JP2001126748A - Operating method for fuel cell electricity generator - Google Patents

Operating method for fuel cell electricity generator

Info

Publication number
JP2001126748A
JP2001126748A JP30513799A JP30513799A JP2001126748A JP 2001126748 A JP2001126748 A JP 2001126748A JP 30513799 A JP30513799 A JP 30513799A JP 30513799 A JP30513799 A JP 30513799A JP 2001126748 A JP2001126748 A JP 2001126748A
Authority
JP
Japan
Prior art keywords
reformer
fuel cell
gas
power generator
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30513799A
Other languages
Japanese (ja)
Other versions
JP3758070B2 (en
Inventor
Yuji Sawada
雄治 澤田
Kenichi Kuroda
健一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30513799A priority Critical patent/JP3758070B2/en
Publication of JP2001126748A publication Critical patent/JP2001126748A/en
Application granted granted Critical
Publication of JP3758070B2 publication Critical patent/JP3758070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an operating method for a fuel cell electricity generator that improves generation efficiency by carrying out temperature control of the reformer that minimizes required calories to be supplied to the reformer. SOLUTION: In a method of operating fuel cell electricity generator, having a reformer 7 for providing a reformed gas rich in hydrogen by reforming reaction of an original fuel gas with vapor, and a burner 17 for performing combustion of hydrogen exhausted from the fuel cell 10 with air, the method comprises the step of controlling the flow rate of the original fuel gas, so as to change the measured value 32 of temperature in the reformer 7 into the predetermined reformer set temperature 33, where during the operation of the fuel cell electricity generator, correcting the predetermined reformer set temperature 33 by means of a reformer set temperature correction circuit 40 so as to allow reforming rate in the reformer 7 to be approximately uniform, based on correlation pre-obtained between anticipated set temperature of the reformer 7 and accumulated operation time of he fuel cell electricity generator taking into consideration the catalytic activity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、原燃料を水蒸気
改質反応により水素リッチな改質ガスにするための改質
器を備えた燃料電池発電装置の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a fuel cell power generator having a reformer for converting a raw fuel into a hydrogen-rich reformed gas by a steam reforming reaction.

【0002】[0002]

【従来の技術】燃料電池発電装置に組み込まれる燃料電
池としては、電解質の種類、改質原料の種類等によって
異なる種々のタイプがあるが、実用的なものとして、リ
ン酸高濃度水溶液を電解質として用いたリン酸型燃料電
池や、固体高分子型燃料電池がよく知られている。
2. Description of the Related Art There are various types of fuel cells which are incorporated in a fuel cell power generator, depending on the type of electrolyte, the type of reforming material, and the like. The phosphoric acid type fuel cell and the polymer electrolyte fuel cell used are well known.

【0003】リン酸型燃料電池や固体高分子型燃料電池
は、一般に、天然ガスやメタノール等の炭化水素改質原
燃料を、水蒸気改質して得られた改質ガス中の水素と、
空気中の酸素とを、燃料電池の燃料極および空気極にそ
れぞれ供給し、電気化学反応に基づいて発電を行うもの
で、原燃料を燃料ガスに改質する改質装置としては、原
燃料に水を加えて加熱し、水蒸気と原燃料ガスを触媒を
用いて改質する水蒸気改質反応を利用したものがよく知
られている。
[0003] Phosphoric acid type fuel cells and solid polymer type fuel cells generally include hydrogen in a reformed gas obtained by steam reforming a hydrocarbon reforming raw fuel such as natural gas or methanol, and
Oxygen in the air is supplied to the fuel electrode and the air electrode of the fuel cell, respectively, and power is generated based on the electrochemical reaction. It is well known to use a steam reforming reaction in which water is added and heated to reform steam and raw fuel gas using a catalyst.

【0004】上記燃料電池発電装置の場合、改質触媒層
に通流する原燃料ガスとしては、都市ガス,天然ガス,
メタンガス等の原燃料ガスやメタノール,エタノール,
ガソリン等の液状の炭化水素と水とを混合してなる液体
燃料を気化した原燃料ガスが用いられる。
[0004] In the case of the above-mentioned fuel cell power generator, the raw fuel gas flowing through the reforming catalyst layer includes city gas, natural gas and natural gas.
Raw fuel gas such as methane gas, methanol, ethanol,
A raw fuel gas obtained by vaporizing a liquid fuel obtained by mixing a liquid hydrocarbon such as gasoline with water is used.

【0005】図4は、原燃料としてメタノールを用い、
水蒸気改質によって改質する燃料改質器を用いた燃料電
池発電装置の一例を示し、燃料電池、改質器、蒸発器、
CO除去器、排水素燃焼器、およびそれらを接続してい
る原燃料供給系の配管等を示した概略フロー図である。
FIG. 4 shows a case where methanol is used as a raw fuel,
Shows an example of a fuel cell power generator using a fuel reformer reforming by steam reforming, fuel cell, reformer, evaporator,
FIG. 2 is a schematic flow diagram showing a CO remover, an exhaust hydrogen combustor, and a piping of a raw fuel supply system connecting them;

【0006】原燃料(ここではメタノールと水がすでに
適量割合で混合しているものとして示す)は原燃料タン
ク1から原燃料ポンプ2によって、原燃料供給配管3を
通って蒸発器4へと供給される。蒸発器4を出た原燃料
ガスは、原燃料ガス供給配管6を通って改質器7へと供
給される。
A raw fuel (here, methanol and water are shown as being already mixed at an appropriate ratio) is supplied from a raw fuel tank 1 by a raw fuel pump 2 to a vaporizer 4 through a raw fuel supply pipe 3. Is done. The raw fuel gas exiting the evaporator 4 is supplied to the reformer 7 through the raw fuel gas supply pipe 6.

【0007】改質器7では、水蒸気改質反応により水素
リッチな燃料ガスを生成する。改質器7を出た改質ガス
は改質ガス供給配管8を通ってCO除去器9に入り、C
O濃度を電池の性能に悪影響を与えない程度まで低下さ
せた後に、燃料電池10へと供給される。燃料電池10
では、例えば水素利用率80%、即ち80%の水素が消
費された後に、排水素供給配管11を通って、例えば触
媒燃焼器を用いた排水素燃焼器12へと供給される。排
水素燃焼器12へは同時に排空気供給配管13を通って
排空気が供給される。
In the reformer 7, a hydrogen-rich fuel gas is generated by a steam reforming reaction. The reformed gas exiting the reformer 7 enters the CO remover 9 through the reformed gas supply pipe 8 and is
After the O concentration is reduced to a level that does not adversely affect the performance of the cell, the O concentration is supplied to the fuel cell 10. Fuel cell 10
Then, for example, after the hydrogen utilization rate of 80%, that is, 80% of the hydrogen is consumed, the hydrogen is supplied to the exhaust hydrogen combustor 12 using, for example, a catalytic combustor through the exhaust hydrogen supply pipe 11. Exhaust air is simultaneously supplied to the exhaust hydrogen combustor 12 through an exhaust air supply pipe 13.

【0008】排水素燃焼器12を出た燃焼排ガスは燃焼
排ガス供給配管14を通って蒸発器4へと供給され原燃
料を蒸発させるエネルギー源となる。燃料電池への反応
空気は、ブロア15によって反応空気供給配管16を通
って供給される。
[0008] The flue gas discharged from the exhaust hydrogen combustor 12 is supplied to the evaporator 4 through a flue gas supply pipe 14 and becomes an energy source for evaporating the raw fuel. Reaction air to the fuel cell is supplied by a blower 15 through a reaction air supply pipe 16.

【0009】上記燃料電池発電装置において、原燃料ガ
スとして例えば都市ガスを用いる場合には、前記蒸発器
4は不要となるが、改質用の水蒸気が別途改質器に注入
される。また、排水素燃焼器は、直接燃焼用のバーナと
し、このバーナを、改質器本体に組み込むように構成さ
れたものも多く実用化されている。
In the above fuel cell power generator, when city gas is used as the raw fuel gas, for example, the evaporator 4 becomes unnecessary, but steam for reforming is separately injected into the reformer. Further, many of the exhaust hydrogen combustors are burners for direct combustion, and many of such burners are configured to be incorporated in the reformer body.

【0010】図3は、燃料電池発電装置の運転方法に関
わり、この発明に関連ある部分を主体とした従来のシス
テム系統図を示す。図3において、10は燃料電池、7
は改質器、17は排水素燃焼器としての改質器バーナ、
18は原燃料ガス流量調節弁を示す。また、19は原燃
料ガス用の流量計、20は改質器温度測定器、21は燃
料電池の出力電流測定用の電流計、22は必要原燃料ガ
ス流量演算回路、23および24はフィードバック制
御、例えばPID動作を行わせるためのPID制御器で
ある。さらに、30〜35は諸設定値または測定値であ
り、各ブロック内のSVは、Set Point Valueを示し、ま
たPVは、Process Valueを示す。
FIG. 3 shows a conventional system diagram mainly related to the present invention, which relates to the operation method of the fuel cell power generator. In FIG. 3, reference numeral 10 denotes a fuel cell;
Is a reformer, 17 is a reformer burner as an exhaust hydrogen combustor,
Reference numeral 18 denotes a raw fuel gas flow control valve. Reference numeral 19 denotes a flow meter for raw fuel gas, reference numeral 20 denotes a reformer temperature measuring device, reference numeral 21 denotes an ammeter for measuring the output current of the fuel cell, reference numeral 22 denotes a necessary raw fuel gas flow rate calculation circuit, and reference numerals 23 and 24 denote feedback control. , For example, a PID controller for performing a PID operation. Further, reference numerals 30 to 35 denote various set values or measured values. SV in each block indicates Set Point Value, and PV indicates Process Value.

【0011】図3により、改質器温度と燃料電池燃料極
の水素利用率を基にして原燃料ガス流量を制御する従来
の燃料電池発電装置の運転方法について以下に述べる。
Referring to FIG. 3, a method of operating a conventional fuel cell power generator for controlling a raw fuel gas flow rate based on a reformer temperature and a hydrogen utilization rate of a fuel cell fuel electrode will be described below.

【0012】燃料電池10では、下記の反応が行われ、
水素1molと酸素0.5molで2ファラデーの電荷が流れる。
In the fuel cell 10, the following reaction takes place:
2 Faraday charges flow with 1 mol of hydrogen and 0.5 mol of oxygen.

【0013】[0013]

【化1】anode:H2→2H++2e- [Formula 1] anode: H 2 → 2H + + 2e -

【0014】[0014]

【化2】cathode:1/2O2+2H++2e-→H2O したがって、発電に必要な理論水素流量は電流計21の
出力から以下のように求めることができる。
Cathode: 1 / 2O 2 + 2H + + 2e → H 2 O Therefore, the theoretical hydrogen flow required for power generation can be obtained from the output of the ammeter 21 as follows.

【0015】必要理論水素量(mol/s) =[電池電流(A)×
セル数]÷[電子数×ファラデー定数]燃料電池のセル
は、供給される水素量が必要理論水素量を下回ると触媒
の担体であるカーボンが腐食するため、実際には必要理
論水素量以上の水素を供給している。このときの過剰度
合いは水素利用率で示され、実際の必要水素量は以下の
ようにして求められる。
Required theoretical hydrogen amount (mol / s) = [battery current (A) ×
The number of cells] ÷ [the number of electrons x the Faraday constant] When the supplied hydrogen amount falls below the required theoretical hydrogen amount, the carbon that is the catalyst carrier corrodes. Supplying hydrogen. The degree of excess at this time is indicated by the hydrogen utilization rate, and the actual required amount of hydrogen is obtained as follows.

【0016】必要水素量(mol/s) =必要理論水素量(mol/
s)/([水素利用率(%)]/100) 水素利用率が80%の場合は、必要水素量は必要理論水
素量の1.25倍となる。燃料電池の発電に用いられる水素
は、一般的には都市ガス、天然ガス、メタンガス、メタ
ノール、エタノール、ガソリン等を改質器で改質して得
ている。 CH4を例にとると改質器における反応式は次の
ようになる。
Required hydrogen amount (mol / s) = Required theoretical hydrogen amount (mol / s)
s) / ([hydrogen utilization (%)] / 100) When the hydrogen utilization is 80%, the required amount of hydrogen is 1.25 times the required theoretical amount of hydrogen. Hydrogen used for power generation by fuel cells is generally obtained by reforming city gas, natural gas, methane gas, methanol, ethanol, gasoline, and the like using a reformer. Taking CH 4 as an example, the reaction formula in the reformer is as follows.

【0017】[0017]

【化3】 CH4+H2O→3H2+CO ΔH298= 205.75kJ/mol (1)Embedded image CH 4 + H 2 O → 3H 2 + CO ΔH 298 = 205.75 kJ / mol (1)

【0018】[0018]

【化4】 CO+H2O→CO2+H2 ΔH298=− 41.12kJ/mol ( 2) 水蒸気改質反応では吸熱反応である(1)式が支配的であ
るため、温度が高いほど反応は右側に偏りCH4の改質率
は上昇し、生成する水素量も増加する。燃料電池発電装
置では、燃料(都市ガス、天然ガス、メタンガス、メタ
ノール、エタノール、ガソリン等)単位あたりに生成す
る水素量の割合を一定に維持できるように改質器温度を
制御しており、改質器性能は以下の改質率が指標として
用いられている。
Embedded image CO + H 2 O → CO 2 + H 2 ΔH 298 = −41.12 kJ / mol (2) In the steam reforming reaction, the equation (1), which is an endothermic reaction, is dominant. The reforming rate of CH 4 increases, and the amount of generated hydrogen also increases. In the fuel cell power generator, the reformer temperature is controlled so that the ratio of the amount of hydrogen generated per unit of fuel (city gas, natural gas, methane gas, methanol, ethanol, gasoline, etc.) can be kept constant. The following reforming rates are used as indices for the porcelain performance.

【0019】改質率(%)=(CCO2+CCO)/(CCH4
CO2+CCO)×100 ここで、CCO2:改質器出口でのCO2濃度(%), CCO:改
質器出口でのCO濃度(%),CCH4:改質器出口でのCH4
度(%) 図3において、改質前の電池発電用原燃料ガス流量30
(FFC-SV)は、電池の出力電流31(IFC-PV)から求めら
れた必要水素量をあらかじめ設定された改質率における
燃料ガス供給量と生成水素量との関係から、必要原燃料
ガス流量演算回路22により求められている。
Reforming rate (%) = (C CO2 + C CO ) / (C CH4 +
C CO2 + C CO ) × 100 where C CO2 : CO 2 concentration at the outlet of the reformer (%), C CO : CO concentration at the outlet of the reformer (%), C CH4 : at the outlet of the reformer CH 4 concentration (%) In FIG. 3, the raw fuel gas flow rate for battery power generation before reforming was 30
(F FC -SV) is obtained by calculating the required hydrogen amount obtained from the battery output current 31 (I FC -PV) from the relationship between the fuel gas supply amount and the generated hydrogen amount at a preset reforming rate. It is determined by the fuel gas flow rate calculation circuit 22.

【0020】改質器7では、改質器温度測定値32(TRF
-PV)があらかじめ設定された改質率に相当する改質器設
定温度33(TRF-SV)となるように、改質器バーナ17の
燃焼量を制御するための改質器温度調節用原燃料ガス流
量34(FRF-SV)を算出する。なお、図3においては、P
ID制御器23を使用する例を示したが、PID制御器
を単なる比較器とすることもできる。
In the reformer 7, the measured reformer temperature 32 (T RF
-PV) for controlling the combustion amount of the reformer burner 17 so that the reformer set temperature 33 (T RF -SV) corresponding to the preset reforming rate. The raw fuel gas flow rate 34 (F RF -SV) is calculated. In FIG. 3, P
Although the example in which the ID controller 23 is used has been described, the PID controller may be a simple comparator.

【0021】改質率は改質触媒の温度で決定されるた
め、改質器温度の制御点としては改質器触媒温度、もし
くは改質器触媒での温度の遅れを考慮して改質触媒近傍
の炉壁温度、あるいは双方が用いられている。燃料電池
発電システムに供給される原燃料ガス流量35(F-PV)
は、電池発電用原燃料ガス流量30(FFC-SV)に改質器温
度調節用原燃料ガス流量34(FRF-SV)を加えた流量とな
るように、流量計19と原燃料ガス流量調節弁18によ
りフィードバック制御される。
Since the reforming rate is determined by the temperature of the reforming catalyst, the control point of the reformer temperature is determined by taking into account the reforming catalyst temperature or the delay in the temperature at the reforming catalyst. Nearby furnace wall temperatures, or both, are used. Raw fuel gas flow supplied to the fuel cell power generation system 35 (F-PV)
Is such that the flow rate obtained by adding the battery power generation raw fuel gas flow 30 (F FC -SV) to the reformer temperature adjusting raw fuel gas flow 34 (F RF -SV), flow meter 19 and the raw fuel gas Feedback control is performed by the flow control valve 18.

【0022】[0022]

【発明が解決しようとする課題】前述のような従来の燃
料電池発電装置の運転方法においては、下記のような問
題点がある。
The above-described conventional method of operating a fuel cell power generator has the following problems.

【0023】燃料電池発電装置の運転に伴う経時的な触
媒活性の低下により、運転累積時間の増大に伴い改質率
は低下していく。そのため、改質器をある温度あるいは
ある温度範囲に維持する従来の制御方法においては、運
転初期は改質率が高く、運転終期は改質率が低い運用と
なる。電池の水素利用率は、原燃料ガス流量が同一の場
合は改質率が低くなるほど高くなるため、原燃料ガス流
量は改質率が最も低くなる運転終期においても電池水素
利用率が上限値を超えないように設定されている。
[0023] Due to the decrease in the catalyst activity over time with the operation of the fuel cell power generator, the reforming rate decreases with an increase in the cumulative operation time. Therefore, in the conventional control method of maintaining the reformer at a certain temperature or a certain temperature range, the reforming rate is high at the beginning of the operation and the reforming rate is low at the end of the operation. Since the hydrogen utilization of the battery increases as the reforming rate decreases when the raw fuel gas flow rate is the same, the raw fuel gas flow rate remains at the upper limit even at the end of operation when the reforming rate is the lowest. It is set not to exceed.

【0024】上記制御方法においては、改質触媒の活性
が高い運転初期においても改質器は運転終期における温
度または温度範囲で制御されるため、運転初期では高改
質率、低水素利用率で運転されることとなる。改質器に
おける改質反応は前述のように吸熱反応のため、改質触
媒に対してその吸熱量に見合う熱量を与えてやる必要が
ある。燃料電池発電システムでは、燃料電池で消費され
なかった燃料極オフガスを例えば改質器バーナ部で燃焼
させることにより、前記吸熱量に相当する発熱量を得て
おり、その増減は原燃料ガス流量を調節することにより
行っている。改質率が高い場合は吸熱量がより多くなる
ため、原燃料ガス流量を増加させる必要があり、その結
果発電効率が低下することとなる。
In the above control method, the reformer is controlled at the temperature or the temperature range at the end of the operation even in the early stage of the operation in which the activity of the reforming catalyst is high. It will be driven. Since the reforming reaction in the reformer is an endothermic reaction as described above, it is necessary to give the reforming catalyst an amount of heat corresponding to the amount of heat absorbed. In the fuel cell power generation system, the calorific value corresponding to the endothermic amount is obtained by burning the fuel electrode off-gas not consumed by the fuel cell, for example, in a reformer burner section. It is done by adjusting. When the reforming rate is high, the amount of heat absorbed becomes larger, so it is necessary to increase the flow rate of the raw fuel gas, and as a result, the power generation efficiency decreases.

【0025】この発明は、上記問題点に鑑みてなされた
もので、この発明の課題は、原燃料を水蒸気改質反応に
より水素リッチな改質ガスにするための改質器を備えた
燃料電池発電装置の運転方法において、改質器に供給す
る熱量を必要最小限とする改質器の温度制御を行って、
発電効率の向上を図ることにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell having a reformer for converting a raw fuel into a hydrogen-rich reformed gas by a steam reforming reaction. In the operation method of the power generator, by performing the temperature control of the reformer to minimize the amount of heat supplied to the reformer,
The purpose is to improve the power generation efficiency.

【0026】[0026]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明は、都市ガス,天然ガス,メタンガス等
の原燃料ガスやメタノール,エタノール,ガソリン等の
液状の炭化水素と水とを混合してなる液体燃料を気化し
た原燃料ガスを改質触媒層に通流して,水蒸気改質反応
により水素リッチな改質ガスにして,この改質ガスを燃
料電池に供給するための改質器と、燃料電池から排出さ
れる排水素を空気と共に燃焼させる排水素燃焼器とを有
し、前記改質器における改質器温度測定値が、あらかじ
め設定した改質器設定温度となるように前記原燃料ガス
の流量を制御する燃料電池発電装置の運転方法におい
て、燃料電池発電装置の運転中、前記改質器における改
質率が略一定となるように、前記改質器設定温度を補正
することとする(請求項1)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method for converting raw fuel gas such as city gas, natural gas and methane gas or liquid hydrocarbon such as methanol, ethanol and gasoline with water. The raw fuel gas, which is the vaporized liquid fuel that has been mixed, flows through the reforming catalyst layer, and is converted into a hydrogen-rich reformed gas by a steam reforming reaction. The reformed gas is supplied to a fuel cell. And an exhaust hydrogen combustor for burning exhaust hydrogen discharged from the fuel cell together with air, so that the measured reformer temperature in the reformer becomes a preset reformer set temperature. In the operating method of the fuel cell power generator for controlling the flow rate of the raw fuel gas, the reformer set temperature is corrected so that the reforming rate in the reformer becomes substantially constant during the operation of the fuel cell power generator. (To be Section 1).

【0027】上記改質器設定温度の補正方法としては、
請求項2のように、前記請求項1に記載の運転方法にお
いて、前記改質率を略一定とするための,触媒活性を考
慮した所期の改質器設定温度と、燃料電池発電装置の累
積運転時間とのあらかじめ求めた相関に基づき、前記改
質器設定温度を補正することとする。
The method of correcting the set temperature of the reformer is as follows.
According to a second aspect of the present invention, in the operating method according to the first aspect, the desired reformer set temperature in consideration of the catalyst activity and the fuel cell power generation device for keeping the reforming rate substantially constant. The reformer set temperature is corrected on the basis of a correlation obtained in advance with the accumulated operation time.

【0028】上記のように、改質率が略一定となるよう
に改質器温度を変化させることにより、高改質率による
吸熱量の増加を抑えることができ、改質器バーナでの必
要燃焼量も抑えることができるため、原燃料ガス流量が
低減して発電効率が向上する。
As described above, by changing the reformer temperature so that the reforming rate becomes substantially constant, it is possible to suppress an increase in the amount of heat absorption due to the high reforming rate, and it is necessary to use a reformer burner. Since the amount of combustion can be suppressed, the flow rate of the raw fuel gas is reduced, and the power generation efficiency is improved.

【0029】さらに、前記請求項2の運転方法におい
て、燃料電池発電装置の運転中に、改質器出口の改質ガ
スのガス組成を分析して得られた運転情報に基づき、前
記燃料電池発電装置の累積運転時間とのあらかじめ求め
た相関を補正し、この補正された相関に基づき、前記改
質器設定温度を補正することとする(請求項3)ことに
より、燃料電池発電装置の実運転状態に則した適正な補
正制御が可能となる。
Further, in the operating method according to claim 2, the fuel cell power generation system is operated based on operation information obtained by analyzing a gas composition of reformed gas at a reformer outlet during operation of the fuel cell power generation device. Correction of a previously determined correlation with the cumulative operation time of the device is performed, and the reformer set temperature is corrected based on the corrected correlation. Appropriate correction control according to the state becomes possible.

【0030】さらにまた、請求項4のように、前記請求
項1または3のいずれかに記載の運転方法において、前
記燃料電池における水素利用率が所定の上限値を超えな
い範囲で所定の上限値近傍となるように、前記改質率を
定めることにより、原燃料ガス流量を最大限に低減する
ことができ、発電効率が最も向上する。
According to a fourth aspect of the present invention, in the operating method according to any one of the first to third aspects, a predetermined upper limit value is set within a range where the hydrogen utilization rate in the fuel cell does not exceed a predetermined upper limit value. By determining the reforming rate so as to be near, the flow rate of the raw fuel gas can be reduced to the maximum, and the power generation efficiency is most improved.

【0031】[0031]

【発明の実施の形態】図面に基づき、この発明の実施の
形態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】図1は、請求項2の発明に関わる燃料電池
発電装置の運転方法の実施例を示す系統図である。図1
において、図3と同等の機能部材や測定値および設定値
には同一の番号を付して説明を省略する。図1の系統図
が図3に記載された系統図と異なる点は、図1の系統に
おいては、改質器設定温度33とPID制御器23との
間に、改質器温度設定値補正演算回路40と累積運転時
間計41(Time Counter)とを設けた点である。
FIG. 1 is a system diagram showing an embodiment of a method of operating a fuel cell power generator according to the second aspect of the present invention. FIG.
In FIG. 7, the same reference numerals are given to functional members, measured values, and set values equivalent to those in FIG. 3, and description thereof is omitted. The difference between the system diagram of FIG. 1 and the system diagram shown in FIG. 3 is that, in the system of FIG. 1, a reformer temperature set value correction calculation is performed between the reformer set temperature 33 and the PID controller 23. The point is that a circuit 40 and a cumulative operation time meter 41 (Time Counter) are provided.

【0033】図1においては、累積運転時間計41の運
転時間(Time)から、あらかじめ設定された改質率となる
改質器温度(TRF)を求めることができるように、改質器
温度設定値補正演算回路40において運転時間(Time)
と改質器温度(TRF)との関係式から算出して、改質器温
度設定値33(TRF-SV)を補正する。改質器温度測定値3
2(TRF-PV)と補正された改質器温度設定値との差に応じ
て改質器温度調節用原燃料ガス流量34(FRF-SV)をPI
D制御器23により算出する。改質器温度調節用原燃料
ガス流量34(FRF-SV)に電池発電用原燃料ガス流量30
(FFC-SV)を加えた原燃料ガス流量35(F-SV)を改質器7
に供給するように、流量計19とPID制御器24と原
燃料ガス流量調節弁18とにより制御する。
In FIG. 1, the reformer temperature (T RF ) at which the preset reforming rate is obtained can be obtained from the operation time (Time) of the cumulative operation time meter 41 so that the reformer temperature can be obtained. Operation time (Time) in the set value correction arithmetic circuit 40
Is calculated from a relational expression between the temperature of the reformer and the reformer temperature (T RF ) to correct the reformer temperature set value 33 (T RF -SV). Reformer temperature measurement 3
In accordance with the difference between 2 (T RF -PV) and the corrected reformer temperature set value, the reformer temperature control raw fuel gas flow rate 34 (F RF -SV) is set to PI
It is calculated by the D controller 23. The raw fuel gas flow rate for battery power generation was increased to 30 (F RF -SV) for the reformer temperature control raw fuel gas flow rate.
(F FC -SV) plus the raw fuel gas flow rate 35 (F-SV) to the reformer 7
Is controlled by the flow meter 19, the PID controller 24, and the raw fuel gas flow control valve 18.

【0034】図2は、請求項3の発明に関わる実施例を
示す。図2の系統図が図1に記載された系統図と異なる
点は、図2の系統においては、燃料電池発電装置の運転
中に前記改質器出口の改質ガスのガス組成をガス組成測
定器51により測定し、これを分析して得られた運転情
報に基づき、この運転情報に基づく相関補正回路52に
より前記運転時間(Time)と改質器温度(TRF)との相関
を補正し、この補正された相関に基づき、前記改質器設
定温度を補正する改質器温度設定値補正演算回路50を
設けた点である。累積運転時間計41(Time Counter)を
設けた点および原燃料ガス流量の供給制御は、図1と同
様である。
FIG. 2 shows an embodiment according to the third aspect of the present invention. The difference between the system diagram of FIG. 2 and the system diagram shown in FIG. 1 is that, in the system of FIG. 2, the gas composition of the reformed gas at the outlet of the reformer is measured during the operation of the fuel cell power generator. The correlation between the operation time (Time) and the reformer temperature (T RF ) is corrected by a correlation correction circuit 52 based on the operation information measured by the analyzer 51 and analyzed. The point is that a reformer temperature set value correction arithmetic circuit 50 for correcting the reformer set temperature based on the corrected correlation is provided. The point of providing the cumulative operation time meter 41 (Time Counter) and the supply control of the raw fuel gas flow rate are the same as those in FIG.

【0035】図2においては、運転中任意に分析して得
られた改質器出口の改質ガス組成データを制御内に取り
込み、あらかじめ設定されている累積運転時間と改質器
温度との関係式を自動的に補正するので、図1の制御に
比較して、実運転に則した適正な補正制御が可能とな
る。
In FIG. 2, the reformed gas composition data at the outlet of the reformer obtained by arbitrarily analyzing during the operation is taken into the control, and the relationship between the preset cumulative operation time and the reformer temperature is set. Since the equation is automatically corrected, appropriate correction control based on actual operation can be performed as compared with the control in FIG.

【0036】[0036]

【発明の効果】上記のとおりこの発明によれば、都市ガ
ス,天然ガス,メタンガス等の原燃料ガスやメタノー
ル,エタノール,ガソリン等の液状の炭化水素と水とを
混合してなる液体燃料を気化した原燃料ガスを改質触媒
層に通流して,水蒸気改質反応により水素リッチな改質
ガスにして,この改質ガスを燃料電池に供給するための
改質器と、燃料電池から排出される排水素を空気と共に
燃焼させる排水素燃焼器とを有し、前記改質器における
改質器温度測定値が、あらかじめ設定した改質器設定温
度となるように前記原燃料ガスの流量を制御する燃料電
池発電装置の運転方法において、燃料電池発電装置の運
転中、前記改質器における改質率が略一定となるよう
に、前記改質器設定温度を補正することとしたので、常
に改質器における改質反応で生じる吸熱量を必要最小限
に抑えることができ、改質器に供給すべき原燃料ガス流
量の低減と発電効率の向上を図ることができる。
As described above, according to the present invention, a raw fuel gas such as city gas, natural gas, and methane gas, and a liquid fuel formed by mixing a liquid hydrocarbon such as methanol, ethanol, gasoline, and water with water are vaporized. The raw fuel gas flows through the reforming catalyst layer and is converted into a hydrogen-rich reformed gas by a steam reforming reaction. The reformed gas is supplied from the fuel cell to the reformer for supplying the reformed gas to the fuel cell. An exhaust hydrogen combustor for burning exhaust hydrogen together with air, and controlling the flow rate of the raw fuel gas such that a measured reformer temperature in the reformer becomes a preset reformer set temperature. In the operating method of the fuel cell power generator, the reformer set temperature is corrected so that the reforming rate in the reformer becomes substantially constant during the operation of the fuel cell power generator. Reforming in porcelain It is possible to suppress the amount of heat absorption that occurs in response to a minimum, it is possible to improve the reduction and the power generation efficiency of the raw fuel gas flow rate to be supplied to the reformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の燃料電池発電装置の運転方法の一例
を示す図
FIG. 1 is a diagram showing an example of an operation method of a fuel cell power generator according to the present invention.

【図2】この発明の燃料電池発電装置の異なる運転方法
の一例を示す図
FIG. 2 is a diagram showing an example of a different operation method of the fuel cell power generator according to the present invention.

【図3】従来の燃料電池発電装置の運転方法を示す図FIG. 3 is a diagram showing an operation method of a conventional fuel cell power generator.

【図4】従来の燃料電池発電装置のシステム系統の一例
を示す図
FIG. 4 is a diagram showing an example of a system system of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

7:改質器、10:燃料電池、17:バーナ、18:原
燃料ガス流量調節弁、19:流量計、20:改質器温度
測定器、21:電流計、22:必要原燃料ガス流量演算
回路、23,24:PID制御器、40,50:改質器
温度設定値補正演算回路、41:累積運転時間計、5
1:ガス組成測定器、52:運転情報に基づく相関補正
回路。
7: reformer, 10: fuel cell, 17: burner, 18: raw fuel gas flow control valve, 19: flow meter, 20: reformer temperature measuring device, 21: ammeter, 22: required raw fuel gas flow rate Arithmetic circuits, 23, 24: PID controller, 40, 50: Reformer temperature set value correction arithmetic circuit, 41: Cumulative operation time meter, 5
1: Gas composition measuring device, 52: Correlation correction circuit based on operation information.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H027 AA02 BA01 KK28 KK31 KK42 MM13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H027 AA02 BA01 KK28 KK31 KK42 MM13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 都市ガス,天然ガス,メタンガス等の原
燃料ガスやメタノール,エタノール,ガソリン等の液状
の炭化水素と水とを混合してなる液体燃料を気化した原
燃料ガスを改質触媒層に通流して,水蒸気改質反応によ
り水素リッチな改質ガスにして,この改質ガスを燃料電
池に供給するための改質器と、燃料電池から排出される
排水素を空気と共に燃焼させる排水素燃焼器とを有し、
前記改質器における改質器温度測定値が、あらかじめ設
定した改質器設定温度となるように前記原燃料ガスの流
量を制御する燃料電池発電装置の運転方法において、燃
料電池発電装置の運転中、前記改質器における改質率が
略一定となるように、前記改質器設定温度を補正するこ
とを特徴とする燃料電池発電装置の運転方法。
1. A reforming catalyst layer for converting a raw fuel gas such as city gas, natural gas, or methane gas or a raw fuel gas obtained by vaporizing a liquid fuel obtained by mixing a liquid hydrocarbon such as methanol, ethanol, gasoline, and water with water. And a reformer for supplying the reformed gas to the fuel cell by a steam reforming reaction, and a wastewater for combusting the hydrogen discharged from the fuel cell together with the air. Elementary combustor and
In the operating method of the fuel cell power generator, which controls the flow rate of the raw fuel gas such that the measured value of the reformer temperature in the reformer is a preset reformer set temperature, A method of operating the fuel cell power generator, wherein the set temperature of the reformer is corrected so that the reforming rate in the reformer becomes substantially constant.
【請求項2】 請求項1に記載の運転方法において、前
記改質率を略一定とするための,触媒活性を考慮した所
期の改質器設定温度と、燃料電池発電装置の累積運転時
間とのあらかじめ求めた相関に基づき、前記改質器設定
温度を補正することを特徴とする燃料電池発電装置の運
転方法。
2. The operating method according to claim 1, wherein an intended reformer set temperature considering catalyst activity and a cumulative operating time of the fuel cell power generator for keeping the reforming rate substantially constant. A method for operating the fuel cell power generator, wherein the set temperature of the reformer is corrected based on a correlation obtained in advance with the fuel cell power generator.
【請求項3】 請求項2に記載の運転方法において、燃
料電池発電装置の運転中に前記改質器出口の改質ガスの
ガス組成を分析して得られた運転情報に基づき前記相関
を補正し、この補正された相関に基づき、前記改質器設
定温度を補正することを特徴とする燃料電池発電装置の
運転方法。
3. The operating method according to claim 2, wherein the correlation is corrected based on operating information obtained by analyzing a gas composition of the reformed gas at the outlet of the reformer during operation of the fuel cell power generator. Then, based on the corrected correlation, the operating method of the fuel cell power generator, wherein the set temperature of the reformer is corrected.
【請求項4】 請求項1または3のいずれかに記載の運
転方法において、前記燃料電池における水素利用率が所
定の上限値を超えない範囲で所定の上限値近傍となるよ
うに、前記改質率を定めることを特徴とする燃料電池発
電装置の運転方法。
4. The operating method according to claim 1, wherein the hydrogen utilization in the fuel cell is close to a predetermined upper limit within a range not exceeding a predetermined upper limit. A method for operating a fuel cell power generator, comprising determining a rate.
JP30513799A 1999-10-27 1999-10-27 Operation method of fuel cell power generator Expired - Fee Related JP3758070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30513799A JP3758070B2 (en) 1999-10-27 1999-10-27 Operation method of fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30513799A JP3758070B2 (en) 1999-10-27 1999-10-27 Operation method of fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2001126748A true JP2001126748A (en) 2001-05-11
JP3758070B2 JP3758070B2 (en) 2006-03-22

Family

ID=17941541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30513799A Expired - Fee Related JP3758070B2 (en) 1999-10-27 1999-10-27 Operation method of fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3758070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operation method and system for solid electrolyte fuel cell
US7255946B2 (en) 2002-09-06 2007-08-14 Nissan Motor Co., Ltd. Fuel cell power plant system for moving bodies and control method thereof
JP2012059614A (en) * 2010-09-10 2012-03-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method thereof
JP2013175354A (en) * 2012-02-24 2013-09-05 Ngk Spark Plug Co Ltd Fuel cell system and method of controlling the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operation method and system for solid electrolyte fuel cell
JP4678115B2 (en) * 2002-07-17 2011-04-27 三菱マテリアル株式会社 Operation method and operation system of solid oxide fuel cell
US7255946B2 (en) 2002-09-06 2007-08-14 Nissan Motor Co., Ltd. Fuel cell power plant system for moving bodies and control method thereof
JP2012059614A (en) * 2010-09-10 2012-03-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method thereof
JP2013175354A (en) * 2012-02-24 2013-09-05 Ngk Spark Plug Co Ltd Fuel cell system and method of controlling the same

Also Published As

Publication number Publication date
JP3758070B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP4192301B2 (en) Control device for reformer
KR101029647B1 (en) Power supply system and control method thereof
JP4619753B2 (en) Fuel cell operation control method and system therefor
JPH10308230A (en) Power generating device for fuel cell
JP4147659B2 (en) Control device for reformer
JP5906424B2 (en) Hydrogen generator and fuel cell system
JP4325270B2 (en) Operation control method of fuel cell power generator
JP2000034102A (en) Controller of reformer
WO2010010699A1 (en) Fuel cell system and fuel cell system control method
US9640819B2 (en) Fuel cell system
US6607855B2 (en) Control system for fuel cell
WO2013132847A1 (en) Hydrogen generating device and operation method therefor, and fuel-cell system
KR20130071992A (en) Gaseous fuel supply device of fuel cell system and fuel cell systemincluding the same
JP3758070B2 (en) Operation method of fuel cell power generator
JP3443237B2 (en) Solid polymer fuel cell power generation system
US7998629B2 (en) Method of operating hydrogen and power generating system
JP2004039420A (en) Fuel cell power generation system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JP2002373695A (en) Fuel cell system
JP3212181B2 (en) Method and apparatus for controlling combustion air amount of fuel cell fuel off-gas
JPH08293312A (en) Fuel cell system
US20230197983A1 (en) Fuel cell system and control method for fuel cell system
JP4791698B2 (en) Reformed fuel cell system and operation control method for reformed fuel cell system
JP2007073302A (en) Fuel reforming system
JP2000034101A (en) Controller of reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees