JP2001124912A - Optical reflecting member made of thermoplastic resin - Google Patents

Optical reflecting member made of thermoplastic resin

Info

Publication number
JP2001124912A
JP2001124912A JP30645599A JP30645599A JP2001124912A JP 2001124912 A JP2001124912 A JP 2001124912A JP 30645599 A JP30645599 A JP 30645599A JP 30645599 A JP30645599 A JP 30645599A JP 2001124912 A JP2001124912 A JP 2001124912A
Authority
JP
Japan
Prior art keywords
optical
optical reflecting
thermoplastic resin
reflecting member
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30645599A
Other languages
Japanese (ja)
Other versions
JP4227712B2 (en
Inventor
Hiroyuki Imaizumi
洋行 今泉
Yoshihiro Kayano
義弘 茅野
Kazuaki Ochiai
和明 落合
Yoichi Kotani
洋一 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Nalux Co Ltd
Original Assignee
Mitsubishi Engineering Plastics Corp
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp, Nalux Co Ltd filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP30645599A priority Critical patent/JP4227712B2/en
Publication of JP2001124912A publication Critical patent/JP2001124912A/en
Application granted granted Critical
Publication of JP4227712B2 publication Critical patent/JP4227712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical reflective member made of a thermoplastic resin having an optical reflective surface of superior specular reflection. SOLUTION: This optical reflecting member 10, made of a thermoplastic resin, has a rectangular planar optical reflecting surface 13 surrounded by a projecting part 12, a hollow part 14 is formed in the part of an optical reflecting member 11 constituting the entire region of the optical reflective surface 13, by introducing a pressurized fluid and a hollow part 14A extended from the part of the optical reflecting member constituting the entire region of the optical reflective surface is formed in a part of the part of the optical reflecting member constituting the projecting part 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鏡面性に極めて優
れた矩形平面状の光学的反射面を有する熱可塑性樹脂製
の光学的反射部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical reflecting member made of a thermoplastic resin and having a rectangular flat optical reflecting surface with extremely excellent mirror finish.

【0002】[0002]

【従来の技術】例えば複写機やレーザビームプリンター
に代表されるデジタル機器に使用されている光走査反射
鏡といった光学的反射部材は、従来、ガラスを用いて作
製されてきたが、コストダウンや軽量化、要求される機
能性の向上による形状自由度の観点から、熱可塑性樹脂
製への移行が進みつつある。
2. Description of the Related Art Optical reflecting members such as optical scanning reflectors used in digital equipment such as copiers and laser beam printers have conventionally been manufactured using glass. From the viewpoint of the degree of freedom of the shape due to the improvement of the required functionality, the transition to a thermoplastic resin is progressing.

【0003】一般に、熱可塑性樹脂製の成形品を製造す
る方法として、キャビティが設けられた金型を使用し、
一定温度に保たれた金型のキャビティ内に溶融熱可塑性
樹脂を射出、充填し、キャビティ内のかかる熱可塑性樹
脂を冷却、固化させる射出成形法が用いられている。し
かしながら、光学的反射部材のような、(1)肉厚の成
形品、(2)偏肉部を有する成形品、あるいは、(3)
長尺の成形品、を成形する場合、(1)、(2)におい
ては成形品の厚肉部と薄肉部との間に相当する部分にお
いて、(3)においては中央部と端部に相当する部分に
おいて、キャビティ内の溶融熱可塑性樹脂の冷却速度に
差が生じる結果、成形品に歪みが発生し易い。それ故、
高い鏡面性を有するキャビティの金型面を高い精度にて
成形品に転写する、即ち、鏡面性転写精度を高めること
が難しいという問題がある。
[0003] Generally, as a method of manufacturing a molded article made of a thermoplastic resin, a mold having a cavity is used.
An injection molding method has been used in which a molten thermoplastic resin is injected and filled into a cavity of a mold maintained at a constant temperature, and the thermoplastic resin in the cavity is cooled and solidified. However, such as an optical reflection member, (1) a thick molded product, (2) a molded product having an uneven thickness portion, or (3)
In the case of molding a long molded product, (1) and (2) correspond to the portion between the thick portion and the thin portion of the molded product, and (3) corresponds to the center portion and the end portion. As a result, there is a difference in the cooling rate of the molten thermoplastic resin in the cavity, and as a result, distortion tends to occur in the molded product. Therefore,
There is a problem that it is difficult to transfer the mold surface of the cavity having high mirror finish to the molded product with high accuracy, that is, it is difficult to enhance the mirror transfer accuracy.

【0004】この種の成形品の成形方法において鏡面性
転写精度を向上させるために、従来より、例えば、以下
に説明する方策が採られている。
[0004] In order to improve the mirror surface transfer accuracy in this type of molded article molding method, for example, the following measures have been conventionally adopted.

【0005】 射出圧縮成形法 熱可塑性樹脂のガラス転移温度Tg以上に加熱され
た金型のキャビティ内に溶融熱可塑性樹脂を射出、充填
した後、ゲート部を封止し、熱変形温度以下までキャビ
ティ内の熱可塑性樹脂を徐冷して、キャビティ内の樹脂
圧が0Pa(0kg/cm2−G)となった時点で成形
品を取り出す成形方法(特開昭64−38421号公報
参照) ほぼ最終形状に前加工した樹脂母材を、別の金型で
母材樹脂のガラス転移温度Tg以上に再度加熱し、熱変
形温度以下まで徐冷する成形方法(特開平4−1631
19号公報参照) キャビティに設けられた対向する2つの金型面の材
質や表面粗さを変え、且つ、キャビティ内を溶融熱可塑
性樹脂で完全に充填する直前に溶融熱可塑性樹脂のキャ
ビティ内への射出を終了し、保圧を加えることなくキャ
ビティ内の熱可塑性樹脂を冷却、固化させることによ
り、光学的反射部材の光学的反射面を形成すべき金型面
の熱可塑性樹脂に対する密着性を他方の金型面より高く
する方法(特公平6−98642号公報や特開平3−1
51218号公報参照) 光学的反射部材の光学的反射面を形成すべきキャビ
ティの金型面を熱可塑性樹脂の熱変形温度以上に維持す
る一方、他の金型面を冷却することによって、熱可塑性
樹脂のヒケを他の金型面に集中的に発生させる成形方法
(成形加工学会'94予稿集P237〜P240参照)
Injection compression molding method After injecting and filling a molten thermoplastic resin into a cavity of a mold heated to a glass transition temperature T g or more of the thermoplastic resin, a gate portion is sealed, and the temperature is reduced to a temperature equal to or lower than a thermal deformation temperature. A molding method in which the thermoplastic resin in the cavity is gradually cooled and the molded product is taken out when the resin pressure in the cavity becomes 0 Pa (0 kg / cm 2 -G) (see Japanese Patent Application Laid-Open No. 64-38421). the resin matrix was before processing into a final shape, again heated above the glass transition temperature T g of the matrix resin in a separate mold, slow cooling molding method to heat deformation temperature or less (JP-a-4-1631
No. 19) The material and surface roughness of two opposing mold surfaces provided in the cavity are changed, and the cavity is filled with the molten thermoplastic resin immediately before the cavity is completely filled with the molten thermoplastic resin. After the injection of the mold is completed, the thermoplastic resin in the cavity is cooled and solidified without applying pressure, thereby improving the adhesion of the mold surface on which the optical reflecting surface of the optical reflecting member is to be formed to the thermoplastic resin. A method of making the surface higher than the other mold surface (Japanese Patent Publication No. Hei 6-98642,
While the mold surface of the cavity in which the optical reflecting surface of the optical reflecting member is to be formed is maintained at a temperature equal to or higher than the thermal deformation temperature of the thermoplastic resin, the other mold surfaces are cooled to obtain a thermoplastic resin. Molding method for generating resin sink marks intensively on other mold surfaces (refer to the Journal of the Japan Society for Molding Engineering '94, P237-P240)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、の方
法においては、光学的反射部材の形状の大きさや偏肉の
分布によっては、十分な鏡面性転写精度を得難い。及
びの方法においては、徐冷を行うので成形サイクルが
長くなり、生産性が低下してしまう。また、生産性を向
上させるためには、充填・徐冷・取り出しの各工程が連
続的に処理可能な別工程や、鏡面精度の高い金型を複数
個必要とするといった経済的な問題がある。の方法に
おいては、キャビティの各金型面(転写面及び粗面)を
構成する金型の部分の材質あるいは使用する熱可塑性樹
脂によっては密着力が逆転し、光学的反射部材の光学的
反射面を形成すべき金型面と接する熱可塑性樹脂の部分
にヒケが生じてしまう。更には、溶融熱可塑性樹脂の充
填を止めるタイミングがずれると、溶融熱可塑性樹脂と
金型面の密着性の関係が逆転し、光学的反射部材の光学
的反射面を形成すべき金型面と接する熱可塑性樹脂の部
分にヒケが生じたり、キャビティを充填すべき溶融熱可
塑性樹脂の量が不足してしまう。の方法においては、
金型温度差により光学的反射部材に反りが発生してしま
う等の安定性の問題点がある。
However, in the above method, it is difficult to obtain sufficient mirror-like transfer accuracy depending on the size of the shape of the optical reflecting member and the distribution of uneven thickness. In the methods (1) and (2), since the cooling is performed, the molding cycle is lengthened, and the productivity is reduced. In addition, in order to improve productivity, there are economical problems such as separate processes in which each of filling, slow cooling, and unloading processes can be continuously performed, and a need for a plurality of molds with high mirror surface accuracy. . In the method of (1), the adhesive force is reversed depending on the material of the mold portion constituting each mold surface (transfer surface and rough surface) of the cavity or the thermoplastic resin used, and the optical reflection surface of the optical reflection member is changed. Sinks occur in the portion of the thermoplastic resin that is in contact with the mold surface on which is to be formed. Further, when the timing of stopping the filling of the molten thermoplastic resin is shifted, the relationship between the adhesiveness between the molten thermoplastic resin and the mold surface is reversed, and the mold surface on which the optical reflecting surface of the optical reflecting member is to be formed. Sinking occurs in the portion of the thermoplastic resin that is in contact, or the amount of the molten thermoplastic resin to be filled in the cavity becomes insufficient. In the method of
There is a problem of stability such that the optical reflection member is warped due to a mold temperature difference.

【0007】従って、本発明の目的は、鏡面性に非常に
優れた矩形平面状の光学的反射面を有する熱可塑性樹脂
製の光学的反射部材を提供することにある。
Accordingly, an object of the present invention is to provide an optical reflecting member made of a thermoplastic resin having a rectangular flat optical reflecting surface which is very excellent in mirror finish.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の光学的反射部材は、矩形平面状の光学的反
射面を有し、該矩形平面状の光学的反射面は突起部によ
って囲まれた熱可塑性樹脂製の光学的反射部材であっ
て、該光学的反射面の全域を構成する光学的反射部材の
部分には、加圧流体を導入することによって中空部が形
成されており、突起部を構成する光学的反射部材の部分
の一部分には、光学的反射面の全域を構成する光学的反
射部材の部分に形成された中空部から延在する中空部が
形成されていることを特徴とする。
An optical reflecting member according to the present invention for achieving the above object has a rectangular planar optical reflecting surface, and the rectangular planar optical reflecting surface has a projection. A hollow portion is formed by introducing a pressurized fluid into a portion of the optical reflecting member made of a thermoplastic resin surrounded by In addition, a hollow portion extending from a hollow portion formed in a portion of the optical reflecting member forming the entire area of the optical reflecting surface is formed in a part of the optical reflecting member forming the protrusion. It is characterized by the following.

【0009】本発明の光学的反射部材は、例えば、光学
的反射面を形成するための金型面を有するキャビティが
設けられた射出成形用の金型を使用し、(イ)溶融熱可
塑性樹脂を該キャビティ内に射出する工程と、(ロ)キ
ャビティ内の溶融熱可塑性樹脂中に加圧流体を導入し、
光学的反射面の全域を構成する光学的反射部材の部分に
中空部を形成し、且つ、突起部を構成する光学的反射部
材の部分の一部分に、光学的反射面の全域を構成する光
学的反射部材の部分に形成さられた中空部から延在する
中空部を形成する工程と、(ハ)キャビティ内の熱可塑
性樹脂が固化、冷却するまでの間、中空部内の圧力を所
望の圧力範囲に保持する工程と、(ニ)中空部内の加圧
流体を除去した後、金型を開き、光学的反射部材を取り
出す工程、から成る製造方法によって製造することがで
きる。尚、本発明の光学的反射部材を製造するためのか
かる製造方法を、以下、便宜上、光学的反射部材製造方
法と呼ぶ場合がある。
The optical reflection member of the present invention uses, for example, an injection molding die provided with a cavity having a die surface for forming an optical reflection surface, and (a) a molten thermoplastic resin. And (b) introducing a pressurized fluid into the molten thermoplastic resin in the cavity,
A hollow portion is formed in the portion of the optical reflecting member that forms the entire area of the optical reflecting surface, and an optical part that forms the entire area of the optical reflecting surface in a part of the portion of the optical reflecting member that forms the protrusion. Forming a hollow portion extending from the exposed hollow portion of the reflecting member; and (c) adjusting the pressure in the hollow portion to a desired pressure range until the thermoplastic resin in the cavity is solidified and cooled. And (d) after removing the pressurized fluid in the hollow portion, opening the mold, and taking out the optical reflecting member. In addition, such a manufacturing method for manufacturing the optical reflecting member of the present invention may be hereinafter referred to as an optical reflecting member manufacturing method for convenience.

【0010】本発明の熱可塑性樹脂製の光学的反射部材
(以下、単に本発明の光学的反射部材と呼ぶ場合があ
る)においては、矩形平面状の光学的反射面は突起部に
よって囲まれており、突起部を構成する光学的反射部材
の部分(突起部構成部分と呼ぶ場合がある)の一部分
に、光学的反射面の全域を構成する光学的反射部材の部
分(光学的反射面構成部分と呼ぶ場合がある)に形成さ
れた中空部から延在する中空部を形成するので、特に、
突起部近傍の光学的反射面構成部分における光学的反射
面の鏡面性が低下することを確実に防止でき、光学的反
射面構成部分に面した突起部の側面を高い面精度に維持
することができる。尚、突起部を設けない場合、光学的
反射面構成部分の一部分にしか中空部を形成できない
し、突起部によって光学的反射面を保護することができ
なくなる。また、本発明の光学的反射部材においては、
光学的反射面構成部材の部分に中空部が形成されている
ので、即ち、光学的反射部材の成形時、光学的反射面構
成部分における熱可塑性樹脂の収縮を、加圧流体の導入
によって形成された中空部が抑制するので、光学的反射
面の全域に亙って鏡面性に非常に優れた光学的反射部材
を得ることができる。
[0010] In the optical reflecting member made of the thermoplastic resin of the present invention (hereinafter, sometimes simply referred to as the optical reflecting member of the present invention), the rectangular planar optical reflecting surface is surrounded by the projection. In addition, a part of the optical reflection member constituting the projection (which may be referred to as a projection component) may be partially provided with an optical reflection member constituting the entire area of the optical reflection surface (the optical reflection surface component). , Which may be referred to as).
It is possible to reliably prevent the specularity of the optical reflecting surface in the optical reflecting surface constituting portion near the projection from deteriorating, and to maintain the side surface of the projecting portion facing the optical reflecting surface constituting portion with high surface accuracy. it can. If the projection is not provided, a hollow portion can be formed only in a part of the optical reflection surface constituting portion, and the optical reflection surface cannot be protected by the projection. Further, in the optical reflecting member of the present invention,
Since the hollow portion is formed in the portion of the optical reflecting surface component member, that is, when molding the optical reflecting member, the contraction of the thermoplastic resin in the optical reflecting surface component portion is formed by introducing a pressurized fluid. Since the hollow portion is suppressed, it is possible to obtain an optical reflecting member having extremely excellent mirror finish over the entire optical reflecting surface.

【0011】本発明の光学的反射部材においては、光学
的反射面を含む仮想平面で光学的反射部材を切断したと
きの光学的反射部材の外形形状は矩形であり、矩形平面
状の光学的反射面の短辺と平行な方向に沿った突起部を
構成する光学的反射部材の部分の幅をW1、光学的反射
面の短辺と平行な方向に沿った突起部を構成する光学的
反射部材の部分の一部分に形成された中空部の長さをW
2としたとき、0.01≦W2/W1≦0.8、好ましく
は0.01≦W2/W1≦0.5を満足することが望まし
い。W2/W1の値が上記の範囲の下限を満足することに
よって、突起部近傍の光学的反射面構成部分における光
学的反射面にヒケが発生することを一層確実に防止で
き、一方、上記の範囲の上限を満足することによって、
突起部の強度を保持することができる。更には、矩形平
面状の光学的反射面の短辺と平行な方向に沿った光学的
反射部材の幅をW0としたとき、0.1≦W1/W0
0.3、好ましくは0.1≦W1/W0≦0.25、一層
好ましくは0.1≦W1/W0≦0.2を満足することが
望ましい。W1/W0の値が上記の範囲の下限を満足する
ことによって、突起部近傍の光学的反射面構成部分にお
ける光学的反射面にヒケが発生することを一層確実に防
止できる。W1/W0の値が上記の範囲の上限を満足しな
いと、光学的反射面の光学的反射部材を占める割合が小
さくなりすぎ、実用的でなくなる。また、光学的反射面
の全域を構成する光学的反射部材の部分の厚さをt0
したとき、1≦t0/W1≦10、好ましくは2≦t0
1≦5、一層好ましくは2≦t0/W1≦4を満足する
ことが望ましい。
In the optical reflecting member according to the present invention, when the optical reflecting member is cut along a virtual plane including the optical reflecting surface, the outer shape of the optical reflecting member is rectangular, and the rectangular planar optical reflection member is formed. The width of the portion of the optical reflection member constituting the projection along the direction parallel to the short side of the surface is W 1 , and the optical reflection constituting the projection along the direction parallel to the short side of the optical reflection surface The length of the hollow formed in a part of the member
When it is set to 2 , it is desirable to satisfy 0.01 ≦ W 2 / W 1 ≦ 0.8, preferably 0.01 ≦ W 2 / W 1 ≦ 0.5. When the value of W 2 / W 1 satisfies the lower limit of the above range, it is possible to more surely prevent the occurrence of sink marks on the optical reflecting surface in the optical reflecting surface constituting portion near the protrusion. By satisfying the upper limit of the range
The strength of the projection can be maintained. Furthermore, assuming that the width of the optical reflecting member along a direction parallel to the short side of the rectangular planar optical reflecting surface is W 0 , 0.1 ≦ W 1 / W 0
0.3, preferably 0.1 ≦ W 1 / W 0 ≦ 0.25, and more preferably 0.1 ≦ W 1 / W 0 ≦ 0.2. When the value of W 1 / W 0 satisfies the lower limit of the above range, it is possible to more reliably prevent sinks from occurring on the optical reflection surface in the optical reflection surface constituting portion near the protrusion. If the value of W 1 / W 0 does not satisfy the upper limit of the above range, the ratio of the optical reflecting surface occupying the optical reflecting member becomes too small, which is not practical. When the thickness of the portion of the optical reflecting member constituting the entire area of the optical reflecting surface is t 0 , 1 ≦ t 0 / W 1 ≦ 10, preferably 2 ≦ t 0 /
It is desirable to satisfy W 1 ≦ 5, more preferably 2 ≦ t 0 / W 1 ≦ 4.

【0012】本発明の光学的反射部材においては、矩形
平面状の光学的反射面の長辺の長さをL1、短辺の長さ
をL2としたとき、L1/L2の値は本質的に任意である
が、実用的には、また、本発明の光学的反射部材の特徴
を生かすといった観点から、L 1/L2≧2、好ましくは
1/L2≧3、一層好ましくはL1/L2≧4を満足する
ことが望ましい。
In the optical reflecting member of the present invention, the rectangular
The length of the long side of the planar optical reflecting surface is L1, Short side length
To LTwoAnd L1/ LTwoThe value of is essentially arbitrary
However, in practice, the characteristics of the optical reflecting member of the present invention
From the viewpoint of taking advantage of 1/ LTwo≧ 2, preferably
L1/ LTwo≧ 3, more preferably L1/ LTwoSatisfies ≧ 4
It is desirable.

【0013】光学的反射部材製造方法においては、工程
(ハ)における所望の圧力範囲は、ゲージ圧で、1×1
5Pa(1kgf/cm2−G)以上5×106Pa
(5×10kgf/cm2−G)以下、より好ましく
は、ゲージ圧で、1.2×105Pa(1.2kgf/
cm2−G)以上4×106Pa(4×10kgf/cm
2−G)以下、一層好ましくは、ゲージ圧で、2.0×
105Pa(2.0kgf/cm2−G)以上2.5×1
6Pa(2.5×10kgf/cm2−G)以下とする
ことが望ましい。光学的反射面構成部分及び突起部構成
部分の一部分に中空部を形成したとき、かかる光学的反
射面構成部分及び突起部構成部分における熱可塑性樹脂
の収縮を、加圧流体の導入によって形成された中空部側
で担うに足りる圧力に中空部内を保持すれば十分である
が故に、この程度の比較的低圧の所望の圧力範囲に中空
部内の圧力を保持すればよい。所望の圧力範囲(以下、
ゲージ圧を意味する)が1×105Pa以上ならば、光
学的反射面構成部分及び突起部構成部分の一部分に中空
部を確実に形成することできる。一方、所望の圧力範囲
を5×106Pa以下とすることによって、光学的反射
面を形成するための金型面に対してキャビティ内の溶融
熱可塑性樹脂を中空部から押し付ける圧力が、熱可塑性
樹脂の収縮を担う圧力を越える過剰の圧力となることが
少なく、光学的反射部材に残留応力が発生し難く、ま
た、金型からの光学的反射部材の離型が問題となること
が少ない。以上の結果として、光学的反射部材の光学的
反射面の鏡面性を損なうことが少なくなる。
In the method for manufacturing an optical reflecting member, the desired pressure range in the step (c) is a gauge pressure of 1 × 1.
0 5 Pa (1 kgf / cm 2 -G) or more and 5 × 10 6 Pa
(5 × 10 kgf / cm 2 -G) or less, more preferably, 1.2 × 10 5 Pa (1.2 kgf /
cm 2 -G) or more and 4 × 10 6 Pa (4 × 10 kgf / cm)
2- G) or less, more preferably, 2.0 × at gauge pressure.
10 5 Pa (2.0 kgf / cm 2 -G) or more 2.5 × 1
0 6 Pa (2.5 × 10kgf / cm 2 -G) is preferably set to less. When a hollow portion is formed in a part of the optical reflecting surface component and the projection component, the contraction of the thermoplastic resin in the optical reflecting surface component and the projection component is caused by the introduction of the pressurized fluid. It is sufficient to maintain the inside of the hollow portion at a pressure sufficient to bear on the side of the hollow portion. Therefore, the pressure in the hollow portion may be maintained within a desired pressure range of such a relatively low pressure. The desired pressure range (hereinafter,
If the gauge pressure is 1 × 10 5 Pa or more, a hollow portion can be reliably formed in a part of the optical reflecting surface constituting portion and the projecting portion constituting portion. On the other hand, by setting the desired pressure range to 5 × 10 6 Pa or less, the pressure for pressing the molten thermoplastic resin in the cavity from the hollow portion against the mold surface for forming the optical reflection surface becomes thermoplastic. It is unlikely that an excessive pressure exceeding the pressure responsible for the contraction of the resin will occur, a residual stress will not easily occur in the optical reflecting member, and there is little problem in releasing the optical reflecting member from the mold. As a result, the specularity of the optical reflection surface of the optical reflection member is less likely to be impaired.

【0014】光学的反射部材製造方法において、工程
(ハ)における所望の圧力範囲を、(A)キャビティ内
の熱可塑性樹脂が固化、冷却するまでの間、中空部内を
加圧する加圧流体の圧力によって制御してもよいし、
(B)工程(ロ)において導入された加圧流体の体積に
よって制御してもよいし、(C)金型に可動コアを更に
備え、可動コアの位置制御によって制御してもよい。
(C)の方法においては、具体的には、可動コアの動き
によって光学的反射部材の体積、更には、中空部の体積
を増加させる。
In the method for manufacturing an optical reflecting member, the desired pressure range in the step (c) is adjusted by (A) the pressure of the pressurized fluid for pressurizing the hollow portion until the thermoplastic resin in the cavity is solidified and cooled. May be controlled by
(B) It may be controlled by the volume of the pressurized fluid introduced in the step (b), or (C) the mold may further include a movable core, and may be controlled by position control of the movable core.
In the method (C), specifically, the volume of the optical reflecting member and further the volume of the hollow portion are increased by the movement of the movable core.

【0015】本発明の光学的反射部材においては、光学
的反射面を形成するための金型面を有するキャビティが
設けられた射出成形用の金型を使用し、キャビティ内で
成形された光学的反射部材の光学的反射面と、光学的反
射面を形成するための金型面との間には、光学的反射面
10mm2当たり1μm以下の隙間しか存在しないこと
が好ましい。
In the optical reflecting member of the present invention, an injection molding die provided with a cavity having a die surface for forming an optical reflecting surface is used, and the optical molding formed in the cavity is performed. It is preferable that there is only a gap of 1 μm or less per 10 mm 2 of the optical reflection surface between the optical reflection surface of the reflection member and a mold surface for forming the optical reflection surface.

【0016】本発明の光学的反射部材において、突起部
を構成する光学的反射部材の部分が占める体積(突起部
構成部分の体積、及び、突起部構成部分の一部分に形成
された中空部の体積の合計)は、光学的反射部材の体積
(光学的反射面構成部分の体積、かかる部分に形成され
た中空部の体積、突起部構成部分の体積、及び、かかる
部分の一部分に形成された中空部の体積の合計)の1〜
30%、好ましくは1〜15%であることが望ましい。
In the optical reflection member of the present invention, the volume occupied by the portion of the optical reflection member constituting the projection (the volume of the projection component, and the volume of the hollow portion formed in a part of the projection component) Is the volume of the optical reflecting member (the volume of the optical reflecting surface constituent part, the volume of the hollow part formed in such part, the volume of the protruding part constituent part, and the hollow formed in a part of such part. 1) of 1)
It is desirably 30%, preferably 1 to 15%.

【0017】本発明の光学的反射部材においては、光学
的反射面の反り率Wは1×10-3以下(0.1%以下)
であることが好ましい。尚、光学的反射面の反り率Wと
は、光学的反射面の縁部の任意の2点を結ぶ線分(長さ
L)を想定し、かかる線分に沿って、線分から光学的反
射面までの距離(D)を測定し、距離の最大値をDMA X
としたとき、以下の式で表すことができる。任意の線分
に対してこの反り率W(L)が1×10-3以下であると
き、「光学的反射面の反り率は1×10-3以下である」
とする。
In the optical reflecting member of the present invention, the warping ratio W of the optical reflecting surface is 1 × 10 −3 or less (0.1% or less).
It is preferred that The warpage ratio W of the optical reflecting surface is assumed to be a line segment (length L) connecting any two points on the edge of the optical reflecting surface, and the optical reflection from the line segment is performed along the line segment. measuring the distance to the surface (D), the maximum value of the distance D MA X
Can be represented by the following equation. When the warp ratio W (L) is 1 × 10 −3 or less for an arbitrary line segment, “the warp ratio of the optical reflecting surface is 1 × 10 −3 or less”
And

【0018】[数1] W(L)=DMAX/L[Equation 1] W (L) = D MAX / L

【0019】光学的反射部材製造方法にて使用される金
型において、キャビティ内に溶融熱可塑性樹脂を射出す
るための樹脂射出部(所謂、ゲート部)は、光学的反射
面を形成するための金型面以外の金型の部分であれば、
特に位置的な制限無く設けることができる。尚、金型の
構造に依っては、例えば矩形形状の光学的反射部材の製
造時、キャビティ内に射出された溶融熱可塑性樹脂が、
光学的反射面の短辺側から長辺方向に向かって流動する
ように、樹脂射出部を金型に配設することが望ましい。
In the mold used in the method for manufacturing an optical reflecting member, a resin injection portion (so-called gate portion) for injecting the molten thermoplastic resin into the cavity is provided for forming an optical reflecting surface. If it is a part of the mold other than the mold surface,
In particular, it can be provided without any positional restrictions. In addition, depending on the structure of the mold, for example, when manufacturing a rectangular optical reflection member, the molten thermoplastic resin injected into the cavity,
It is desirable to dispose the resin injection part in the mold so that the resin flows from the short side to the long side of the optical reflection surface.

【0020】光学的反射部材製造方法にて使用される金
型において、加圧流体導入部も、光学的反射面を形成す
るための金型面以外の金型の部分であれば、特に位置的
な制限無く設けることができる。具体的には、加圧流体
導入部を、樹脂射出部の近傍に配置してもよいし、樹脂
射出部から離して配置してもよいし、樹脂射出部内に配
置してもよい。また、加圧流体導入部の数に制限はな
い。
In the mold used in the method for manufacturing the optical reflecting member, the pressurized fluid introducing portion is also particularly positioned if it is a part of the mold other than the mold surface for forming the optical reflecting surface. It can be provided without any restrictions. Specifically, the pressurized fluid introduction unit may be arranged near the resin injection unit, may be arranged separately from the resin injection unit, or may be arranged inside the resin injection unit. In addition, the number of pressurized fluid introduction sections is not limited.

【0021】使用する加圧流体は、常温及び常圧で気体
の物質であり、使用する熱可塑性樹脂と反応や混合しな
いものが望ましい。具体的には、窒素ガス、空気、炭酸
ガス、ヘリウム等が挙げられるが、安全性及び経済性を
考慮すると、窒素ガスやヘリウムガスが好ましい。キャ
ビティ内の溶融熱可塑性樹脂への加圧流体の導入開始時
期は、溶融熱可塑性樹脂のキャビティ内への射出開始か
ら0.1秒乃至25秒とすることが好ましい。加圧流体
の導入開始時期の下限は、溶融熱可塑性樹脂のキャビテ
ィ内へ射出しながら、キャビティ内の溶融熱可塑性樹脂
中へ加圧流体を導入する場合に、導入された加圧流体が
キャビティの溶融熱可塑性樹脂を吹き飛ばすことがなく
なるような時期とすればよい。一方、加圧流体の導入開
始時期が25秒を越えると、キャビティ内の溶融熱可塑
性樹脂の固化によって所望の中空部が形成できず、光学
的反射面にヒケが生じ、光学的反射面の鏡面性を損なう
場合がある。キャビティ内の溶融熱可塑性樹脂への加圧
流体の導入開始の時期は、キャビティ内への溶融熱可塑
性樹脂の射出中、射出完了と同時、射出完了後のいずれ
であってもよい。
The pressurized fluid used is a gaseous substance at normal temperature and normal pressure, and it is desirable that the fluid does not react with or mix with the thermoplastic resin used. Specifically, nitrogen gas, air, carbon dioxide gas, helium and the like can be mentioned, but from the viewpoint of safety and economy, nitrogen gas and helium gas are preferable. The timing of starting the introduction of the pressurized fluid into the molten thermoplastic resin in the cavity is preferably 0.1 second to 25 seconds from the start of the injection of the molten thermoplastic resin into the cavity. The lower limit of the introduction start time of the pressurized fluid is that when the pressurized fluid is introduced into the molten thermoplastic resin in the cavity while the molten thermoplastic resin is being injected into the cavity, the introduced pressurized fluid is The time may be set so that the molten thermoplastic resin is not blown off. On the other hand, if the introduction start time of the pressurized fluid exceeds 25 seconds, a desired hollow portion cannot be formed due to solidification of the molten thermoplastic resin in the cavity, and sinks occur on the optical reflection surface, and the mirror surface of the optical reflection surface May impair the performance. The timing of starting the introduction of the pressurized fluid into the molten thermoplastic resin in the cavity may be during injection of the molten thermoplastic resin into the cavity, simultaneously with the completion of the injection, or after the completion of the injection.

【0022】キャビティ内に射出すべき溶融熱可塑性樹
脂の体積は、所望の光学的反射部材を成形できる体積で
あればよく、光学的反射部材内での中空部の占める体積
等に依存する。即ち、キャビティ内に射出すべき溶融熱
可塑性樹脂の体積は、キャビティを完全に充満する体積
としてもよいし、キャビティを完全には充満しない体積
としてもよい。また、所望に応じ、余剰の溶融熱可塑性
樹脂がキャビティから流入するオーバーフロー部をキャ
ビティに連通して金型に設け、光学的反射面の全域を中
空部とすることも可能である。
The volume of the molten thermoplastic resin to be injected into the cavity may be any volume that can mold a desired optical reflecting member, and depends on the volume occupied by the hollow portion in the optical reflecting member. That is, the volume of the molten thermoplastic resin to be injected into the cavity may be a volume that completely fills the cavity or a volume that does not completely fill the cavity. If desired, an overflow portion into which excess molten thermoplastic resin flows from the cavity may be provided in the mold in communication with the cavity, and the entire optical reflection surface may be formed as a hollow portion.

【0023】本発明の光学的反射部材を構成する熱可塑
性樹脂は、如何なる熱可塑性樹脂であってもよく、ポリ
カーボネート樹脂;ポリエチレン樹脂、ポリプロピレン
樹脂等のオレフィン系樹脂;ポリスチレン樹脂、AS樹
脂、ABS樹脂、AES樹脂等のスチレン系樹脂;PM
MA樹脂等のメタクリル系樹脂;ポリオキシメチレン
(ポリアセタール)樹脂;ポリアミド6、ポリアミド6
6、ポリアミドMXD等のポリアミド系樹脂;変性ポリ
フェニレンエーテル(PPE)樹脂;ポリフェニレンサ
ルファイド樹脂;ポリエチレンテレフタレート(PE
T)樹脂、ポリブチレンテレフタレート(PBT)樹脂
等のポリエステル系樹脂;液晶ポリマー等の熱可塑性樹
脂、又は、これらの熱可塑性樹脂の少なくとも2種類以
上の樹脂から成るポリマーアロイを挙げることができ
る。中でも、ポリカーボネート樹脂、ポリアミド系樹
脂、ポリフェニレンエーテル樹脂、ポリエステル系樹
脂、及び、ポリカーボネート樹脂/ポリエステル系樹脂
のポリマーアロイ樹脂組成物から構成された群から選択
された熱可塑性樹脂を使用することが好ましい。
The thermoplastic resin constituting the optical reflecting member of the present invention may be any thermoplastic resin, such as a polycarbonate resin; an olefin resin such as a polyethylene resin and a polypropylene resin; a polystyrene resin, an AS resin, and an ABS resin. Styrene resin such as AES resin; PM
Methacrylic resin such as MA resin; polyoxymethylene (polyacetal) resin; polyamide 6, polyamide 6
6, polyamide resins such as polyamide MXD; modified polyphenylene ether (PPE) resin; polyphenylene sulfide resin; polyethylene terephthalate (PE
T) Resins, polyester resins such as polybutylene terephthalate (PBT) resins, etc .; thermoplastic resins such as liquid crystal polymers; or polymer alloys comprising at least two or more of these thermoplastic resins. Among them, it is preferable to use a thermoplastic resin selected from the group consisting of a polycarbonate resin, a polyamide resin, a polyphenylene ether resin, a polyester resin, and a polymer alloy resin composition of a polycarbonate resin / polyester resin.

【0024】ポリカーボネート樹脂としては、芳香族ポ
リカーボネートを使用するのが望ましい。具体的には、
2,2ビス(4−ヒドキシフェニル)−プロパン、2,
2−ビス(3,5−ジブロモ−4−ヒドロキシフェニ
ル)プロパンで例示される二価のフェノール系化合物の
一種以上と、ホスゲンで例示されるカーボネート前駆体
とから、公知の方法によって得られる重合体が例示でき
る。特に、本発明の光学的反射部材においては、高剛
性、透明性のほか、耐熱性及び耐衝撃性の要求から、2
5゜Cにおけるメチレンクロライド溶融粘度より換算し
た粘度平均分子量15000〜30000の芳香族ポリ
カーボネート樹脂が好ましい。
As the polycarbonate resin, it is desirable to use an aromatic polycarbonate. In particular,
2,2 bis (4-hydroxyphenyl) -propane, 2,
A polymer obtained by a known method from one or more divalent phenolic compounds exemplified by 2-bis (3,5-dibromo-4-hydroxyphenyl) propane and a carbonate precursor exemplified by phosgene Can be exemplified. Particularly, in the optical reflecting member of the present invention, in addition to high rigidity and transparency, heat resistance and impact resistance are required.
An aromatic polycarbonate resin having a viscosity average molecular weight of 15,000 to 30,000 calculated from the melt viscosity of methylene chloride at 5 ° C. is preferable.

【0025】本発明の光学的反射部材を構成する熱可塑
性樹脂には、任意の色調を与えるため、染料を配合する
こともできる。例えば、アゾ系染料、シアニン系染料、
キノリン系染料、ペリレン系染料など通常熱可塑性樹脂
の着色に使用されているものから選ぶことができる。配
合量は、例えば透明性を損なわない範囲で適宜選択すれ
ばよい。また、本発明の目的を損なわない範囲で、例え
ば安定剤、離型剤、紫外線吸収剤の有効発現量を熱可塑
性樹脂に配合してもよい。
The thermoplastic resin constituting the optical reflection member of the present invention may be mixed with a dye in order to give an arbitrary color tone. For example, azo dyes, cyanine dyes,
It can be selected from those usually used for coloring thermoplastic resins, such as quinoline dyes and perylene dyes. The compounding amount may be appropriately selected, for example, within a range that does not impair transparency. Further, within a range that does not impair the object of the present invention, for example, an effective expression amount of a stabilizer, a release agent, and an ultraviolet absorber may be blended in the thermoplastic resin.

【0026】本発明の光学的反射部材においては、光学
的反射面の表面に光学的反射膜が設けられていてもよ
い。また、光学的反射部材製造方法においては、工程
(ニ)の後、光学的反射面の表面に光学的反射膜を形成
してもよい。光学的反射膜の厚さは、光を効果的に反射
できる厚さであれば良く、少なくとも50nm、好まし
くは50nm〜500nm、更に好ましくは、100n
m〜300nmとすることが望ましい。尚、50nm未
満では、反射率が十分ではなくなる場合があり、一方、
500nmを越えると光学的反射面の表面平滑性が低下
し、鏡面性に問題が生じることがある。
In the optical reflecting member of the present invention, an optical reflecting film may be provided on the surface of the optical reflecting surface. In the method for manufacturing an optical reflecting member, after the step (d), an optical reflecting film may be formed on the surface of the optical reflecting surface. The thickness of the optical reflection film may be any thickness that can effectively reflect light, and is at least 50 nm, preferably 50 nm to 500 nm, and more preferably 100 n.
m to 300 nm is desirable. If the thickness is less than 50 nm, the reflectance may not be sufficient.
If it exceeds 500 nm, the surface smoothness of the optical reflection surface is reduced, and a problem may occur in the mirror surface.

【0027】光学的反射膜を構成する材料として、例え
ば、金、白金、銀、クロム、ニッケル、リンニッケル、
アルミニウム、銅、ベリウム、ベリウム銅、亜鉛等の金
属、又は、これらの金属化合物、合金を挙げることがで
きる。成膜方法として、 (a)電子ビーム加熱法、抵抗加熱法、フラッシュ蒸着
等の各種真空蒸着法 (b)プラズマ蒸着法 (c)2極スパッタ法、直流スパッタ法、直流マグネト
ロンスパッタ法、高周波スパッタ法、マグネトロンスパ
ッタ法、イオンビームスパッタ法、バイアススパッタ法
等の各種スパッタ法 (d)DC(direct current)法、RF法、多陰極法、活
性化反応法、電界蒸着法、高周波イオンプレーティング
法、反応性イオンプレーティング法等の各種イオンプレ
ーティング法、等のPVD(Physical Vapor Depositio
n)法 を挙げることができる。反射率とコストの観点からは、
アルミニウムを真空蒸着することによって得られるアル
ミニウム蒸着膜から光学的反射膜を構成することが最も
好ましい。
As materials constituting the optical reflection film, for example, gold, platinum, silver, chromium, nickel, phosphorus nickel,
Examples thereof include metals such as aluminum, copper, beryllium, beryllium copper, and zinc, and metal compounds and alloys thereof. As the film forming method, (a) various kinds of vacuum evaporation methods such as an electron beam heating method, a resistance heating method, and flash evaporation; (b) a plasma evaporation method; (c) a bipolar sputtering method, a DC sputtering method, a DC magnetron sputtering method, and a high-frequency sputtering method Methods, magnetron sputtering method, ion beam sputtering method, bias sputtering method, etc. (d) DC (direct current) method, RF method, multi-cathode method, activation reaction method, electric field evaporation method, high frequency ion plating method PVD (Physical Vapor Depositio), such as various ion plating methods such as reactive ion plating
n) Method can be mentioned. In terms of reflectivity and cost,
Most preferably, the optically reflective film is formed from an aluminum vapor-deposited film obtained by vacuum-depositing aluminum.

【0028】こうして得られた本発明の光学的反射部材
は、鏡面性、寸法精度、軽量性、安全性、耐久性、経済
性が強く要求される、電気電子部品、自動車部品、医療
用、保安用、建材用、家庭用品など多くの用途に好適な
光学的反射部材である。本発明の光学的反射部材の一形
態として鏡(ミラー)を挙げることができる。より具体
的には、カメラ用ダハミラー、複写機用光学系ミラー、
レーザビームプリンター用ポリゴンミラー等の光学系ミ
ラーを例示することができる。
The optical reflecting member of the present invention thus obtained is required to have high specularity, dimensional accuracy, light weight, safety, durability, and economy, and is required for electric and electronic parts, automobile parts, medical use, and security. It is an optical reflecting member suitable for many uses, such as for building, building materials, and household goods. As an embodiment of the optical reflection member of the present invention, a mirror can be given. More specifically, a roof mirror for a camera, an optical system mirror for a copying machine,
An optical system mirror such as a polygon mirror for a laser beam printer can be exemplified.

【0029】[0029]

【実施例】以下、図面を参照して、好ましい実施例に基
づき本発明を説明する。尚、実施例及び比較例において
製造すべき熱可塑性樹脂製の光学的反射部材を、レーザ
ビームプリンター用の光学反射ミラーとした。原則とし
て、光学的反射部材は、矩形平面状の光学的反射面を有
し、矩形平面状の光学的反射面は突起部によって囲まれ
ている。ここで、光学的反射面を含む仮想平面で光学的
反射部材を切断したときの光学的反射部材の外形形状は
矩形であり、矩形平面状の光学的反射面の短辺と平行な
方向に沿った突起部を構成する光学的反射部材の部分の
幅W1を2mmとした。また、矩形平面状の光学的反射
面の長辺の長さL1を233mm、短辺の長さL2を10
mmとした。更には、光学的反射部材の外形寸法に関し
ては、矩形平面状の光学的反射面の短辺と平行な方向に
沿った光学的反射部材の幅W 0を14mmとし、矩形平
面状の光学的反射面の長辺と平行な方向に沿った光学的
反射部材の長さを290mmとした。W1/W0=0.1
4である。また、光学的反射面構成部分の厚さt0を6
mmとした。尚、光学的反射面の平面精度の測定を、1
0mm直径のオプティカルフラットを用いた干渉縞を評
価することによって行った。測定部位を光学的反射面の
中央部とした。評価結果は、観察された干渉縞が5本以
下の場合を「◎」印、干渉縞が6本以上10本以下の場
合を「○」印、干渉縞が11本以上20本以下の場合を
「△」印、干渉縞が21本以上の場合を「×」印で表し
た。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Next, the present invention will be described. In Examples and Comparative Examples
The optical reflection member made of thermoplastic resin to be manufactured is
An optical reflection mirror for a beam printer was used. As a rule
The optical reflecting member has a rectangular planar optical reflecting surface.
The rectangular planar optical reflecting surface is surrounded by protrusions.
ing. Here, the optical plane is a virtual plane including the optical reflection surface.
The outer shape of the optical reflection member when the reflection member is cut is
It is rectangular and parallel to the short side of the rectangular planar optical reflection surface.
Part of the optical reflection member that constitutes the protrusion along the direction
Width W1Was set to 2 mm. In addition, rectangular planar optical reflection
Length L of the long side of the surface1Is 233 mm and the length of the short side is LTwo10
mm. Further, regarding the outer dimensions of the optical reflecting member,
In the direction parallel to the short side of the rectangular planar optical reflection surface.
The width W of the optical reflector along 0Is 14 mm
Optical along a direction parallel to the long side of the planar optical reflecting surface
The length of the reflecting member was 290 mm. W1/ W0= 0.1
4. In addition, the thickness t of the optical reflection surface constituting portion06
mm. Note that the measurement of the planar accuracy of the optical reflecting surface is performed by 1
Evaluation of interference fringes using 0 mm diameter optical flat
Done by valuing. The measurement site is
Centered. The evaluation results show that the number of observed interference fringes is 5 or less.
The lower case is marked with “◎” and the number of interference fringes is 6 or more and 10 or less.
Indicates the case where the interference fringes are 11 or more and 20 or less.
"△" mark, when there are 21 or more interference fringes, "x" mark
Was.

【0030】この光学的反射部材10の長辺方向の模式
的な側面図を図1の(A)に示し、光学的反射部材10
の短辺の二等分線を含む垂直面で光学的反射部材10を
切断したときの模式的な断面図を図1の(B)に示し、
光学的反射部材10の短辺方向の模式的な断面図(図1
の(A)の線C−Cに沿った模式的な断面図)を図1の
(C)に示す。
FIG. 1A is a schematic side view of the optical reflecting member 10 in the long side direction.
FIG. 1B is a schematic cross-sectional view of the optical reflecting member 10 cut along a vertical plane including the bisector of the short side of FIG.
FIG. 1 is a schematic cross-sectional view of the optical reflecting member 10 in a short side direction (FIG. 1).
(A) is a schematic cross-sectional view taken along the line CC of FIG.

【0031】光学的反射部材10は、矩形平面状の光学
的反射面12を1つ(1面)有しており、光学的反射部
材10の光学的反射面の全域を構成する光学的反射部材
の部分(光学的反射面構成部分)11には、加圧流体を
導入することによって中空部14が形成されている。ま
た、矩形平面状の光学的反射面12は突起部13によっ
て囲まれている。更には、突起部13を構成する光学的
反射部材の部分(突起部構成部分)の一部分13Aに
は、光学的反射面構成部分11に形成された中空部14
から延在する中空部15が形成されている。一方、光学
的反射部材10の光学的反射面構成部分11の右手側の
突起部13の更に右手側には、溶融熱可塑性樹脂が射出
された跡(樹脂射出部の跡)16、及び加圧流体が導入
された跡(加圧流体導入部の跡)17が残っている。
The optical reflecting member 10 has one (one) optical reflecting surface 12 in the form of a rectangular plane, and constitutes the entire optical reflecting surface of the optical reflecting member 10. (Optical reflection surface constituting portion) 11 is formed with a hollow portion 14 by introducing a pressurized fluid. The rectangular planar optical reflection surface 12 is surrounded by the projection 13. Further, a hollow portion 14 formed in the optical reflection surface constituting portion 11 is provided in a portion 13A of the portion of the optical reflecting member (projecting portion constituting portion) constituting the projecting portion 13.
And a hollow portion 15 extending from the hole. On the other hand, on the right-hand side of the protrusion 13 on the right-hand side of the optical reflection surface constituting portion 11 of the optical reflection member 10, marks (marks of the resin injection portion) 16 where the molten thermoplastic resin is injected, and pressure A trace 17 where the fluid is introduced (a trace of the pressurized fluid introduction part) remains.

【0032】(実施例1)実施例1においては、図2に
模式的な断面図を示す射出成形用の金型20を備えた射
出成形機を用いた。尚、加熱シリンダー26を除き、射
出成形機を構成する要素の図示を省略した。金型20
は、キャビティ24を有し、光学的反射面12を形成す
るための金型面を構成する入れ子23を有する固定金型
部21と、可動金型部22から構成されている。固定金
型部21と可動金型部22とを型締めしたとき、キャビ
ティ24が形成される。金型20には、キャビティ24
に開口した樹脂射出部25が設けられており、この樹脂
射出部25は加熱シリンダー26と連通している。ま
た、加圧流体導入部27が樹脂射出部25内に配設され
ており、加圧流体導入部27の一端は樹脂射出部25内
に開口している。一方、加圧流体導入部27の他端は加
圧流体源28に接続されている。加圧流体導入部27の
他端と加圧流体源28との間には逆止弁(図示せず)が
配設されており、中空部の加圧流体が加圧流体源28方
向に向かって逆流しない構成となっている。樹脂射出部
25は、光学的反射部材10の光学的反射面構成部分1
1以外の光学的反射部材の部分を形成するためのキャビ
ティの部分に溶融熱可塑性樹脂を射出するように、金型
に配設されている。即ち、樹脂射出部(ゲート部)25
の近傍の金型面によっては光学的反射面は形成されな
い。入れ子23、固定金型部21及び可動金型部22
を、ステンレススチール系材料から作製した。入れ子2
3の金型面の表面粗さRyを0.01μmとした。尚、
表面粗さRyの測定は、JISB0601に準じた。
(Example 1) In Example 1, an injection molding machine provided with an injection molding die 20 whose schematic sectional view is shown in FIG. 2 was used. Except for the heating cylinder 26, the components of the injection molding machine are not shown. Mold 20
Is composed of a fixed mold portion 21 having a cavity 24 and having a nest 23 forming a mold surface for forming the optical reflection surface 12, and a movable mold portion 22. When the fixed mold part 21 and the movable mold part 22 are clamped, a cavity 24 is formed. The mold 20 has a cavity 24
A resin injection section 25 is provided, which is open to the outside. The resin injection section 25 communicates with a heating cylinder 26. Further, a pressurized fluid introduction unit 27 is provided in the resin injection unit 25, and one end of the pressurized fluid introduction unit 27 is opened in the resin injection unit 25. On the other hand, the other end of the pressurized fluid introducing section 27 is connected to a pressurized fluid source 28. A check valve (not shown) is provided between the other end of the pressurized fluid introduction unit 27 and the pressurized fluid source 28 so that the pressurized fluid in the hollow portion faces the pressurized fluid source 28. And does not flow backward. The resin injection section 25 is a part of the optical reflecting surface component 1 of the optical reflecting member 10.
The mold is arranged such that the molten thermoplastic resin is injected into a cavity for forming a portion of the optical reflection member other than 1. That is, the resin injection section (gate section) 25
The optical reflection surface is not formed depending on the mold surface near. Nest 23, fixed mold part 21, and movable mold part 22
Was made from a stainless steel based material. Nesting 2
The surface roughness Ry of the mold surface of No. 3 was set to 0.01 μm. still,
Surface measurement of roughness R y are analogous JISB0601.

【0033】尚、実施例1においては、射出成形機とし
て住友重機械工業製SH−100射出成形機を用い、加
熱シリンダー26を280゜Cに加熱し、金型温度を1
20゜Cとした。また、熱可塑性樹脂として、射出成形
用の熱可塑性樹脂である粘度平均分子量21500のポ
リカーボネート樹脂(三菱エンジニアリングプラスチッ
クス株式会社製、商品名ユーピロンS−3000R)を
使用した。加圧流体として窒素ガスを用いた。
In Example 1, an SH-100 injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. was used as the injection molding machine, and the heating cylinder 26 was heated to 280 ° C.
20 ° C. As the thermoplastic resin, a polycarbonate resin having a viscosity average molecular weight of 21500 (trade name: Iupilon S-3000R, manufactured by Mitsubishi Engineering-Plastics Corporation), which is a thermoplastic resin for injection molding, was used. Nitrogen gas was used as the pressurized fluid.

【0034】そして、実施例1においては、熱可塑性樹
脂を加熱シリンダー26内に供給し、加熱シリンダー2
6内で混練可塑化して溶融させた後、金型20のキャビ
ティ24内に樹脂射出部25を介して溶融熱可塑性樹脂
30を射出した。溶融熱可塑性樹脂30の射出中の状態
を、模式的に図3に示す。射出時間を1秒とし、射出し
た溶融熱可塑性樹脂の体積をキャビティ24の体積の8
0%とした。そして溶融熱可塑性樹脂のキャビティ24
内への射出完了と同時に、キャビティ24内の溶融熱可
塑性樹脂30中に加圧流体を加圧流体導入部27から導
入し、以て、光学的反射部材10の光学的反射面構成部
分11に中空部14を形成し、突起部構成部分の一部分
13Aに、光学的反射面構成部分11に形成された中空
部14から延在する中空部15を形成した(図4参
照)。キャビティ24内の溶融熱可塑性樹脂30中に加
圧流体を導入する際の加圧流体の圧力を、ゲージ圧で
3.7×106Pa(3.7×10kgf/cm2−G)
とした。
In the first embodiment, the thermoplastic resin is supplied into the heating cylinder 26,
After being kneaded and plasticized in 6 and melted, the molten thermoplastic resin 30 was injected into the cavity 24 of the mold 20 via the resin injection section 25. FIG. 3 schematically shows a state in which the molten thermoplastic resin 30 is being injected. The injection time is 1 second, and the volume of the injected molten thermoplastic resin is 8 times the volume of the cavity 24.
0%. And the cavity 24 of the molten thermoplastic resin.
Simultaneously with the completion of the injection into the inside, the pressurized fluid is introduced into the molten thermoplastic resin 30 in the cavity 24 from the pressurized fluid introduction portion 27, so that the optically reflective surface constituting portion 11 of the optically reflective member 10 is introduced. A hollow portion 14 was formed, and a hollow portion 15 extending from the hollow portion 14 formed in the optical reflection surface forming portion 11 was formed in a portion 13A of the protruding portion forming portion (see FIG. 4). The pressure of the pressurized fluid when introducing the pressurized fluid into the molten thermoplastic resin 30 in the cavity 24 is 3.7 × 10 6 Pa (3.7 × 10 kgf / cm 2 -G) in gauge pressure.
And

【0035】その後、保圧操作を行うこと無く、キャビ
ティ24内の熱可塑性樹脂が固化、冷却するまでの間
(溶融熱可塑性樹脂のキャビティ内への射出完了から4
0秒の間)、中空部14,15内の圧力を、加圧流体導
入部27を介して中空部14,15内を加圧する加圧流
体の体積によって制御し、2.0×106Pa(2.0
×10kgf/cm2−G)に保持した。その後、中空
部14,15内の加圧流体を、加圧流体導入部27を介
して大気中に放出し、金型を開き、光学的反射部材10
を取り出した。こうして得られた光学的反射部材10に
おいて、中空部14の体積は光学的反射部材10の体積
の20%であり、突起部構成部分が占める体積は、光学
的反射部材10の体積の5%であった。また、突起部構
成部分の一部分13Aに形成された中空部15の長さ
(矩形平面状の光学的反射面12の短辺と平行な方向に
沿った長さ)W2は、0.2mmであった。即ち、W1
2mmであるが故に、W2/W1=0.1となった。キャ
ビティ24内で成形された光学的反射部材10の光学的
反射面12と、光学的反射面12を形成するための入れ
子23の金型面との間には、光学的反射面10mm2
たり1μm以下の隙間しか存在しなかった。
Thereafter, without performing the pressure-holding operation, until the thermoplastic resin in the cavity 24 is solidified and cooled (from the time when the injection of the molten thermoplastic resin into the cavity is completed, 4 hours).
During 0 seconds), the pressure in the hollow portions 14 and 15 is controlled by the volume of the pressurized fluid that pressurizes the hollow portions 14 and 15 via the pressurized fluid introduction portion 27, and is 2.0 × 10 6 Pa (2.0
× 10 kgf / cm 2 -G). After that, the pressurized fluid in the hollow portions 14 and 15 is released into the atmosphere through the pressurized fluid introduction portion 27, the mold is opened, and the optical reflection member 10 is opened.
Was taken out. In the optical reflection member 10 thus obtained, the volume of the hollow portion 14 is 20% of the volume of the optical reflection member 10, and the volume occupied by the projection component is 5% of the volume of the optical reflection member 10. there were. The length (length along the short side parallel to the direction of the rectangular planar optical reflecting surface 12) of the hollow portion 15 formed on a portion 13A of the projecting portion component W 2 is a 0.2mm there were. That is, W 1 =
Because of 2 mm, W 2 / W 1 = 0.1. Between the optical reflection surface 12 of the optical reflection member 10 molded in the cavity 24 and the mold surface of the nest 23 for forming the optical reflection surface 12, 1 μm per 10 mm 2 of the optical reflection surface Only the following gaps existed.

【0036】このようにして得られた光学的反射部材1
0の光学的反射面12の平面精度を下記の表1に示し、
図1の(A)の「X1」点と「X2」点を結ぶ線分L0
基に測定した反り率を下記の表2に示す。以下の実施例
及び比較例においても、反り率の測定を同様とした。
The optical reflecting member 1 thus obtained
Table 1 below shows the plane accuracy of the optical reflecting surface 12 of 0.
Table 2 below shows the warpage ratio measured based on the line L 0 connecting the “X 1 ” point and the “X 2 ” point in FIG. In the following Examples and Comparative Examples, the measurement of the warpage rate was the same.

【0037】成形した光学的反射部材10の光学的反射
面12に、真空蒸着法によってアルミニウム蒸着膜を1
20nm成膜して、ミラーを作製した。その結果、光学
的反射部材10は、通常のガラス製ミラーと同等の素晴
らしい写像性(鏡面性)を有しており、被写体が鮮明に
映し出された。
On the optical reflecting surface 12 of the formed optical reflecting member 10, an aluminum vapor-deposited film is formed by a vacuum vapor deposition method.
A mirror was formed by depositing a film having a thickness of 20 nm. As a result, the optical reflection member 10 had excellent image clarity (specularity) equivalent to that of a normal glass mirror, and the subject was clearly displayed.

【0038】(実施例2)キャビティ24内の熱可塑性
樹脂が固化、冷却するまでの間(溶融熱可塑性樹脂のキ
ャビティ内への射出完了から40秒の間)、中空部1
4,15内の圧力を、加圧流体導入部27を介して中空
部14,15内を加圧する加圧流体の体積によって制御
し、4.8×106Pa(4.8×10kgf/cm2
G)に保持した以外は、実施例1と同様の方法に基づ
き、熱可塑性樹脂製の光学的反射部材を作製した。この
ようにして得られた光学的反射部材の光学的反射面の平
面精度を下記の表1に示し、反り率を下記の表2に示
す。
(Example 2) The hollow portion 1 is kept until the thermoplastic resin in the cavity 24 is solidified and cooled (for 40 seconds after the injection of the molten thermoplastic resin into the cavity is completed).
The pressure in each of the pressure chambers 4 and 15 is controlled by the volume of the pressurized fluid that pressurizes the hollow sections 14 and 15 through the pressurized fluid introduction unit 27, and is controlled to 4.8 × 10 6 Pa (4.8 × 10 kgf / cm). 2
An optical reflection member made of a thermoplastic resin was produced based on the same method as in Example 1 except that the optical member was held in G). The flatness of the optical reflecting surface of the optical reflecting member thus obtained is shown in Table 1 below, and the warpage ratio is shown in Table 2 below.

【0039】(実施例3)キャビティ24内の熱可塑性
樹脂が固化、冷却するまでの間、中空部14,15内の
圧力を所望の圧力範囲に保持するが、実施例3において
は、かかる所望の圧力範囲を、キャビティ24内の溶融
熱可塑性樹脂中に加圧流体を導入した際の加圧流体の圧
力によって制御した。
(Embodiment 3) The pressure in the hollow portions 14, 15 is maintained in a desired pressure range until the thermoplastic resin in the cavity 24 is solidified and cooled. Was controlled by the pressure of the pressurized fluid when the pressurized fluid was introduced into the molten thermoplastic resin in the cavity 24.

【0040】具体的には、実施例3においては、熱可塑
性樹脂を加熱シリンダー26内に供給し、加熱シリンダ
ー26内で混練可塑化して溶融させた後、金型20のキ
ャビティ24内に樹脂射出部25を介して溶融熱可塑性
樹脂30を射出した。射出時間を1秒とし、射出した溶
融熱可塑性樹脂の体積をキャビティ24の体積の80%
とした。そして溶融熱可塑性樹脂のキャビティ24への
射出完了と同時に、キャビティ24内の溶融熱可塑性樹
脂30中に加圧流体を加圧流体導入部27から導入し、
以て、光学的反射部材10の光学的反射面構成部分11
に中空部14を形成し、突起部構成部材の部分の一部分
13Aに、光学的反射面構成部分11に形成された中空
部14から延在する中空部15を形成した。キャビティ
24内の溶融熱可塑性樹脂30中に加圧流体を導入する
際の加圧流体の圧力を、ゲージ圧で2.0×106Pa
(2.0×10kgf/cm2−G)とした。
More specifically, in the third embodiment, the thermoplastic resin is supplied into the heating cylinder 26, kneaded and plasticized in the heating cylinder 26 and melted, and then injected into the cavity 24 of the mold 20. The molten thermoplastic resin 30 was injected through the part 25. The injection time is 1 second, and the volume of the injected molten thermoplastic resin is 80% of the volume of the cavity 24.
And Then, simultaneously with the completion of the injection of the molten thermoplastic resin into the cavity 24, a pressurized fluid is introduced into the molten thermoplastic resin 30 in the cavity 24 from the pressurized fluid introduction unit 27,
Thus, the optical reflection surface constituting portion 11 of the optical reflection member 10
A hollow portion 15 extending from the hollow portion 14 formed in the optical reflection surface constituting portion 11 was formed in a portion 13A of the projection component member. The pressure of the pressurized fluid when introducing the pressurized fluid into the molten thermoplastic resin 30 in the cavity 24 is 2.0 × 10 6 Pa in gauge pressure.
(2.0 × 10 kgf / cm 2 -G).

【0041】その後、キャビティ24内の熱可塑性樹脂
が固化、冷却するまでの間(溶融熱可塑性樹脂のキャビ
ティ内への射出完了から40秒の間)、中空部14,1
5内の圧力を、中空部14,15内へ導入された加圧流
体の圧力によって制御した。金型を開く直前の中空部1
4,15内の圧力は、ゲージ圧で2.0×106Pa
(2.0×10kgf/cm2−G)であった。その
後、中空部14,15内の加圧流体を、加圧流体導入部
27を介して、大気中に放出し、金型を開き、光学的反
射部材10を取り出した。こうして得られた光学的反射
部材10において、中空部14の体積は光学的反射部材
10の体積の20%であった。また、突起部構成部分の
一部分13Aに形成された中空部15の長さ(矩形平面
状の光学的反射面12の短辺と平行な方向に沿った長
さ)W2は、0.25mmであった。即ち、W1=2mm
であるが故に、W2/W1=0.125となった。
Thereafter, until the thermoplastic resin in the cavity 24 is solidified and cooled (for 40 seconds after the injection of the molten thermoplastic resin into the cavity is completed), the hollow portions 14 and 1 are formed.
The pressure in 5 was controlled by the pressure of the pressurized fluid introduced into the hollow portions 14 and 15. Hollow part 1 just before opening the mold
The pressure in 4, 15 is 2.0 × 10 6 Pa in gauge pressure.
(2.0 × 10 kgf / cm 2 -G). After that, the pressurized fluid in the hollow portions 14 and 15 was discharged into the atmosphere via the pressurized fluid introduction unit 27, the mold was opened, and the optical reflection member 10 was taken out. In the optical reflection member 10 thus obtained, the volume of the hollow portion 14 was 20% of the volume of the optical reflection member 10. The length (length along the short side parallel to the direction of the rectangular planar optical reflecting surface 12) of the hollow portion 15 formed on a portion 13A of the projecting portion component W 2 is a 0.25mm there were. That is, W 1 = 2 mm
Although it is therefore, it became a W 2 / W 1 = 0.125.

【0042】(実施例4)キャビティ24内の熱可塑性
樹脂が固化、冷却するまでの間、中空部14,15内の
圧力を所望の圧力範囲に保持するが、実施例4において
は、金型20には、入れ子23の代わりに可動コア29
が更に備えられ、この可動コア29に光学的反射面を形
成するための金型面が設けられ、かかる所望の圧力範囲
を、可動コア29の位置制御によって制御する。
(Embodiment 4) The pressure in the hollow portions 14 and 15 is maintained within a desired pressure range until the thermoplastic resin in the cavity 24 is solidified and cooled. 20 has a movable core 29 instead of the nest 23.
The movable core 29 is further provided with a mold surface for forming an optical reflection surface, and the desired pressure range is controlled by controlling the position of the movable core 29.

【0043】具体的には、図5に模式的な断面図に示す
ように、例えば油圧シリンダー(図示せず)で可動させ
ることができる可動コア29を固定金型部21に配設す
ればよい。そして、光学的反射部材の成形においては、
型締め時、成形すべき光学的反射部材の体積(VM)よ
りもキャビティ24の体積(VC)が小さくなるよう
に、固定金型部21と可動金型部22とを型締めし、且
つ、キャビティ内における可動コア29の配置位置を制
御する。そして、キャビティ(体積:VC)24内に溶
融熱可塑性樹脂を射出し、更に、キャビティ24内の溶
融熱可塑性樹脂中に加圧流体を導入して、光学的反射部
材10の光学的反射面構成部分11に中空部14を形成
し、突起部構成部分の一部分13Aに、光学的反射面構
成部分11に形成された中空部14から延在する中空部
15を形成する。その後、図示しない油圧シリンダーの
作動によって可動コア29を移動させて、成形すべき光
学的反射部材の体積(VM)まで、キャビティ24の体
積を、段階的に、あるいは連続的に、あるいは一気に増
加させる。こうして、キャビティ24内の熱可塑性樹脂
が固化、冷却するまでの間、中空部14,15内の圧力
を所望の圧力範囲に保持する。
More specifically, as shown in a schematic cross-sectional view of FIG. 5, a movable core 29 that can be moved by, for example, a hydraulic cylinder (not shown) may be provided in the fixed mold portion 21. . And in molding the optical reflection member,
At the time of mold clamping, the fixed mold part 21 and the movable mold part 22 are clamped so that the volume (V C ) of the cavity 24 is smaller than the volume (V M ) of the optical reflection member to be molded. In addition, the position of the movable core 29 in the cavity is controlled. Then, the molten thermoplastic resin is injected into the cavity (volume: V C ) 24, and further, a pressurized fluid is introduced into the molten thermoplastic resin in the cavity 24, so that the optical reflecting surface of the optical reflecting member 10 is formed. A hollow portion 14 is formed in the component portion 11, and a hollow portion 15 extending from the hollow portion 14 formed in the optical reflection surface component portion 11 is formed in a portion 13A of the protrusion component portion. Thereafter, the movable core 29 is moved by the operation of a hydraulic cylinder (not shown), and the volume of the cavity 24 is increased stepwise, continuously, or all at once to the volume (V M ) of the optical reflecting member to be molded. Let it. Thus, the pressure in the hollow portions 14 and 15 is maintained in a desired pressure range until the thermoplastic resin in the cavity 24 is solidified and cooled.

【0044】(比較例1)比較例1においては、加圧流
体の導入を行わず、中空部が形成されない光学的反射部
材を成形した。具体的には、実施例1と同じ射出成形
機、金型、熱可塑性樹脂を使用した、そして、熱可塑性
樹脂を加熱シリンダー26内に供給し、加熱シリンダー
26内で混練可塑化して溶融させた後、金型20のキャ
ビティ24内に樹脂射出部25を介して溶融熱可塑性樹
脂を射出した。射出時間を1秒とし、射出した溶融熱可
塑性樹脂の体積をキャビティ24の体積の100%とし
た。溶融熱可塑性樹脂の射出完了後、加熱シリンダー2
6側から保圧圧力を1×108Pa(1×103kgf/
cm2−G)とした状態で40秒間、保圧操作を行い、
次いで、キャビティ24内の熱可塑性樹脂を20秒間、
冷却、固化させた。その後、金型を開き、光学的反射部
材を取り出した。このようにして得られた光学的反射部
材の光学的反射面の平面精度を下記の表1に示し、反り
率を下記の表2に示す。
Comparative Example 1 In Comparative Example 1, an optical reflecting member having no hollow portion was formed without introducing a pressurized fluid. Specifically, the same injection molding machine, mold, and thermoplastic resin as those in Example 1 were used, and the thermoplastic resin was supplied into the heating cylinder 26, and kneaded and plasticized in the heating cylinder 26 to be melted. Thereafter, the molten thermoplastic resin was injected into the cavity 24 of the mold 20 via the resin injection section 25. The injection time was set to 1 second, and the volume of the injected molten thermoplastic resin was set to 100% of the volume of the cavity 24. After the injection of molten thermoplastic resin is completed, heating cylinder 2
From the 6 side, the holding pressure is 1 × 10 8 Pa (1 × 10 3 kgf /
cm 2 -G) and a dwell operation for 40 seconds.
Next, the thermoplastic resin in the cavity 24 is applied for 20 seconds.
Cooled and solidified. Thereafter, the mold was opened, and the optical reflection member was taken out. The flatness of the optical reflecting surface of the optical reflecting member thus obtained is shown in Table 1 below, and the warpage ratio is shown in Table 2 below.

【0045】(比較例2)溶融熱可塑性樹脂の射出完了
後、加熱シリンダー26側から保圧操作を行わずにキャ
ビティ24内の熱可塑性樹脂を冷却、固化させた以外
は、比較例1と同様の方法で光学的反射部材を作製し
た。このようにして得られた光学的反射部材の光学的反
射面の平面精度を下記の表1に示し、反り率を下記の表
2に示す。キャビティ24内で成形された光学的反射部
材10の光学的反射面12と、光学的反射面12を形成
するための入れ子23の金型面との間には、光学的反射
面10mm2当たり最大20μmの隙間が存在した。
Comparative Example 2 Same as Comparative Example 1 except that after the injection of the molten thermoplastic resin was completed, the thermoplastic resin in the cavity 24 was cooled and solidified without performing the pressure-holding operation from the heating cylinder 26 side. The optical reflection member was produced by the method described in the above. The flatness of the optical reflecting surface of the optical reflecting member thus obtained is shown in Table 1 below, and the warpage ratio is shown in Table 2 below. Between the optical reflecting surface 12 of the optical reflecting member 10 molded in the cavity 24 and the mold surface of the nest 23 for forming the optical reflecting surface 12, a maximum of 10 mm 2 per optical reflecting surface is provided. There was a 20 μm gap.

【0046】(比較例3)キャビティ24内に射出した
溶融熱可塑性樹脂の体積を、キャビティ24の体積の9
0%とし、光学的反射面構成部分の一部、及び突起部構
成部分の一部にのみ中空部を形成した。即ち、中空部の
形成を光学的反射面の中央部程度までとした。この点を
除き、実施例1と同様の方法に基づき、熱可塑性樹脂製
の光学的反射部材を作製した。このようにして得られた
光学的反射部材の光学的反射面の平面精度を下記の表1
に示し、反り率を下記の表2に示す。
(Comparative Example 3) The volume of the molten thermoplastic resin injected into the cavity 24 was reduced to 9 times the volume of the cavity 24.
It was set to 0%, and a hollow portion was formed only in a part of the optical reflection surface constituting part and a part of the protruding part constituting part. That is, the hollow portion was formed up to the center of the optical reflection surface. Except for this point, an optical reflection member made of a thermoplastic resin was manufactured based on the same method as in Example 1. The flatness of the optical reflection surface of the optical reflection member obtained in this manner is shown in Table 1 below.
And the warpage ratio is shown in Table 2 below.

【0047】(比較例4)突起部の無い光学的反射部材
を成形した。光学的反射部材の外形形状を矩形(長さ2
90mm、幅10mm)とした。キャビティ24内に射
出した溶融熱可塑性樹脂の体積を、キャビティ24の体
積の80%とし、光学的反射部材の部分の一部にのみ中
空部を形成した。光学的反射面を構成する光学的反射部
材の部分の大きさは、長さ約233mm、幅約10mm
であった。光学的反射部材の外周部には中空部が形成さ
れておらず、光学的反射部材の外周部は中実構造を有す
る。これらの点を除き、実施例1と同様の方法に基づ
き、熱可塑性樹脂製の光学的反射部材を作製した。この
ようにして得られた光学的反射部材の光学的反射面の平
面精度を下記の表1に示し、反り率を下記の表2に示
す。
(Comparative Example 4) An optical reflecting member having no projection was formed. The external shape of the optical reflecting member is rectangular (length 2
90 mm, width 10 mm). The volume of the molten thermoplastic resin injected into the cavity 24 was set to 80% of the volume of the cavity 24, and a hollow portion was formed only in a part of the optical reflecting member. The size of the portion of the optical reflecting member constituting the optical reflecting surface is about 233 mm in length and about 10 mm in width.
Met. No hollow portion is formed in the outer peripheral portion of the optical reflecting member, and the outer peripheral portion of the optical reflecting member has a solid structure. An optical reflection member made of a thermoplastic resin was manufactured based on the same method as in Example 1 except for these points. The flatness of the optical reflecting surface of the optical reflecting member thus obtained is shown in Table 1 below, and the warpage ratio is shown in Table 2 below.

【0048】 [表1] 加圧流体 ガス保持圧力 成形機保圧力 平面精度 実施例1 有り 2.0MPa 無し ◎ 実施例2 有り 4.8MPa 無し ○ 比較例1 無し 無し 100MPa × 比較例2 無し 無し 無し △ 比較例3 有り 2.0MPa 無し × 比較例4 有り 2.0MPa 無し ×[Table 1] Pressurized fluid Gas holding pressure Molding machine holding pressure Planar accuracy Example 1 Yes 2.0MPa No ◎ Example 2 Yes 4.8MPa No ○ Comparative Example 1 No No 100MPa × Comparative Example 2 No No No △ Comparative Example 3 Yes 2.0MPa No × Comparative Example 4 Yes 2.0MPa No ×

【0049】 [0049]

【0050】以上、本発明を、好ましい実施例に基づき
説明したが、本発明はこれらに限定されるものではな
い。実施例にて説明した射出成形機置や金型、使用した
熱可塑性樹脂は例示であり、適宜変更することができ
る。また、光学的反射部材の構造や形状、寸法も例示で
あり、適宜設計変更することができる。
Although the present invention has been described based on the preferred embodiments, the present invention is not limited to these embodiments. The injection molding machine, the mold, and the used thermoplastic resin described in the embodiments are merely examples, and can be appropriately changed. The structure, shape, and dimensions of the optical reflecting member are also examples, and the design can be changed as appropriate.

【0051】[0051]

【発明の効果】本発明によれば、ミラーやリフレクター
のように矩形形状の光学的反射面(鏡面)を有し、且
つ、突起部が形成された、高精度の熱可塑性樹脂製の光
学的反射部材を別工程や後工程を必要とせずに、安定し
た高品質にて、効率的、且つ、経済的に製造することが
できる。
According to the present invention, a high-precision optical resin made of a thermoplastic resin having a rectangular optical reflecting surface (mirror surface) like a mirror or a reflector and having a projection formed thereon. The reflective member can be manufactured stably, with high quality, efficiently and economically, without requiring a separate process or a post-process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例にて成形した光学的反射部材の模式的な
断面図である。
FIG. 1 is a schematic cross-sectional view of an optical reflecting member formed in an example.

【図2】実施例及び比較例にて使用した射出成形機及び
金型の模式的な断面図である。
FIG. 2 is a schematic cross-sectional view of an injection molding machine and a mold used in Examples and Comparative Examples.

【図3】本発明の光学的反射部材の製造方法を説明する
ための金型等の模式的な断面図である。
FIG. 3 is a schematic cross-sectional view of a mold and the like for explaining a method of manufacturing an optical reflection member of the present invention.

【図4】図3に引き続き、本発明の光学的反射部材の製
造方法を説明するための金型等の模式的な断面図であ
る。
FIG. 4 is a schematic cross-sectional view of a mold and the like for explaining the method for manufacturing the optical reflection member of the present invention, following FIG. 3;

【図5】実施例4にて使用した金型の模式的な断面図で
ある。
FIG. 5 is a schematic sectional view of a mold used in Example 4.

【符号の説明】[Explanation of symbols]

10・・・光学的反射部材、11・・・光学的反射面構
成部分、12・・・光学的反射面、13・・・突起部、
13A・・・突起部を構成する光学的反射部材の部分の
一部分、14,15・・・中空部、20・・・射出成形
用の金型、21・・・固定金型部、22・・・可動金型
部、23・・・入れ子、24・・・キャビティ、25・
・・樹脂射出部、26・・・加熱シリンダー、27・・
・加圧流体導入部、28・・・加圧流体源、29・・・
可動コア、30・・・溶融熱可塑性樹脂
10 optical reflection member, 11 optical reflection surface component, 12 optical reflection surface, 13 protrusion
13A: a part of the portion of the optical reflection member constituting the projection, 14, 15: a hollow part, 20: a mold for injection molding, 21 ... a fixed mold part, 22 ...・ Movable mold part, 23 ... nest, 24 ... cavity, 25 ・
..Resin injection section, 26... Heating cylinder, 27.
.Pressurized fluid introduction part, 28 ... Pressurized fluid source, 29 ...
Movable core, 30 ... molten thermoplastic resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茅野 義弘 神奈川県平塚市東八幡5丁目6番2号 三 菱エンジニアリングプラスチックス株式会 社技術センター内 (72)発明者 落合 和明 神奈川県平塚市東八幡5丁目6番2号 三 菱エンジニアリングプラスチックス株式会 社技術センター内 (72)発明者 小谷 洋一 大阪府三島郡島本町山崎2丁目1番7号 ナルックス株式会社内 Fターム(参考) 2H042 DA01 DA11 4F213 AA28 AG07 AG28 AH78 WA05 WA53 WA89 WB01 WC01 WK01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiro Chino 5-6-2, Higashi-Yawata, Hiratsuka-shi, Kanagawa Prefecture Inside the Technology Center of Mitsubishi Engineering-Plastics Corporation (72) Inventor Kazuaki Ochiai 5 Higashi-Yawata, Hiratsuka-shi, Kanagawa Prefecture 6-2, Mitsubishi Engineering Plastics Co., Ltd. Technology Center (72) Inventor Yoichi Kotani 2-7-1, Yamazaki, Shimamoto-cho, Mishima-gun, Osaka Prefecture F-term in NARUX Co., Ltd. AG07 AG28 AH78 WA05 WA53 WA89 WB01 WC01 WK01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】矩形平面状の光学的反射面を有し、該矩形
平面状の光学的反射面は突起部によって囲まれた熱可塑
性樹脂製の光学的反射部材であって、 該光学的反射面の全域を構成する光学的反射部材の部分
には、加圧流体を導入することによって中空部が形成さ
れており、 突起部を構成する光学的反射部材の部分の一部分には、
光学的反射面の全域を構成する光学的反射部材の部分に
形成された中空部から延在する中空部が形成されている
ことを特徴とする光学的反射部材。
1. An optical reflecting member having a rectangular planar optical reflecting surface, wherein said rectangular planar optical reflecting surface is a thermoplastic resin optical reflecting member surrounded by a projection. A hollow portion is formed by introducing a pressurized fluid in a portion of the optical reflecting member that forms the entire surface, and a part of the optical reflecting member that forms the projection portion includes:
An optical reflecting member, wherein a hollow portion extending from a hollow portion formed in a portion of the optical reflecting member constituting the entire area of the optical reflecting surface is formed.
【請求項2】光学的反射面を含む仮想平面で光学的反射
部材を切断したときの光学的反射部材の外形形状は矩形
であり、矩形平面状の光学的反射面の短辺と平行な方向
に沿った突起部を構成する光学的反射部材の部分の幅を
1、光学的反射面の短辺と平行な方向に沿った突起部
を構成する光学的反射部材の部分の一部分に形成された
中空部の長さをW2としたとき、0.01≦W2/W1
0.8を満足することを特徴とする請求項1に記載の光
学的反射部材。
2. An external shape of the optical reflecting member when the optical reflecting member is cut along a virtual plane including the optical reflecting surface is rectangular, and a direction parallel to a short side of the rectangular planar optical reflecting surface. The width of the portion of the optical reflection member that forms the protrusion along W 1 is formed on a part of the portion of the optical reflection member that forms the protrusion along the direction parallel to the short side of the optical reflection surface. When the length of the hollow portion is W 2 , 0.01 ≦ W 2 / W 1
2. The optical reflecting member according to claim 1, wherein 0.8 is satisfied.
【請求項3】矩形平面状の光学的反射面の短辺と平行な
方向に沿った光学的反射部材の幅をW0としたとき、
0.1≦W1/W0≦0.3を満足することを特徴とする
請求項2に記載の光学的反射部材。
3. When the width of the optical reflecting member along a direction parallel to the short side of the rectangular planar optical reflecting surface is W 0 ,
3. The optical reflecting member according to claim 2, wherein 0.1 ≦ W 1 / W 0 ≦ 0.3 is satisfied.
【請求項4】矩形平面状の光学的反射面の長辺の長さを
1、短辺の長さをL2としたとき、L1/L2≧2を満足
することを特徴とする請求項1に記載の光学的反射部
材。
4. When a length of a long side of a rectangular planar optical reflecting surface is L 1 and a length of a short side is L 2 , L 1 / L 2 ≧ 2 is satisfied. The optical reflection member according to claim 1.
【請求項5】突起部を構成する光学的反射部材の部分が
占める体積は、光学的反射部材の体積の1〜30%であ
ることを特徴とする請求項1に記載の光学的反射部材。
5. The optical reflection member according to claim 1, wherein the volume occupied by the portion of the optical reflection member constituting the projection is 1 to 30% of the volume of the optical reflection member.
【請求項6】光学的反射面を形成するための金型面を有
するキャビティが設けられた射出成形用の金型を使用
し、キャビティ内で成形された光学的反射部材の光学的
反射面と、光学的反射面を形成するための金型面との間
には、光学的反射面10mm2当たり1μm以下の隙間
しか存在しないことを特徴とする請求項1に記載の光学
的反射部材。
6. An optical reflection member of an optical reflection member molded in a cavity using an injection molding die provided with a cavity having a mold surface for forming an optical reflection surface. 2. The optical reflecting member according to claim 1, wherein there is only a gap of 1 μm or less per 10 mm 2 of the optical reflecting surface between the optical reflecting surface and a mold surface for forming the optical reflecting surface.
【請求項7】光学的反射面の反り率は1×10-3以下で
あることを特徴とする請求項1に記載の光学的反射部
材。
7. The optical reflecting member according to claim 1, wherein a warp rate of the optical reflecting surface is 1 × 10 −3 or less.
【請求項8】光学的反射面の表面には光学的反射膜が設
けられていることを特徴とする請求項1に記載の光学的
反射部材。
8. The optical reflection member according to claim 1, wherein an optical reflection film is provided on a surface of the optical reflection surface.
JP30645599A 1999-10-28 1999-10-28 Optical reflecting member made of thermoplastic resin Expired - Lifetime JP4227712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30645599A JP4227712B2 (en) 1999-10-28 1999-10-28 Optical reflecting member made of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30645599A JP4227712B2 (en) 1999-10-28 1999-10-28 Optical reflecting member made of thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2001124912A true JP2001124912A (en) 2001-05-11
JP4227712B2 JP4227712B2 (en) 2009-02-18

Family

ID=17957221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30645599A Expired - Lifetime JP4227712B2 (en) 1999-10-28 1999-10-28 Optical reflecting member made of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP4227712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106845A1 (en) 2009-03-19 2010-09-23 コニカミノルタオプト株式会社 Hollow reflecting optical element and scanning optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106845A1 (en) 2009-03-19 2010-09-23 コニカミノルタオプト株式会社 Hollow reflecting optical element and scanning optical device
US8427726B2 (en) 2009-03-19 2013-04-23 Konica Minolta Opto, Inc. Hollow reflecting optical element and scanning optical device
JP5464208B2 (en) * 2009-03-19 2014-04-09 コニカミノルタ株式会社 Method for manufacturing a reflective optical element

Also Published As

Publication number Publication date
JP4227712B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
US6165407A (en) Mold assembly for molding thermoplastic resin and method of manufacturing molded article of thermoplastic resin
EP0610002B1 (en) Mold for injection molding of thermoplastic resin
US5741446A (en) Method of producing a molded article using a mold assembly with an insert block
JP4992682B2 (en) Injection molding method
JP3719826B2 (en) Mold assembly and method of manufacturing molded product
JP4198149B2 (en) Mold assembly for molding thermoplastic resin and method for producing molded article
JP3747983B2 (en) Molding method of molded product and mold assembly
EP0644028B1 (en) Process for the production of molded article with sealed pattern
US20150084216A1 (en) Injection mold, injection-molded product, optical element, optical prism, ink tank, recording device, and injection molding method
JP2007237445A (en) Injection molding method of optical part
JP4130007B2 (en) Mold assembly for molding thermoplastic resin and method for producing molded article
JP2006343548A (en) Resin base material of resin reflecting mirror and its manufacturing method
JP2001124912A (en) Optical reflecting member made of thermoplastic resin
WO2011040186A1 (en) Device for manufacturing resin molded articles for use in optical elements, and method for manufacturing optical elements
JP4371525B2 (en) Optical reflection member made of thermoplastic resin and method for manufacturing the same
JP2001225349A (en) Method for manufacturing molded article having gradation hue
JP2001188113A (en) Optical reflective member made of thermoplastic resin
JP2001225348A (en) Molding method and molded article
JP4992683B2 (en) Injection molding method
US20140087144A1 (en) Resin molded product
JP3575927B2 (en) Method of molding light reflecting member made of thermoplastic resin and method of manufacturing light reflecting part made of thermoplastic resin
JPH10337759A (en) Manufacture of molding made of thermoplastic resin
JP2000079628A (en) Mold assembly for molding thermoplastic resin and production of holding
JPH10278064A (en) Glazing material made of thermoplastic resin, and its manufacture
JP2007320294A (en) Manufacturing process and manufacturing device for composite optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4227712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term