JP2001123279A - Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR - Google Patents

Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR

Info

Publication number
JP2001123279A
JP2001123279A JP30008399A JP30008399A JP2001123279A JP 2001123279 A JP2001123279 A JP 2001123279A JP 30008399 A JP30008399 A JP 30008399A JP 30008399 A JP30008399 A JP 30008399A JP 2001123279 A JP2001123279 A JP 2001123279A
Authority
JP
Japan
Prior art keywords
steel wire
coated steel
corrosion resistance
coating layer
alloy coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30008399A
Other languages
Japanese (ja)
Inventor
Hidekazu Endo
英一 遠藤
Masao Kurosaki
將夫 黒崎
Shinichi Yamaguchi
伸一 山口
Keita Suzumura
恵太 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30008399A priority Critical patent/JP2001123279A/en
Publication of JP2001123279A publication Critical patent/JP2001123279A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Al-Mg-Si base alloy coated steel wire having excellent corrosion resistance in a salt water environment and a fresh water environment and to provide a method for producing the same. SOLUTION: As to this Al-Mg-Si base alloy coated steel wire excellent in corrosion resistance, in an Al-Mg-Si base alloy coated steel wire having a coating layer containing, by mass, 3 to 9% Mg and 2 to 10% Si, and the balance Al with inevitable impurities, the coating layer contains planar particles of an Mg2Si phase. It is preferable that the average value of the maximum size of the planar particles of an Mg2Si phase is controlled to <=20 μm, and the surface of the Al-Mg-Si base alloy coating layer is provided with an organic synthetic resin coating layer composed of a baked type composition, and in which the hardening degree of the coating film after baking is controlled to >=80%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性Al合金被
覆鋼線に関するものである。とくに、港湾など海岸地域
のような高塩素濃度環境から内陸部のような低塩素濃度
環境にわたる多様な腐食環境において使用される耐食性
Al合金被覆鋼線に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant aluminum alloy-coated steel wire. In particular, the present invention relates to a corrosion-resistant Al alloy coated steel wire used in various corrosive environments ranging from a high chlorine concentration environment such as a coastal region such as a harbor to a low chlorine concentration environment such as an inland region.

【0002】[0002]

【従来の技術】従来より、鋼線の耐食性を向上させるた
めに、鋼線表面にAlやZnの層を形成した耐食性鋼線
が使用されている。このうち、Znめっき鋼線は、耐食
性鋼線として吊り橋ケーブルのワイヤー等に利用されて
いる。その腐食挙動は、Znのいわゆる自己犠牲による
ものであり、Znが鋼線に対して陽極となるため、めっ
きが選択的に消費され、内部の鋼線自体を腐食から防ぐ
という陰極防食としての作用を奏する。このため、Zn
めっき鋼線の腐食は全面腐食であり、その挙動は海岸地
域のような腐食性の激しい環境においても変わることは
ない。しかし、Znめっき鋼線は文字通りめっき法によ
って製造されるものであるため、めっき厚みは高々50
μ程度であり、耐食性の向上に限界があった。また、め
っき法以外に耐食性Zn層を形成する方法として、クラ
ッド法や押出法が考えられるが、Zn特有の塑性変型特
性により実施することが困難である。
2. Description of the Related Art Conventionally, in order to improve the corrosion resistance of a steel wire, a corrosion-resistant steel wire having a layer of Al or Zn formed on the surface of the steel wire has been used. Among them, the Zn-plated steel wire is used as a wire of a suspension bridge cable or the like as a corrosion-resistant steel wire. The corrosion behavior is due to the so-called self-sacrifice of Zn, which acts as an anode for the steel wire, so that the plating is selectively consumed and acts as a cathodic protection, preventing the internal steel wire itself from corrosion. To play. Therefore, Zn
The corrosion of galvanized steel wire is general corrosion, and its behavior does not change even in highly corrosive environments such as coastal areas. However, since the Zn-plated steel wire is literally manufactured by a plating method, the plating thickness is 50 at most.
μ, which limits the improvement of corrosion resistance. As a method for forming a corrosion-resistant Zn layer other than the plating method, a cladding method or an extrusion method can be considered, but it is difficult to carry out the method due to the plastic deformation characteristics unique to Zn.

【0003】一方、Alめっき鋼線は優れた耐食性を有
し、その耐食挙動は表面に形成されるAl2 3 皮膜が
大きな役割を果たすことは既によく知られている。しか
し、Al2 3 の保護皮膜としての効果は、通常の腐食
環境におけるものであり、海岸地域のような腐食性の激
しい環境においては必ずしも十分な効果は得られない。
すなわち、Al2 3 の保護皮膜は表面酸化により自然
形成されるため、形成むらにより部分的に被覆の不十分
な箇所があり、いわゆるピッティング腐食と呼ばれる深
い局部的な腐食を形成する原因となっていた。前記の全
面腐食では腐食の進行は経時的に緩やかであるのに対し
て、ピッティング腐食は鋼線に対して比較的短時間で致
命的なダメージを与える。
On the other hand, Al-plated steel wires have excellent corrosion resistance, and it is well known that the corrosion resistance behavior of the Al 2 O 3 film formed on the surface plays a large role. However, the effect of Al 2 O 3 as a protective film is in a normal corrosive environment, and a sufficient effect is not necessarily obtained in a highly corrosive environment such as a coastal area.
That is, since the protective film of Al 2 O 3 is naturally formed by surface oxidation, there is a portion where coating is partially insufficient due to unevenness of formation, which is a cause of forming deep local corrosion called so-called pitting corrosion. Had become. In the above general corrosion, the progress of the corrosion is slow with time, whereas the pitting corrosion causes fatal damage to the steel wire in a relatively short time.

【0004】本発明者らは、すでに、AlにMgとSi
を一定量添加したAl−Mg−Si合金が、高塩素濃度
環境や低塩素濃度環において、鋼線に対して優れた耐食
性を与え、かつ、ピッティング腐食の問題も解消される
ことを見い出し、Al−Mg−Si系合金めっき鋼線を
提供した。しかしこれは、600℃以上のめっき温度が
必要であり、めっき工程において鋼線自体の機械的特性
が低下する可能性が高い。そのため、吊り橋ケーブルワ
イヤーのような高度な機械的強度を要求される用途には
適さない。
The present inventors have already made Al and Mg and Si
Al-Mg-Si alloy to which a certain amount of Al is added gives excellent corrosion resistance to steel wires in a high chlorine concentration environment or a low chlorine concentration ring, and also finds that the problem of pitting corrosion is also solved. An Al-Mg-Si alloy plated steel wire was provided. However, this requires a plating temperature of 600 ° C. or higher, and there is a high possibility that the mechanical properties of the steel wire itself are reduced in the plating step. Therefore, it is not suitable for applications requiring high mechanical strength, such as suspension bridge cable wires.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の観点
からなされたものであり、機械的特性の低下がなく、高
塩素濃度環境から低塩素濃度環境にわたって優れた耐食
性を有するAl−Mg−Si系合金被覆鋼線とその製造
方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made from the above-mentioned viewpoints, and has an excellent corrosion resistance from a high chlorine concentration environment to a low chlorine concentration environment without deterioration of mechanical properties. An object of the present invention is to provide a Si-based alloy-coated steel wire and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、鋼線に上
述のような高い耐食性を付与するAl−Mg−Si系合
金に着目して研究を重ねた結果、Al−Mg−Si系合
金層中におけるMg2Si相の板状粒子の存在が不可欠
であることを見い出した。この知見にもとづいて、Al
−Mg−Si系合金の組成およびMg2 Siの形状とサ
イズを限定し、本発明を完成させたものであって、その
要旨とするところは、 (1)質量%で、Mg:3〜9%、Si:2〜10%を
含有し残部がAlおよび不可避的不純物からなる被覆層
を有するAl−Mg−Si系合金被覆鋼線において、被
覆層がMg2 Si相の板状粒子を含有することを特徴と
する耐食性に優れるAl−Mg−Si系合金被覆鋼線。
The inventors of the present invention have focused on Al-Mg-Si-based alloys which impart the above-described high corrosion resistance to steel wires, and as a result, have found that Al-Mg-Si-based It has been found that the presence of plate-like particles of the Mg 2 Si phase in the alloy layer is indispensable. Based on this finding, Al
Limit the shape and size of the composition and Mg 2 Si in -mg-Si-based alloy, there is have completed the present invention, has as its gist, (1) mass%, Mg: 3 to 9 %, Si: balance containing 2-10% is in the Al-Mg-Si alloy-coated steel wire having a coating layer made of Al and unavoidable impurities, the coating layer containing tabular grains of Mg 2 Si phase An Al-Mg-Si alloy coated steel wire having excellent corrosion resistance.

【0007】(2)Mg2 Si相の板状粒子の最大径の
平均値が20μm以下であることを特徴とする前記
(1)に記載の耐食性に優れるAl−Mg−Si系合金
被覆鋼線。 (3)Al−Mg−Si系合金被覆層の上に、焼付型の
組成物からなり、焼付後の塗膜の硬化度が80%以上で
ある有機合成樹脂塗膜層を有することを特徴とする前記
(1)または(2)に記載の耐食性に優れるAl−Mg
−Si系合金被覆鋼線。
(2) The Al—Mg—Si alloy coated steel wire having excellent corrosion resistance as described in (1) above, wherein the average value of the maximum diameter of the plate-like particles of the Mg 2 Si phase is 20 μm or less. . (3) On the Al-Mg-Si-based alloy coating layer, there is provided an organic synthetic resin coating layer made of a baking type composition and having a cured degree of 80% or more after baking. Al-Mg excellent in corrosion resistance according to the above (1) or (2)
-Si alloy coated steel wire.

【0008】(4)押出加工により、伸線と同時に、鋼
線の表面にAl−Mg−Si系合金被覆層を被覆するこ
とを特徴とする前記(1)〜(3)に記載の耐食性に優
れるAl−Mg−Si系合金被覆鋼線の製造方法。 (5)前記(4)に記載の製造方法であって、すべての
工程が500℃以下で行われることを特徴とする前記
(1)〜(3)に記載の耐食性に優れるAl−Mg−S
i系合金被覆鋼線の製造方法である。
(4) The corrosion resistance described in (1) to (3), wherein the surface of the steel wire is coated with an Al—Mg—Si alloy coating layer simultaneously with the drawing by extrusion. An excellent method for producing an Al-Mg-Si alloy coated steel wire. (5) The method according to (4), wherein all the steps are performed at a temperature of 500 ° C. or less, wherein the Al—Mg—S having excellent corrosion resistance according to (1) to (3).
This is a method for producing an i-based alloy-coated steel wire.

【0009】[0009]

【発明の実施の形態】本発明のAl−Mg−Si系合金
被覆鋼線のAl−Mg−Si系合金層においては、質量
%で、Mg:3〜9%、Si:2〜10%を含有し残部
がAlおよび不可避的不純物からなるAl−Mg−Si
系合金被覆を用いる。Mgの含有量が3質量%未満では
押出成形性や被覆の強度が低下するばかりか、耐食性も
低下する。また、9質量%を超えると耐食性向上効果が
飽和してしまい、かえって、Mg添加によるコスト高に
なるので好ましくない。したがって、Mgの含有量は3
〜9質量%とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the Al-Mg-Si-based alloy layer of the Al-Mg-Si-based alloy-coated steel wire of the present invention, Mg: 3 to 9% and Si: 2 to 10% by mass%. Al-Mg-Si with the balance being Al and unavoidable impurities
A system alloy coating is used. If the content of Mg is less than 3% by mass, not only does the extrudability and the strength of the coating decrease, but also the corrosion resistance decreases. On the other hand, if the content exceeds 9% by mass, the effect of improving the corrosion resistance is saturated, and the cost is increased by the addition of Mg. Therefore, the content of Mg is 3
To 9% by mass.

【0010】また、Siの含有量は、2質量%未満では
Al−Mg−Si系合金の粘性が高くなるため、押出圧
力が上昇して加工性を低下させる。さらに、被覆層中の
Mg 2 Si相が不定形の粒子となり、多角形断面を有す
る板状の形態とならないため耐食性も低下する。一方、
Siの含有率が10質量%を超えると、Mg2 Si相の
板状粒子が肥大化するために、耐食性が低下する上に、
押出装置のダイスに疵をつけるので好ましくない。しか
も、被覆の上に設けた塗膜との良好な密着性が得にくい
といった問題を引き起こす。したがって、Siの含有量
は2〜10質量%とする。
When the content of Si is less than 2% by mass,
Since the viscosity of the Al-Mg-Si alloy increases, the extrusion pressure
The force rises and reduces workability. Furthermore, in the coating layer
Mg TwoSi phase becomes amorphous particles and has polygonal cross section
Since it does not have a plate-like shape, the corrosion resistance also decreases. on the other hand,
If the Si content exceeds 10% by mass, MgTwoSi phase
Because plate-like particles are enlarged, corrosion resistance is reduced,
It is not preferable because the die of the extrusion device is damaged. Only
It is difficult to obtain good adhesion with the coating film provided on the coating
Cause such problems. Therefore, the content of Si
Is 2 to 10% by mass.

【0011】Mg2 Siの粒子は硬い性質があるため
に、押出加工時にダイスに疵をつけることがある。これ
を回避するには、Mg2 Si相を板状の析出形態とする
必要がある。この上でMg2 Si相の板状粒子サイズを
最大径の平均値で20μm以下とすることが好ましい、
さらに好ましくは4μm以下にする。なお、Mg2 Si
相の板状粒子サイズの測定法は特に規定しないが、発明
者らは次のようにして測定をおこなった。
Since Mg 2 Si particles have a hard property, the die may be damaged during extrusion. To avoid this, the Mg 2 Si phase must be in a plate-like precipitation form. On this, it is preferable that the average particle size of the plate-like particles of the Mg 2 Si phase be 20 μm or less,
More preferably, it is 4 μm or less. Note that Mg 2 Si
The method for measuring the plate-like particle size of the phase is not particularly specified, but the inventors measured it as follows.

【0012】まず、Al−Mg−Si系合金の切断小片
(10×10mm程度)を研磨し、光学顕微鏡または電
子顕微鏡(SEM)などを用いて500倍以上の倍率で
観察する。次に、Mg2 Si相の板状粒子ができるだけ
多く存在する視野を選び、その視野のうち大きなもの5
個について最大径を測定する。そして、この操作を異な
る切断小片3個について繰返して合計15個の板状粒子
における平均値を求め、これを最大径の平均値とする。
なお、各板状粒子の最大径は目視で決定すればよい。
First, a cut piece (about 10 × 10 mm) of an Al—Mg—Si alloy is polished and observed at a magnification of 500 times or more using an optical microscope or an electron microscope (SEM). Next, a field of view in which as many plate-like particles of the Mg 2 Si phase as possible were selected,
Measure the maximum diameter of each piece. Then, this operation is repeated for three different cut pieces to obtain an average value of a total of 15 plate-like particles, and this is set as an average value of the maximum diameter.
The maximum diameter of each plate-like particle may be determined by visual observation.

【0013】つぎに、被覆方法について述べる。本発明
のAl−Mg−Si系合金被覆鋼線は、被覆の主成分が
Alであるので、例えば、特開平7−155872号公
報に開示された方法等、公知の押出被覆法に準拠した方
法を用いることができる。すなわち、通電加熱などによ
り250〜400℃程度に加熱した鋼線に、400〜5
00℃で押し出したAl−Mg−Si系合金を、鋼線に
前方張力を付加した状態で被覆する。
Next, a coating method will be described. Since the main component of the coating of the Al-Mg-Si alloy coated steel wire of the present invention is Al, for example, a method based on a known extrusion coating method such as the method disclosed in JP-A-7-155873. Can be used. That is, a steel wire heated to about 250 to 400 ° C.
The steel wire is coated with an Al-Mg-Si alloy extruded at 00 ° C while applying a forward tension to the steel wire.

【0014】ここで、Al−Mg−Si系合金の押出温
度は、特に規定しないが、望ましくは400〜500℃
とする。400℃以上で加工をおこなうことにより、M
2Si粒子が微細化しやすく、耐食性のさらなる向上
が期待できる。一方、500℃を超えるとMg2 Siが
粗大化しやすくなる。すなわち、押出過程で固溶したM
2 Siが、被覆後の冷却過程において析出する時、固
溶しきれなかったMg 2 Siがあると、これが核となっ
て析出を促進する。その結果、Mg2 Siが粗大化しや
すくなる。Mg2 Siが粗大化すると、耐食性の低下を
招くので押出温度は500℃以下が好ましい。
Here, the extrusion temperature of the Al-Mg-Si alloy is
The degree is not particularly specified, but is preferably 400 to 500 ° C.
And By processing at 400 ° C or higher, M
gTwoSi particles are easily refined, further improving corrosion resistance
Can be expected. On the other hand, if the temperature exceeds 500 ° C., MgTwoSi
It becomes easy to coarsen. That is, the M dissolved in the extrusion process
gTwoWhen Si precipitates during the cooling process after coating,
Mg that could not be dissolved TwoWith Si, this becomes the core
Promotes precipitation. As a result, MgTwoSi becomes coarse
It will be cool. MgTwoWhen Si becomes coarse, corrosion resistance decreases.
For this reason, the extrusion temperature is preferably 500 ° C. or less.

【0015】また、押出加工に供するAl−Mg−Si
系合金は、ワイヤー状のものやビレット状のもの等、押
し出し装置に適した状態で用いてよい。ただし、どのよ
うな状態で用いるにしても、Mg2 Si相の板状粒子を
含有したものを用い、好ましくは最大径の平均を20μ
m以下とする。このうち、Mg2 Si相の形状はSiの
添加量でほぼ決定されるので、Siの添加量を管理すれ
ばよいが、Mg2 Si相の大きさは、押出過程である程
度制御できるとはいえ、その効果は限界があり、Mg2
Si粒子によるダイスへの疵つきを完全に回避できると
は限らない。Mg2 Siのサイズを制御したAl−Mg
−Si系合金は、例えば、特開平3−277749号公
報に開示された方法等によって得ることができる。以上
のような被覆方法を用いることにより、全プロセスにお
いて、温度条件を高々500℃に抑えることができるの
で、鋼線の強度を保持することができ、Mg2 Siの粒
成長も抑制できる。
Further, Al-Mg-Si to be subjected to extrusion processing
The system alloy may be used in a state suitable for an extruder, such as a wire or a billet. However, regardless of the state used, those containing plate-like particles of the Mg 2 Si phase are preferably used, and the average of the maximum diameter is preferably 20 μm.
m or less. Of these, the shape of the Mg 2 Si phase is substantially determined by the amount of Si added, so the amount of Si added may be controlled, but the size of the Mg 2 Si phase can be controlled to some extent during the extrusion process. , Its effect is limited, Mg 2
It is not always possible to completely prevent the die from being damaged by Si particles. Al-Mg with controlled size of Mg 2 Si
The -Si alloy can be obtained, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 3-27749. By using the above-described coating method, the temperature condition can be suppressed to at most 500 ° C. in the entire process, so that the strength of the steel wire can be maintained and the grain growth of Mg 2 Si can be suppressed.

【0016】次に、このAl−Mg−Si系合金被覆の
上に有機合成樹脂塗料を塗装することが好ましい。塗料
としては、アクリル系,塩化ゴム系,塩化ビニル系,ポ
リウレタン系など市販のものを用いてもよいが、塗膜の
密着性が高く、機械的強度にも優れていることからエポ
キシ系塗料を用いるのが好ましい。エポキシ系塗料の組
成は適宜調節してよいが、連続生産の塗装ラインで、限
られた時間内に塗装から成膜までの一連の工程を完了す
る必要があるので、焼付型を用いる。好ましくは、焼付
硬化型を用いる。
Next, it is preferable to apply an organic synthetic resin paint on the Al-Mg-Si alloy coating. Commercially available paints such as acrylic, chlorinated rubber, vinyl chloride, and polyurethane may be used, but epoxy paints are preferred because of their high adhesion and excellent mechanical strength. It is preferably used. Although the composition of the epoxy-based paint may be appropriately adjusted, a series of steps from coating to film formation must be completed within a limited time in a continuous production coating line. Preferably, a bake hardening type is used.

【0017】塗料に用いるエポキシ樹脂は、平均分子量
300〜4000、エポキシ当量70〜5000のもの
がよく、分子末端のオキシラン環の数はエポキシ1分子
あたり2個以上のものを用いる。また、これらのエポキ
シ樹脂を適宜変性したものを用いてもよい。硬化剤はジ
アミン誘導体(ジシアンジアミドおよびイミダゾール誘
導体を含む)、酸無水物、フェノール誘導体、アミン塩
およびこれらの各種変性体の中から適宜選定する。
The epoxy resin used for the coating material preferably has an average molecular weight of 300 to 4,000 and an epoxy equivalent of 70 to 5,000, and the number of oxirane rings at the molecular terminals is two or more per epoxy molecule. Further, those obtained by appropriately modifying these epoxy resins may be used. The curing agent is appropriately selected from diamine derivatives (including dicyandiamide and imidazole derivatives), acid anhydrides, phenol derivatives, amine salts, and various modifications thereof.

【0018】エポキシ樹脂と硬化剤の適切な混合比は、
用いる化合物の組み合せによって異なるので一概には規
定できないが、例えば1級アミン化合物を硬化剤とする
場合には、エポキシ樹脂のオキシラン環10部に対し
て、硬化剤の活性水素が8部程度になるようにするとよ
い。さらに、塗膜に強度や柔軟性などを付与するため
に、シリカなどの無機系添加剤を加えてもよいし、塗装
作業を容易にするために、有機溶剤で希釈してもよい。
ただし、有機溶剤は、用いるエポキシ樹脂や硬化剤と化
学反応を起こさないものを用いる。
An appropriate mixing ratio of the epoxy resin and the curing agent is as follows:
Since it depends on the combination of compounds used, it cannot be specified unconditionally. For example, when a primary amine compound is used as the curing agent, the active hydrogen of the curing agent is about 8 parts per 10 parts of the oxirane ring of the epoxy resin. It is good to do so. Further, an inorganic additive such as silica may be added to impart strength and flexibility to the coating film, and the coating may be diluted with an organic solvent to facilitate the coating operation.
However, an organic solvent that does not cause a chemical reaction with an epoxy resin or a curing agent to be used is used.

【0019】塗装は、鋼線を塗料の中に浸漬するか、適
当な塗装機を用いてスプレー法によっておこなうが、こ
れ以外の方法を用いてもよい。塗装後は、塗膜厚を均一
にするために必要に応じてゴムベラなどで軽くしごくと
よい。焼付けは、熱風乾燥法,電気誘導加熱法または赤
外線加熱法など適当な方法によりおこなう。ただし、ど
のような方法で焼付けるにしても、焼付け後の塗膜の硬
化度は80%以上でなくてはならない。これを下回る
と、強固な塗膜は得られない。なお、塗膜の硬化度は、
公開技報95−4431号公報に開示された方法で見積
もることができる。
The coating is performed by dipping the steel wire in the coating or by a spraying method using a suitable coating machine, but other methods may be used. After coating, it is preferable to lighten and rub with a rubber spatula or the like as necessary in order to make the coating film thickness uniform. Baking is performed by an appropriate method such as a hot air drying method, an electric induction heating method, or an infrared heating method. However, regardless of the method of baking, the degree of cure of the film after baking must be 80% or more. Below this, a strong coating cannot be obtained. The degree of cure of the coating film is
It can be estimated by the method disclosed in Japanese Patent Application Publication No. 95-4431.

【0020】必要な塗膜厚は、カゴマットの腐食環境等
を考慮して個別に決めることが肝要であるので、ここで
はとくに限定しないが、防食性を有するためには少なく
とも5μm以上が望ましい。また、厚すぎると、前述の
ような施工時の石の衝撃によって割れやすくなるので、
200μm程度までとするのが好ましい。また、合金被
覆層と有機合成樹脂塗膜との間にクロメート,リン酸
塩,有機ジルコニウム塩,有機チタン塩,ジルコニウム
塩などの化成処理皮膜を介在させてもよい。化成処理を
おこなう場合は、被覆面を十分に脱脂してからおこなう
ことが好ましい。脱脂に用いる薬液は揮発性のある有機
溶剤や専用の市販品を用いることができ、化成処理方法
は、浸漬法やスプレー法またはその他適当な方法でおこ
なうとよい。
It is important that the required coating film thickness be individually determined in consideration of the corrosive environment of the basket mat and the like. Therefore, the thickness is not particularly limited here, but is preferably at least 5 μm or more in order to have anticorrosion properties. Also, if it is too thick, it will be easily broken by the impact of stone at the time of construction as described above,
It is preferable that the thickness be up to about 200 μm. A chemical conversion coating such as chromate, phosphate, organic zirconium salt, organic titanium salt, or zirconium salt may be interposed between the alloy coating layer and the organic synthetic resin coating film. When performing the chemical conversion treatment, it is preferable to perform the degreasing after the coated surface is sufficiently degreased. As the chemical solution used for degreasing, a volatile organic solvent or a commercially available product for exclusive use can be used, and the chemical conversion treatment is preferably performed by a dipping method, a spraying method, or another appropriate method.

【0021】[0021]

【実施例】つぎに、本発明の内容を実施例にもとづいて
詳細に説明する。まず、通電加熱により380℃に加熱
した直径約6mmの鋼線に、MgとSiを含有し残部が
Alおよび不可避的不純物からなるAl−Mg−Si系
合金(70mm×70mmビレット)を、押出温度48
0℃,押出比500で押し出して、約200μの厚さに
被覆した。ついで、鋼線の通線方向に張力を付加して、
線径が5mmになるまで伸線した。また、比較材として
Mg:6質量%とSi:6質量%を含有し、残部がAl
および不可避的不純物からなるAl−Mg−Si系合金
被覆鋼線を作製した。めっき浴の温度を640℃に設定
し、浸漬時間を30秒とした。めっきの付着量は、約5
0μmとした。
Next, the contents of the present invention will be described in detail based on embodiments. First, an Al—Mg—Si alloy (70 mm × 70 mm billet) containing Mg and Si, the remainder being Al and unavoidable impurities, was extruded onto a steel wire having a diameter of about 6 mm heated to 380 ° C. by electric heating. 48
It was extruded at 0 ° C. and an extrusion ratio of 500 and coated to a thickness of about 200 μ. Then, apply tension in the direction of the steel wire,
The wire was drawn until the wire diameter became 5 mm. Further, as comparative materials, Mg: 6% by mass and Si: 6% by mass are contained, and the balance is Al.
In addition, an Al-Mg-Si alloy coated steel wire composed of unavoidable impurities was produced. The temperature of the plating bath was set at 640 ° C., and the immersion time was 30 seconds. The amount of plating is about 5
It was set to 0 μm.

【0022】このようにして作製した鋼線から約10c
mの試験片を切り出し、腐食試験をおこなった。試験片
は、鋼面に達する線状のカット疵(長さ5cm)を鋼線
の長手方向と平行に1箇所だけ加えたものを準備した。
なお、両端の切断面はシリコン系のシール剤でシールし
た。腐食試験は、塩水噴霧試験(2000時間)と温水
浸漬試験(5000時間)をおこない、赤錆の有無を目
視で評価した。なお、温水浸漬試験は純水を用い、温水
温度を40℃として空気を吹き込みながらおこなった。
また、Al−Mg−Si系合金被覆による鋼線の強度低
下の有無を調べるために、引張試験もおこなった。表1
はその結果である。この表には、Al−Mg−Si系合
金被覆層の断面のSEM像(1000倍)から測定した
Mg2 Si相の断面形状とその断面の長辺の最大値をあ
わせて記述した。
Approximately 10c from the steel wire thus produced
m was cut out and subjected to a corrosion test. The test piece was prepared by adding a linear cut flaw (5 cm in length) reaching the steel surface at only one location parallel to the longitudinal direction of the steel wire.
The cut surfaces at both ends were sealed with a silicon-based sealant. In the corrosion test, a salt spray test (2000 hours) and a hot water immersion test (5000 hours) were performed, and the presence or absence of red rust was visually evaluated. The hot water immersion test was performed using pure water at a hot water temperature of 40 ° C. while blowing air.
Further, a tensile test was also performed to examine whether or not the strength of the steel wire was reduced by the coating of the Al-Mg-Si alloy. Table 1
Is the result. In this table, the cross-sectional shape of the Mg 2 Si phase measured from the SEM image (× 1000) of the cross section of the Al—Mg—Si alloy coating layer and the maximum value of the long side of the cross section are described.

【0023】この表1から、被覆層の組成がMgとSi
をそれぞれ3〜9質量%、2〜10質量%であり、Mg
2 Si相の断面形状が多角形の板状粒子であり、その断
面の長辺が20μm以下のとき、塩水噴霧試験でも温水
浸漬試験でも赤錆は認められなかった。しかし、被覆層
の組成が上記範囲を外れた場合および、被覆層の組成が
上記範囲内であっても、Mg2 Si相の断面方向の長辺
が20μを超える場合には、赤錆発生に加え、被覆時の
加工性低下による外観不良,ダイスの疵付き等の不具合
が生じた。また、今回試作した全ての鋼線のうち、めっ
き材のみ強度が低下したが、被覆材は強度低下がなく良
好であった。
From Table 1, it can be seen that the composition of the coating layer is Mg and Si.
3 to 9% by mass and 2 to 10% by mass, respectively,
When the cross-sectional shape of the 2Si phase was a plate-like particle having a polygonal cross section and the long side of the cross section was 20 μm or less, no red rust was observed in both the salt spray test and the warm water immersion test. However, when the composition of the coating layer is out of the above range, and when the long side in the cross-sectional direction of the Mg 2 Si phase exceeds 20 μ even if the composition of the coating layer is within the above range, in addition to the generation of red rust, In addition, defects such as poor appearance and scratches on the dies due to deterioration in workability during coating occurred. In addition, of all the steel wires prototyped this time, the strength of only the plated material was reduced, but the strength of the coated material was good without any decrease in strength.

【0024】以上のように、Al−Mg−Si系合金被
覆において、被覆層の組がMg:3〜9質量%、Si:
3〜9質量%の範囲であり、この被覆層中にMg2 Si
を含有し、そのMg2 Si相が板状粒子で、大きさが最
大径で20μm以下である場合に、高塩素濃度環境でも
低塩素濃度環境でも優れた耐食性を有しかつ、機械的強
度低下のないAl−Mg−Si系合金被覆鋼線が得られ
る。
As described above, in the Al—Mg—Si alloy coating, the set of coating layers is Mg: 3 to 9% by mass, and Si:
In the range of 3 to 9% by mass, Mg 2 Si
And when the Mg 2 Si phase is plate-like particles having a maximum diameter of 20 μm or less, has excellent corrosion resistance in both high and low chlorine concentration environments, and has reduced mechanical strength. Al-Mg-Si-based alloy coated steel wire free of slag is obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2)MgとSiをそれぞれ6質量
%ずつ含み残部がAlおよび不可避的不純物からなるA
l−Mg−Si系合金を、上記実施例1と同様の方法で
被覆し、伸線して線径5mmのAl−Mg−Si系合金
被覆鋼線を得た。一方、有機合成樹脂塗料は以下のよう
にして調合した。まず、平均分子量が380でエポキシ
当量が190である2官能型エポキシ樹脂に、体質顔料
としてフュームドシリカを5質量%配合し、トルエンで
50%に希釈した。そこに、ビス−アミノプロピル−テ
トラオキサ−スピロ−ウンデカンを硬化剤として、エポ
キシ樹脂との重量比が2.8〜3.0:1になるように
添加した。
(Example 2) A containing 6% by mass of Mg and Si, respectively, with the balance being Al and unavoidable impurities
The l-Mg-Si alloy was coated in the same manner as in Example 1 and drawn to obtain an Al-Mg-Si alloy coated steel wire having a wire diameter of 5 mm. On the other hand, the organic synthetic resin paint was prepared as follows. First, 5% by mass of fumed silica as an extender was mixed with a bifunctional epoxy resin having an average molecular weight of 380 and an epoxy equivalent of 190, and diluted to 50% with toluene. Thereto, bis-aminopropyl-tetraoxa-spiro-undecane was added as a curing agent so that the weight ratio with the epoxy resin became 2.8 to 3.0: 1.

【0027】この有機合成樹脂塗料の中に前記のAl−
Mg−Si系合金被覆鋼線を浸漬した後、その鋼線を、
ゴム板にくり貫いた直径約5mmの円形の穴を通過させ
て余分の塗料を除去した。このようにして塗装した被覆
鋼線を、230℃の乾燥炉の中任意の時間保定した。塗
膜の厚さは約10μmであった。このようにして作製し
た被覆鋼線から100mm長のサンプルを切り出し、鋼
面まで達し長さが50mmの疵をカッターナイフを用い
て人工的に設けた。また、このサンプルの両端の切断面
はシリコン系シール剤でシールした。このサンプルを用
いて、塩水噴霧試験と40℃の温水浸漬試験を2000
時間おこない、疵部からの塗膜の最大剥離幅を測定し
た。
In the organic synthetic resin paint, the above-mentioned Al-
After immersing the Mg-Si alloy coated steel wire, the steel wire is
Excess paint was removed by passing through a circular hole having a diameter of about 5 mm cut through a rubber plate. The coated steel wire thus coated was kept in a drying oven at 230 ° C. for an arbitrary time. The thickness of the coating was about 10 μm. A sample having a length of 100 mm was cut out from the coated steel wire thus produced, and a flaw having a length of 50 mm reaching the steel surface was artificially provided using a cutter knife. The cut surfaces at both ends of this sample were sealed with a silicone sealant. Using this sample, a salt spray test and a hot water immersion test at 40 ° C. were performed for 2000 times.
After a period of time, the maximum peeling width of the coating film from the flaw was measured.

【0028】その結果、塗膜の硬化度が80%以上の場
合には、塩水噴霧試験で1mm以下であり、温水浸漬試
験ではほとんど剥離は認められず、赤錆も認められなか
った。これに対して、塗膜の硬化度が80%未満では、
塩水噴霧試験でほぼ全面に剥離が発生し、点状の赤錆が
わずかながら確認された。温水浸漬試験でも剥離幅は1
mmを超えていた。これらのことから、Al−Mg−S
i系合金被覆層の上に熱硬化性の有機合成塗膜を設ける
場合には、塗膜の硬化度が80%以上であると、良好な
防食性能を発揮する。
As a result, when the degree of cure of the coating film was 80% or more, it was 1 mm or less in the salt spray test, and almost no peeling was observed and no red rust was observed in the hot water immersion test. On the other hand, if the degree of cure of the coating film is less than 80%,
In the salt spray test, peeling occurred almost all over, and spot-like red rust was slightly observed. Peeling width is 1 even in hot water immersion test
mm. From these, Al-Mg-S
In the case where a thermosetting organic synthetic coating film is provided on the i-based alloy coating layer, good anticorrosion performance is exhibited when the degree of curing of the coating film is 80% or more.

【0029】[0029]

【発明の効果】本発明のAl−Mg−Si系合金被覆鋼
線を用いることによって、耐食性の優れた線材を得るこ
とができる。とくに、塩水環境だけでなく淡水環境でも
優れた耐食性を有し、機械的強度の低下もないことか
ら、吊り橋ケーブルワイヤーのような構造物に用いるこ
とができ、しかも、長期の耐久性が期待できる。
By using the Al--Mg--Si alloy coated steel wire of the present invention, a wire having excellent corrosion resistance can be obtained. In particular, it has excellent corrosion resistance not only in saltwater environments but also in freshwater environments and has no decrease in mechanical strength, so it can be used for structures such as suspension bridge cable wires, and long-term durability can be expected .

フロントページの続き (72)発明者 山口 伸一 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 鈴村 恵太 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 4K044 AA02 AB04 BA01 BA10 BA19 BA21 BB01 BB03 BC02 CA02 CA53 CA62 Continuing from the front page (72) Inventor Shinichi Yamaguchi 1-1 Niwahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Yawata Works (72) Inventor Keita Suzumura 2-6 Otemachi, Chiyoda-ku, Tokyo 3 Nippon Steel Corporation F-term (reference) 4K044 AA02 AB04 BA01 BA10 BA19 BA21 BB01 BB03 BC02 CA02 CA53 CA62

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 Mg:3〜9%、 Si:2〜10%を含有し残部がAlおよび不可避的不
純物からなる被覆層を有するAl−Mg−Si系合金被
覆鋼線において、被覆層がMg2 Si相の板状粒子を含
有することを特徴とする耐食性に優れるAl−Mg−S
i系合金被覆鋼線。
1. An Al—Mg—Si alloy coated steel wire containing 3 to 9% by mass of Mg and 2 to 10% by mass of Si and the balance of Al and unavoidable impurities. Al-Mg-S having excellent corrosion resistance, characterized in that the coating layer contains plate-like particles of Mg 2 Si phase.
i-based alloy coated steel wire.
【請求項2】 Mg2 Si相の板状粒子の最大径の平均
値が20μm以下であることを特徴とする請求項1に記
載の耐食性に優れるAl−Mg−Si系合金被覆鋼線。
2. The Al—Mg—Si alloy coated steel wire having excellent corrosion resistance according to claim 1, wherein the average value of the maximum diameter of the plate-like particles of the Mg 2 Si phase is 20 μm or less.
【請求項3】 Al−Mg−Si系合金被覆層の上に、
焼付型の組成物からなり、焼付後の塗膜の硬化度が80
%以上である有機合成樹脂塗膜層を有することを特徴と
する請求項1または2に記載の耐食性に優れるAl−M
g−Si系合金被覆鋼線。
3. An Al-Mg-Si based alloy coating layer,
It consists of a baking type composition and has a degree of cure of 80 after baking.
% Or more, wherein the coating has an organic synthetic resin coating layer of at least 10% by weight.
g-Si alloy coated steel wire.
【請求項4】 押出加工により、伸線と同時に、鋼線の
表面にAl−Mg−Si系合金被覆層を被覆することを
特徴とする請求項1〜3に記載の耐食性に優れるAl−
Mg−Si系合金被覆鋼線の製造方法。
4. The steel sheet according to claim 1, wherein the surface of the steel wire is coated with an Al—Mg—Si alloy coating layer simultaneously with the drawing by extrusion.
A method for producing a Mg-Si alloy coated steel wire.
【請求項5】 請求項4に記載の製造方法であって、す
べての工程が500℃以下で行われることを特徴とする
請求項1〜3に記載の耐食性に優れるAl−Mg−Si
系合金被覆鋼線の製造方法。
5. The method according to claim 4, wherein all of the steps are performed at 500 ° C. or lower.
Production method of system alloy coated steel wire.
JP30008399A 1999-10-21 1999-10-21 Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR Withdrawn JP2001123279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30008399A JP2001123279A (en) 1999-10-21 1999-10-21 Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30008399A JP2001123279A (en) 1999-10-21 1999-10-21 Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2001123279A true JP2001123279A (en) 2001-05-08

Family

ID=17880509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30008399A Withdrawn JP2001123279A (en) 1999-10-21 1999-10-21 Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2001123279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101778A (en) * 2016-02-29 2017-09-06 세종대학교산학협력단 Al-Mg-Si BASED ALLOY HAVING BLUE COLOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101778A (en) * 2016-02-29 2017-09-06 세종대학교산학협력단 Al-Mg-Si BASED ALLOY HAVING BLUE COLOR
KR101889213B1 (en) * 2016-02-29 2018-08-16 세종대학교산학협력단 Al-Mg-Si BASED ALLOY HAVING BLUE COLOR

Similar Documents

Publication Publication Date Title
JP5661698B2 (en) Hot-dip Zn-Al alloy-plated steel sheet
US6579615B1 (en) Plated steel wire with corrosion resistance and excellent workability, and process for its manufacture
ES2428913T3 (en) Procedure for adjusting the coefficient of friction of a metal workpiece
TW201907025A (en) Molten Zn-Al-Mg-based plated steel sheet with excellent surface appearance and manufacturing method thereof
JP2001107213A (en) HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD
JPWO2019130534A1 (en) Hot-dip Zn-coated steel sheet with excellent corrosion resistance after painting
JP2016166415A (en) MOLTEN Al-Zn-Mg-Si PLATED SHEET STEEL AND PRODUCTION METHOD THEREOF
JP4153631B2 (en) Molten Al-Mg-Si alloy-plated steel wire with excellent corrosion resistance and method for producing the same
JP6740233B2 (en) Process for the production of coated metal plates involving the application of aqueous solutions containing amino acids and related uses for improving tribological properties
KR101568474B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING-RESISTANCE AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE SAME
JP2013060640A (en) Chemical conversion-treated plated steel sheet and method for production thereof
JP2001123279A (en) Al-Mg-Si BASE ALLOY COATED STEEL WIRE EXCELLENT IN CORROSION RESISTANCE AND PRODUCING METHOD THEREFOR
JP4054689B2 (en) Manufacturing method of coated molten Al-Zn alloy plated steel sheet with excellent surface appearance
KR101746955B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT SCRATCH RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
KR102305753B1 (en) Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
KR101613354B1 (en) Coated steel plate and mehtod for manufacturing the same
JP5661699B2 (en) Manufacturing method of resin-coated steel sheet
JP3057372B2 (en) Method for producing Zn-Al alloy-plated steel wire excellent in corrosion resistance and fatigue resistance
JP5101250B2 (en) Resin coated steel sheet
JP4207632B2 (en) Polyolefin coated steel
JPH11200070A (en) Hot dip zn alloy coated steel wire
JP2000248348A (en) High corrosion resistant hot dip galvanized article and plating method therefor
JPH0192355A (en) Zinc alloy-coated steel wire and its production
JP2005344147A (en) Steel material coated with organic resin, and manufacturing method therefor
JP2003277903A (en) Precoated galvanized steel sheet having excellent workability and corrosion resistance of worked portion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109