JP2001125643A - Travel controller for unmanned vehicle - Google Patents

Travel controller for unmanned vehicle

Info

Publication number
JP2001125643A
JP2001125643A JP30635899A JP30635899A JP2001125643A JP 2001125643 A JP2001125643 A JP 2001125643A JP 30635899 A JP30635899 A JP 30635899A JP 30635899 A JP30635899 A JP 30635899A JP 2001125643 A JP2001125643 A JP 2001125643A
Authority
JP
Japan
Prior art keywords
speed
unmanned vehicle
traveling
wheel speed
outer wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30635899A
Other languages
Japanese (ja)
Inventor
Kikuo Hori
喜久雄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP30635899A priority Critical patent/JP2001125643A/en
Publication of JP2001125643A publication Critical patent/JP2001125643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine a travel route according to instructed passage points through spline interpolation, to find an external wheel speed from an instructed travel time so that an unmanned vehicle can travel in the travel route while the external wheel speed is held constant, and to find an internal wheel speed by correcting the found external wheel speed with the curvature of the route. SOLUTION: The unmanned vehicle travels along a curve while the external wheel speed is held constant and acceleration is small; and an instructed travel time can be kept and energy consumption is small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は無人車の走行制御に関
し、特に教示した走行時間で走行ルートを走行させるこ
とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to traveling control of an unmanned vehicle, and more particularly to traveling a traveling route for a traveling time taught.

【0002】[0002]

【従来技術】無人車は乗客や荷物などを無人操縦で搬送
するものである。発明者は、1) 指定された通過ポイン
トの付近を通過する、2) ほぼ指定された走行時間で走
行するとの条件付きで、無人車の走行ルートと速度パタ
ーンを定めて、走行制御を行うことを検討した。この場
合に、通過ポイントを指定するとともに、通過ポイント
と通過ポイントとの間の走行時間を指定すれば、各ポイ
ント間での平均速度を定め速度パターンを発生させるこ
とができる。しかし通過ポイント毎の走行時間を指定す
るのでは、速度パターンをマニュアルで定めるのと大差
がない。
2. Description of the Related Art Unmanned vehicles transport passengers, luggage, and the like by unmanned operation. The inventor must control the traveling route and speed pattern of the unmanned vehicle with the condition that 1) the vehicle passes near the designated passing point, and 2) the vehicle travels for approximately the specified traveling time. It was investigated. In this case, if a passing point is specified and a running time between the passing points is specified, an average speed between the points can be determined and a speed pattern can be generated. However, specifying the traveling time for each passing point is not much different from manually determining the speed pattern.

【0003】[0003]

【発明の課題】この発明の課題は、無人車を所定の時間
でかつ所定の速度条件を充たすように走行ルートを走行
させることにある。請求項2の発明の追加の課題は、走
行ルートのカーブ等を滑らかに走行させながら加減速を
なるべく弱くし、さらに消費エネルギーをなるべく節減
することにある。請求項3の発明の追加の課題は、外輪
や内輪を容易かつ確実に制御できるようにすることにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to allow an unmanned vehicle to travel on a traveling route for a predetermined time and so as to satisfy a predetermined speed condition. An additional object of the invention of claim 2 is to make acceleration / deceleration as weak as possible while running smoothly on a curve or the like of a traveling route, and to further reduce energy consumption as much as possible. An additional object of the third aspect of the present invention is to make it possible to control the outer ring and the inner ring easily and reliably.

【0004】[0004]

【発明の構成】この発明は、無人車の走行ルートを教示
するための手段と、該走行ルートの走行時間を教示する
ための手段と、無人車の速度が所定の条件を充たしかつ
走行時間が教示された時間とほぼ一致しながら教示され
た走行ルートを走行するように、無人車の速度パターン
を求めるための手段とを設けた、無人車の走行制御装置
にある。
SUMMARY OF THE INVENTION The present invention provides a means for teaching a traveling route of an unmanned vehicle, a means for teaching a traveling time of the traveling route, a method for determining whether the speed of the unmanned vehicle satisfies a predetermined condition, and A means for determining the speed pattern of the unmanned vehicle so that the vehicle travels on the taught traveling route while substantially coincident with the taught time is provided.

【0005】好ましくは、速度パターンを求めるための
手段をさらに、無人車の外輪速度がほぼ一定となるよう
に無人車の速度パターンを定めるものとする。
[0005] Preferably, the means for determining the speed pattern further determines the speed pattern of the unmanned vehicle so that the outer wheel speed of the unmanned vehicle is substantially constant.

【0006】さらに好ましくは、無人車が左右の車輪の
速度差によりステアリングするものであり、走行ルート
の曲率を求めるための手段を設けるとともに、前記速度
パターンを求めるための手段をさらに、求めた速度パタ
ーンと曲率とから内輪速度のパターンを求めるようにす
る。
[0006] More preferably, the unmanned vehicle is steered by a speed difference between left and right wheels, and means for obtaining a curvature of a traveling route is provided, and means for obtaining the speed pattern is further provided. An inner wheel speed pattern is obtained from the pattern and the curvature.

【0007】[0007]

【発明の作用と効果】この発明では、走行ルートと走行
時間とを教示するので、走行時間を教示した値に容易に
一致させることができ、その時間で走行させることがで
きる。また所定の条件を充たすように速度パターンを定
めるので、速度変化の程度等を容易に所望のように制御
できる(請求項1)。
According to the present invention, since the traveling route and the traveling time are taught, the traveling time can be easily matched with the taught value, and the vehicle can be traveled at that time. Further, since the speed pattern is determined so as to satisfy a predetermined condition, the degree of speed change can be easily controlled as desired (claim 1).

【0008】請求項2の発明ではさらに、外輪速度をほ
ぼ一定にするので、無人車の重心での速度はカーブで直
線区間よりも減少し、その度合いはカーブの曲率に応じ
て定まり、滑らかに走行できる。また走行ルートでの加
減速度を小さくでき、省エネルギーな走行ができる。
According to the second aspect of the present invention, since the outer wheel speed is made substantially constant, the speed at the center of gravity of the unmanned vehicle is smaller than that of the straight section in the curve, and the degree is determined according to the curvature of the curve, and the degree is smooth. I can run. In addition, acceleration / deceleration on the traveling route can be reduced, and energy-saving traveling can be performed.

【0009】請求項3の発明ではさらに、速度差制御を
行う無人車に対して、外輪速度がほぼ一定となるように
制御するので、外輪に対しては一定速度との簡単な制御
を行うだけでよく、内輪に対しては、外輪の速度等から
走行ルートの曲率に応じて減じた速度に制御すれば良
く、制御が簡単になる。
According to the third aspect of the present invention, since the speed of the outer wheel is controlled to be substantially constant for an unmanned vehicle that performs speed difference control, simple control of the outer wheel at a constant speed is merely performed. For the inner wheel, the speed may be controlled to a speed reduced from the speed of the outer wheel or the like according to the curvature of the traveling route, so that the control is simplified.

【0010】[0010]

【実施例】図1〜図4に実施例を示す。図1に無人車2
への走行ルートや走行時間の教示を示すと、A〜Dは無
人車2が通過すべき通過ポイントで、ポイントA〜Dを
走行時間Tで走行するものとする。無人車2には前後に
各左右一対の走行輪4が設けられ、左右の走行輪4,4
間の速度差によりステアリングするものとする。ただし
図1の右側に示した無人車6のように、ステアリング付
の車輪8とステアリング無しの走行輪10,10の3輪
駆動等としても良く、無人車の種類は任意である。12
は無人車2への地上コントローラで、無人車2が走行可
能なエリアのマップを有しており、このマップを地上コ
ントローラ12の端末画面等に表示しながら、通過ポイ
ントA〜Dをマニュアル等で指定することにより、走行
ルートを指定する。そして通過ポイントA〜Dを指定さ
れると、これらの点を通るように関数補間演算で走行ル
ートを定める。なお走行ルートは通過ポイントA〜D上
を正確に通過するものから、通過ポイントA〜Dの付近
を通過すればよいものまで、厳密さの度合いは状況に応
じて定めればよい。
1 to 4 show an embodiment. Figure 1 shows an unmanned vehicle 2
A to D indicate passage points through which the unmanned vehicle 2 should pass, and it is assumed that the vehicle travels at points A to D for a traveling time T. The unmanned vehicle 2 is provided with a pair of left and right running wheels 4 at the front and rear,
It is assumed that the steering is performed by the speed difference between the two. However, as in an unmanned vehicle 6 shown on the right side of FIG. 1, a three-wheel drive of wheels 8 with steering and running wheels 10, 10 without steering may be used, and the type of unmanned vehicle is arbitrary. 12
Is a ground controller for the unmanned vehicle 2 and has a map of an area in which the unmanned vehicle 2 can travel. While displaying this map on a terminal screen or the like of the ground controller 12, the passing points A to D are manually determined. By specifying, the driving route is specified. When passing points A to D are designated, a traveling route is determined by a function interpolation calculation so as to pass through these points. It should be noted that the degree of strictness may be determined according to the situation, from a route that accurately passes on the passing points A to D to a route that just passes near the passing points A to D.

【0011】地上コントローラ12は、コントローラ1
2の端末から走行ルートと走行時間との教示を受けて、
これらのデータを入力されると、速度が所定の条件を満
たし、かつ走行時間が教示された時間とほぼ一致するよ
うに速度パターンを決定する。速度の所定の条件(拘束
条件)として、実施例では外輪の速度が直線区間でもカ
ーブでも共通でほぼ一定との条件を用いたが、これ以外
に無人車2の重心での速度が直線区間でほぼ一定で、カ
ーブでは例えばその曲率に比例して直線区間の速度より
も減速する等のもの等でも良い。後者のように、無人車
2の重心速度を直線区間で一定としカーブで曲率に応じ
て減速する場合、減速の割合を適当に定めると、無人車
2の外輪速度をほぼ一定とすることと同じになる。なお
この明細書では、カーブでの外側となる車輪を外輪、内
側となる車輪を内輪と呼び、例えば直線区間からS字型
に走行すると、最初例えば右側の車輪が外輪となり、次
いで左側の車輪が外輪となり、再び直線区間に移ると内
輪/外輪の区別が無くなる。ここで外輪の速度が一定と
は、直線区間でもカーブでも外輪となる車輪についてそ
の速度が一定という意味である。また外輪速度が一定と
の条件は、地上コントローラ12等の計算能力に応じて
厳密に求めても良いし、近似的に求めても良い。
The ground controller 12 is a controller 1
Receiving the instruction of the traveling route and the traveling time from the terminal 2;
When these data are input, the speed pattern is determined so that the speed satisfies a predetermined condition and the traveling time substantially coincides with the taught time. As the predetermined condition (restriction condition) of the speed, in the embodiment, the condition that the speed of the outer wheel is substantially constant in both the straight section and the curve is used, but in addition, the speed at the center of gravity of the unmanned vehicle 2 is the straight section. The curve may be substantially constant, for example, the curve may be slower than the speed of the straight section in proportion to the curvature. As in the latter case, when the speed of the center of gravity of the unmanned vehicle 2 is constant in a straight section and deceleration is performed in accordance with the curvature in a curve, setting the deceleration rate appropriately is equivalent to making the outer wheel speed of the unmanned vehicle 2 substantially constant. become. In this specification, the wheel on the outside of the curve is called an outer wheel, and the wheel on the inside is called an inner wheel. When it becomes the outer ring, and it moves to the straight section again, there is no distinction between the inner ring and the outer ring. Here, that the speed of the outer wheel is constant means that the speed of the outer wheel is constant both in a straight section and in a curve. The condition that the outer wheel speed is constant may be determined strictly or approximately according to the calculation capability of the ground controller 12 or the like.

【0012】外輪速度が一定や、無人車2の重心速度が
一定でカーブで減速するとの条件は、無人車2に加える
加減速度を小さくし、かつカーブでは無人車2の重心で
見てやや減速することにより、滑らかに走行し得るよう
にするものである。これらの条件を満たすように速度パ
ターンを定めれば、加減速度の値が小さくカーブも直線
区間も滑らかに走行でき、加減速度が小さいことに伴っ
て消費エネルギーの小さな走行制御を行うことができ
る。
The condition that the speed of the outer ring is constant or the speed of the center of gravity of the unmanned vehicle 2 is constant and the speed of deceleration is reduced by decreasing the acceleration / deceleration to be applied to the unmanned vehicle 2 By doing so, the vehicle can run smoothly. If the speed pattern is determined so as to satisfy these conditions, the value of the acceleration / deceleration is small, the curve and the straight section can be run smoothly, and the running control with small energy consumption can be performed with the small acceleration / deceleration.

【0013】無人車には速度差制御を用いた無人車2が
適しており、実施例のように外輪速度を一定にするとの
条件で速度パターンを決定すれば、内輪の速度は外輪の
速度よりもカーブの曲率に比例して小さなものとなり、
直線区間では外輪内輪の区別はなく両者とも同じ速度で
ある。このため外輪の速度は一定となり、制御が極めて
簡単となる。また内輪の速度は求めた外輪速度をカーブ
の曲率等で補正することにより、容易に求めることがで
きる。ただしこの場合に、内輪速度を必ずしも外輪速度
から求める必要はなく、例えば外輪速度を一旦無人車2
の重心速度に変換し、次いでこれを内輪速度に変換して
も良い。
An unmanned vehicle 2 using speed difference control is suitable for an unmanned vehicle. If the speed pattern is determined under the condition that the outer wheel speed is kept constant as in the embodiment, the speed of the inner wheel is smaller than the speed of the outer wheel. Also becomes smaller in proportion to the curvature of the curve,
In the straight section, there is no distinction between the outer ring and the inner ring, and both have the same speed. For this reason, the speed of the outer wheel becomes constant, and the control becomes extremely simple. Further, the speed of the inner wheel can be easily obtained by correcting the obtained outer wheel speed by the curvature of the curve or the like. However, in this case, it is not always necessary to determine the inner wheel speed from the outer wheel speed.
May be converted to the center of gravity speed, and then converted to the inner ring speed.

【0014】教示した通過ポイントA〜D及び走行時間
Tからの走行ルートの決定や速度パターンの決定は、実
施例では地上コントローラ12で行うようにした。しか
しながらこれらの一部を無人車2,6等で行っても良
く、例えば地上コントローラ12では走行ルートの決定
と外輪速度の決定のみを行い、内輪速度の決定は無人車
2,6等で行っても良い。
The determination of the traveling route and the determination of the speed pattern from the taught passing points A to D and the traveling time T are performed by the ground controller 12 in the embodiment. However, some of these may be performed by the unmanned vehicles 2, 6 and the like. For example, the ground controller 12 only determines the traveling route and the outer wheel speed, and determines the inner wheel speed by the unmanned vehicles 2, 6 and the like. Is also good.

【0015】外輪速度が一定との条件の下で速度パター
ンを求める例を図2〜図4に示す。図2に走行パターン
の決定アルゴリズムを示すと、通過ポイントA〜Dを通
るように、関数補間演算により滑らかに走行ルートを決
定する。ここでは、両端の走行ポイントA,Dに対し
て、無人車2が走行ルートと同じ向きで通過ポイントA
へ進入し、走行ルートと同じ向きで通過ポイントDから
出て行くものと仮定しているが、両端の通過ポイント
A,D自体がカーブ上にある場合、通過ポイントA〜D
の両外側の点も加味して、関数補間演算により走行ルー
トを決定すればよい。次に通過ポイントA〜Dの範囲内
と外側とで、別々に速度パターンを求めて速度が異なる
場合、通過ポイントA,Dの付近で所定の加減速度によ
り速度を調整する。また通過ポイントA,Dで無人車2
が停止し速度が0の場合、ポイントA−B間やポイント
C−D間等で加減速を行う。ポイントA,Dの外側との
間の速度差の処理等は、境界値条件の処理として後で示
す。
FIGS. 2 to 4 show examples of obtaining a speed pattern under the condition that the outer wheel speed is constant. FIG. 2 shows an algorithm for determining a traveling pattern. The traveling route is smoothly determined by a function interpolation operation so as to pass through the passing points A to D. Here, the unmanned vehicle 2 passes through the traveling point A in the same direction as the traveling route with respect to the traveling points A and D at both ends.
It is assumed that the vehicle enters the road and exits from the passing point D in the same direction as the traveling route. However, if the passing points A and D at both ends are on a curve, the passing points A to D
The driving route may be determined by a function interpolation calculation in consideration of both outer points. Next, when the speeds are determined separately for the inside and outside of the range of the passing points A to D and the speeds are different, the speed is adjusted near the passing points A and D by a predetermined acceleration / deceleration. Unmanned vehicles 2 at passing points A and D
Stops and the speed is 0, acceleration and deceleration are performed between points AB and points CD. The processing of the speed difference between the points outside the points A and D and the like will be described later as the processing of the boundary value condition.

【0016】ポイントA,Dを通過するように走行ルー
トが定まると、ルートの各部での曲率Kが定まる。直線
区間では無人車2の左右の走行輪4,4は同じ速度であ
るが、カーブでは外輪と内輪との区別が生じ、これらの
速度の比は式(1)で定まる。また外輪速度と無人車2の
重心速度との関係は式(2)で定まる。即ち左右の車輪間
隔をDとすると、左右の車輪の中心に対して、カーブで
外輪は曲率半径が大きくなる分だけ高速で走行する必要
がある。車輪の中心と外輪との曲率半径の差は、曲率を
KとしてDK/2となり、左右の車輪の中心に対する外
輪の速度の比は(1+DK/2)となる。同様に左右の
車輪の中心に対する内輪の速度の比は(1−DK/2)
となる。このため外輪速度が定まれば、曲率で補正する
ことによ り、容易に内輪速度を定めることができる。 Vout:Vin=(1+DK/2):(1−DK/2) (1) Vout:Vcenter=(1+DK/2):1 (2) Vout: 外輪速度, Vin: 内輪速度, Vcen
ter: 無人車重心速度 D: 左右の車輪間隔, K: 曲率(曲率半径の逆
数)
When the traveling route is determined so as to pass through points A and D, the curvature K at each part of the route is determined. In the straight section, the left and right running wheels 4 and 4 of the unmanned vehicle 2 have the same speed, but the curve makes a distinction between the outer wheel and the inner wheel, and the ratio of these speeds is determined by equation (1). The relationship between the outer wheel speed and the center of gravity speed of the unmanned vehicle 2 is determined by equation (2). That is, assuming that the distance between the left and right wheels is D, the outer wheel needs to travel at a high speed in the curve with respect to the center of the left and right wheels by an amount corresponding to an increase in the radius of curvature. The difference in radius of curvature between the center of the wheel and the outer wheel is DK / 2, where K is the curvature, and the ratio of the speed of the outer wheel to the center of the left and right wheels is (1 + DK / 2). Similarly, the ratio of the speed of the inner wheel to the center of the left and right wheels is (1-DK / 2)
Becomes For this reason, once the outer wheel speed is determined, the inner wheel speed can be easily determined by correcting with the curvature. Vout: Vin = (1 + DK / 2) :( 1-DK / 2) (1) Vout: Vcenter = (1 + DK / 2): 1 (2) Vout: Outer wheel speed, Vin: Inner wheel speed, Vcen
ter: Center of gravity speed of unmanned vehicles D: Distance between left and right wheels, K: Curvature (reciprocal of radius of curvature)

【0017】走行ルートに沿っての媒介変数をuとし、
uが定まれば走行ルート上の位置が定まり、従ってx座
標やy座標が定まるものとする。指定された走行ルート
を所定時間Tで走行し、外輪速度を一定にするために
は、式(3)を満たせばよい。式(3)の右辺の(1+0.5・
D|K|)は、無人車2の重心に対して定めた走行ルー
トを、外輪の走行距離に換算することにより走行距離が
増加する割合を示している。(F'(u)+G'(u))
1/2 は媒介変数uの単位量当たりの走行ルートの長
さである。式(3)の右辺は数値積分等により容易に求め
ることができ、これから外輪速度が定まる。 Vout・T=∫(1+0.5・D|K|)(F'(u)+G'(u))1/2du (3) u: 走行ルートに沿った軌跡を示す媒介変数, F(u)=x, G(u)=y, F'(u)=dx/du,
G'(u)=dy/du (F'(u)+G'(u))1/2 : du当たりの走行
距離
Let u be a parameter along the travel route,
When u is determined, the position on the traveling route is determined, and therefore the x coordinate and the y coordinate are determined. In order to travel the specified traveling route for a predetermined time T and keep the outer wheel speed constant, it is sufficient to satisfy Expression (3). (1 + 0.5 ·
D | K |) indicates a rate at which the traveling distance increases by converting the traveling route defined with respect to the center of gravity of the unmanned vehicle 2 into the traveling distance of the outer wheel. (F '(u) 2 + G' (u) 2 )
1/2 is the length of the traveling route per unit amount of the parameter u. The right side of equation (3) can be easily obtained by numerical integration or the like, from which the outer wheel speed is determined. Vout · T = ∫ (1 + 0.5 · D | K |) (F ′ (u) 2 + G ′ (u) 2 ) 1/2 du (3) u: a parameter representing a trajectory along the traveling route, F (u) = x, G (u) = y, F ′ (u) = dx / du,
G ′ (u) = dy / du (F ′ (u) 2 + G ′ (u) 2 ) 1/2 : travel distance per du

【0018】外輪速度が定まり、走行ルートの各部での
曲率は既知であるので、ルート各部の内輪速度も容易に
求めることができる。次に通過ポイントA〜Dの外側と
内側とで速度差がある場合に対して、境界値条件の処理
を行う。ここでは境界値条件の処理は、通過ポイントA
〜Dの外側での速度と内側での速度に差がある場合、こ
の速度差を所定の加減速度aにより解消するものとす
る。すると速度差の解消に要する時間は、速度差を加減
速度aで割ったものとなる。通過ポイントA〜Dの外側
と内側とで外輪速度が共通で速度差がない場合と、速度
差があり加減速度aで解消する場合との走行に要する時
間差は、速度差ΔVの2乗を加減速度aと通過ポイント
A〜Dの内側での速度Vinの積で割り算したものΔV
/(a・Vin) に比例する。そしてこの時間誤差をΔT
とすると、時間誤差ΔTを解消するように、ΔT/Tの
割合で前記の外輪速度Voutを補正し、目標外輪速度を
例えばVout(1+ΔT/T)とする。なおこれでは精
度が不足な場合、外輪速度の目標値を走行時間が教示値
に一致するように、計算を繰り返せばよい。また同様に
内輪速度Vinも補正する。
Since the outer wheel speed is determined and the curvature of each part of the traveling route is known, the inner wheel speed of each part of the route can be easily obtained. Next, the processing of the boundary value condition is performed for the case where there is a speed difference between the outside and the inside of the passing points A to D. Here, the processing of the boundary value condition is performed at the passing point A.
If there is a difference between the speed on the outside and the speed on the inside, the speed difference is eliminated by a predetermined acceleration / deceleration a. Then, the time required for eliminating the speed difference is obtained by dividing the speed difference by the acceleration / deceleration a. The difference in time required for traveling between the case where the outer wheel speed is common to the outside and inside of the passing points A to D and there is no speed difference, and the case where there is a speed difference and the acceleration is canceled by the acceleration / deceleration a is the square of the speed difference ΔV. ΔV 2 divided by the product of the speed a and the speed Vin inside the passing points A to D
/ (A · Vin). And this time error is ΔT
Then, the outer wheel speed Vout is corrected at a rate of ΔT / T so as to eliminate the time error ΔT, and the target outer wheel speed is set to, for example, Vout (1 + ΔT / T). In this case, if the accuracy is insufficient, the calculation may be repeated so that the target time of the outer wheel speed matches the teaching time. Similarly, the inner wheel speed Vin is also corrected.

【0019】これによって生じる速度パターンは例えば
図3のようになり、A〜Dまでの走行ルートに対して外
輪速度Voutは一定となり、走行ルート上の位置は媒介
変数uで示されることになる。またこの間の走行時間は
Tに等しく、図4に示すように外輪速度は一定で、内輪
速度は曲率に応じて外輪速度よりも小さくなる。
The resulting speed pattern is, for example, as shown in FIG. 3. The outer wheel speed Vout is constant with respect to the traveling route from A to D, and the position on the traveling route is indicated by the parameter u. The running time during this period is equal to T, and the outer wheel speed is constant as shown in FIG. 4, and the inner wheel speed becomes smaller than the outer wheel speed according to the curvature.

【0020】このような速度制御をすると、外輪速度が
一定で、無人車の重心速度は直線区間で一定でカーブで
は曲率に応じて減少するので、滑らかにカーブを走行す
ることができる。また加減速が小さく、エネルギー消費
の少ない走行ができる。さらに速度差制御の無人車2の
場合、制御条件は外輪速度が一定で、内輪速度が曲率に
応じて外輪よりも小さいとの、極めて簡単なものとな
る。実施例では外輪速度一定との条件で速度パターンを
求めたが、これに限るものではない。
When such speed control is performed, the outer wheel speed is constant, and the center of gravity speed of the unmanned vehicle is constant in the straight section and decreases in accordance with the curvature in the curve, so that the vehicle can travel smoothly on the curve. In addition, the vehicle can travel with low acceleration / deceleration and low energy consumption. Further, in the case of the unmanned vehicle 2 of the speed difference control, the control condition is very simple, that is, the outer wheel speed is constant and the inner wheel speed is smaller than the outer wheel according to the curvature. In the embodiment, the speed pattern is obtained under the condition that the outer wheel speed is constant. However, the present invention is not limited to this.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例での通過ポイントの教示を示す図FIG. 1 is a diagram showing teaching of passing points in an embodiment.

【図2】 実施例での走行ルートと速度の決定を示すフ
ローチャート
FIG. 2 is a flowchart illustrating determination of a traveling route and a speed in the embodiment.

【図3】 実施例での走行ルートと速度とを示す図FIG. 3 is a diagram showing a traveling route and a speed in the embodiment.

【図4】 実施例での外輪速度と内輪速度とのパターン
を示す特性図
FIG. 4 is a characteristic diagram showing a pattern of an outer wheel speed and an inner wheel speed in the embodiment.

【符号の説明】[Explanation of symbols]

A〜D 通過ポイント 2,6 無人車 4,8,10 走行輪 12 地上コントローラ A to D Passing points 2, 6 Unmanned vehicles 4, 8, 10 Running wheels 12 Ground controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無人車の走行ルートを教示するための手
段と、該走行ルートの走行時間を教示するための手段
と、無人車の速度が所定の条件を充たしかつ走行時間が
教示された時間とほぼ一致しながら教示された走行ルー
トを走行するように、無人車の速度パターンを求めるた
めの手段とを設けた、無人車の走行制御装置。
1. A means for teaching a traveling route of an unmanned vehicle, a means for teaching a traveling time of the traveling route, and a time when the speed of the unmanned vehicle satisfies a predetermined condition and the traveling time is taught. Means for determining a speed pattern of the unmanned vehicle so that the vehicle travels on the travel route taught while substantially matching the above.
【請求項2】 速度パターンを求めるための手段をさら
に、無人車の外輪速度がほぼ一定となるように無人車の
速度パターンを定めるようにしたことを特徴とする請求
項1の無人車の走行制御装置。
2. The traveling of an unmanned vehicle according to claim 1, wherein said means for determining a speed pattern further determines the speed pattern of the unmanned vehicle such that the outer wheel speed of the unmanned vehicle is substantially constant. Control device.
【請求項3】 無人車が左右の車輪の速度差によりステ
アリングするものであり、走行ルートの曲率を求めるた
めの手段を設けるとともに、前記速度パターンを求める
ための手段をさらに、求めた速度パターンと曲率とから
内輪速度のパターンを求めるようにしたことを特徴とす
る、請求項2の無人車の走行制御装置。
3. An unmanned vehicle steers according to a speed difference between left and right wheels. A means for determining a curvature of a traveling route is provided, and the means for determining the speed pattern further includes: The travel control device for an unmanned vehicle according to claim 2, wherein a pattern of the inner wheel speed is obtained from the curvature.
JP30635899A 1999-10-28 1999-10-28 Travel controller for unmanned vehicle Pending JP2001125643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30635899A JP2001125643A (en) 1999-10-28 1999-10-28 Travel controller for unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30635899A JP2001125643A (en) 1999-10-28 1999-10-28 Travel controller for unmanned vehicle

Publications (1)

Publication Number Publication Date
JP2001125643A true JP2001125643A (en) 2001-05-11

Family

ID=17956114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30635899A Pending JP2001125643A (en) 1999-10-28 1999-10-28 Travel controller for unmanned vehicle

Country Status (1)

Country Link
JP (1) JP2001125643A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045418B2 (en) 2006-03-29 2011-10-25 Kabushiki Kaisha Toshiba Position detecting device, autonomous mobile device, method, and computer program product
JP2012084090A (en) * 2010-10-14 2012-04-26 Murata Mach Ltd Conveyance vehicle
WO2014178272A1 (en) * 2013-05-01 2014-11-06 村田機械株式会社 Autonomous moving body
CN110879614A (en) * 2019-12-12 2020-03-13 上海交通大学 Unmanned aerial vehicle speed planning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279116A (en) * 1985-10-02 1987-04-11 Hitachi Ltd Operating method for transporting equipment
JPH07131908A (en) * 1993-11-01 1995-05-19 Yamaha Motor Co Ltd Travel controller for conveying truck of conveying system
JPH0844430A (en) * 1994-07-30 1996-02-16 Mazda Motor Corp Controller for unmanned automated vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279116A (en) * 1985-10-02 1987-04-11 Hitachi Ltd Operating method for transporting equipment
JPH07131908A (en) * 1993-11-01 1995-05-19 Yamaha Motor Co Ltd Travel controller for conveying truck of conveying system
JPH0844430A (en) * 1994-07-30 1996-02-16 Mazda Motor Corp Controller for unmanned automated vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045418B2 (en) 2006-03-29 2011-10-25 Kabushiki Kaisha Toshiba Position detecting device, autonomous mobile device, method, and computer program product
JP2012084090A (en) * 2010-10-14 2012-04-26 Murata Mach Ltd Conveyance vehicle
WO2014178272A1 (en) * 2013-05-01 2014-11-06 村田機械株式会社 Autonomous moving body
JP2014219721A (en) * 2013-05-01 2014-11-20 村田機械株式会社 Autonomous mobile body
CN110879614A (en) * 2019-12-12 2020-03-13 上海交通大学 Unmanned aerial vehicle speed planning method
CN110879614B (en) * 2019-12-12 2021-09-21 上海交通大学 Unmanned aerial vehicle speed planning method

Similar Documents

Publication Publication Date Title
CN111717204B (en) Lateral control method and system for automatic driving vehicle
JP6055525B1 (en) Vehicle travel control device
JP3286334B2 (en) Mobile unit control device
EP4063237A1 (en) Vehicle steering control method, device and system
JP6315107B2 (en) Target route generation device and travel control device
CN110703763A (en) Unmanned vehicle path tracking and obstacle avoidance method
JPH01202581A (en) Rear wheel steering angle control method in front-rear-wheel-steering vehicle
US10518776B2 (en) Vehicle system, vehicle controller, and method of controlling vehicle
US11518412B2 (en) Trajectory determination for four-wheel steering
JP2000302055A (en) Traffic lane followup control device
US11414127B2 (en) Trajectory tracking with four-wheel steering
US11345400B2 (en) Trajectory tracking with four-wheel steering and steering limits
CN106218708A (en) Vehicular steering control apparatus
WO2019138851A1 (en) Driving assistance device, driving assistance method, and driving assistance system
JP2017074838A (en) Vehicle steering device and vehicle steering method
JP4024574B2 (en) Vehicle control device
JP3714269B2 (en) Automatic steering device
JPH08263790A (en) Steering controller for vehicle
JP2001125643A (en) Travel controller for unmanned vehicle
JP3933085B2 (en) Automatic steering device for vehicles
JPS61278912A (en) Method for guiding unmanned moving machine by spot following system
JP5120300B2 (en) Driving support device, driving support method, and driving support program
JP4599835B2 (en) Automatic steering control device for vehicle
JP6617582B2 (en) Vehicle steering control device
CN112810611B (en) Lateral trajectory tracking method and system for lane change control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071019