびフェライトを含有し、前記フェライトの含有量が2
0〜80wt%であることを特徴とする電磁波吸収性能
を備えた薄板材。
1. A cement, a siliceous raw material, a fiber reinforcing material and a ferrite, wherein the ferrite content is 2%.
A thin plate material having electromagnetic wave absorption performance, which is characterized by being 0 to 80 wt%.
【請求項2】 セメント、シリカ質原料、繊維補強材お
よび20〜80wt%のフェライトを混合した粉体原料
に、水を加えた混練物を押し出し成形して、電磁波吸収
性能を備えた薄板材を製造する製造方法。
2. A kneaded product obtained by adding water to a powder material obtained by mixing cement, a siliceous material, a fiber reinforcing material and 20 to 80 wt% ferrite is extruded to form a thin plate having electromagnetic wave absorbing performance. Manufacturing method to manufacture.
【請求項3】 請求項2に記載の電磁波吸収性能を備え
た薄板材が、建築物の換気用、ブラインド用等に使用さ
れるルーバ板材であることを特徴とする電磁波吸収性能
を備えた薄板材の製造方法。
3. The thin plate having electromagnetic wave absorbing performance according to claim 2, wherein the thin plate having electromagnetic wave absorbing performance is a louver plate used for ventilation, blinds, etc. of a building. The method of manufacturing plate materials.
JP30943599A 1999-10-29 1999-10-29 Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor Pending JP2001126905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30943599A JP2001126905A (en) 1999-10-29 1999-10-29 Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30943599A JP2001126905A (en) 1999-10-29 1999-10-29 Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001126905A true JP2001126905A (en) 2001-05-11

Family

ID=17992975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30943599A Pending JP2001126905A (en) 1999-10-29 1999-10-29 Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001126905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364154A (en) * 2001-06-05 2002-12-18 Konoshima Chemical Co Ltd Nonflammable radio wave absorptive wall material for interior, and method of manufacturing inorganic radio wave absorption plate
CN108698928A (en) * 2016-12-26 2018-10-23 李炳赫 Multifunctional composite construction material and its construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364154A (en) * 2001-06-05 2002-12-18 Konoshima Chemical Co Ltd Nonflammable radio wave absorptive wall material for interior, and method of manufacturing inorganic radio wave absorption plate
CN108698928A (en) * 2016-12-26 2018-10-23 李炳赫 Multifunctional composite construction material and its construction method

Similar Documents

Publication Publication Date Title
US20240191499A1 (en) Utility materials incorporating a microparticle matrix formed with a setting agent
US6214454B1 (en) Electromagnetic wave absorbing material
CN111268986A (en) Light sandwich paperless gypsum board containing high-strength phosphogypsum a and preparation method thereof
CN111794397A (en) Fireproof composite insulation board and preparation method and application thereof
US5932054A (en) Radio wave absorber composition, radio wave absorber member, radio wave absorber, and method for producing radio wave absorber member
JPH0867544A (en) Composition for wave absorber, member for wave absorber and production of wave absorber and member for wave absorber
JP2001126905A (en) Thin plate material having electromagnetic wave absorptivity and manufacturing method therefor
JP4046900B2 (en) Manufacturing method of electromagnetic wave absorber
JP2001220198A (en) Electromagnetic wave-absorbable fireproof wall material
JPH0766584A (en) Mortar or concrete lamination type radio wave absorber
JP2002364154A (en) Nonflammable radio wave absorptive wall material for interior, and method of manufacturing inorganic radio wave absorption plate
CN108516750B (en) Sound-insulating putty for interior wall and preparation method thereof
TW201707964A (en) Plaster-based acoustic board
JP3099667B2 (en) Sound absorbing and insulating panel and method of manufacturing the same
JP4043963B2 (en) Sound absorption and electromagnetic wave absorption panels
JPH09214168A (en) Radio wave absorptive wall and adjustment method of absorptive characteristic
JP3230207B2 (en) Fire resistant composite board
CN104446300B (en) A kind of wallboard
CN108947506A (en) A kind of acoustic material for building and preparation method thereof
JP2002070205A (en) Radio wave absorbing panel
CN106836534A (en) A kind of rock cotton board system
CN103452205B (en) Energy-saving wall
JP2004231492A (en) Energy-saving manufacturing method for noninflammable radio wave absorber and nonflammable radio wave absorber obtained by the manufacturing method
JP3223928B2 (en) Fire resistant composite board
CN107571563B (en) Energy-saving sound-insulation grid cloth and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020