JP2001122999A - Method for producing thermoplastic resin foam - Google Patents

Method for producing thermoplastic resin foam

Info

Publication number
JP2001122999A
JP2001122999A JP30417099A JP30417099A JP2001122999A JP 2001122999 A JP2001122999 A JP 2001122999A JP 30417099 A JP30417099 A JP 30417099A JP 30417099 A JP30417099 A JP 30417099A JP 2001122999 A JP2001122999 A JP 2001122999A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
mold
gas
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30417099A
Other languages
Japanese (ja)
Inventor
Toshio Inamori
俊夫 稲守
Kouki Deguchi
好希 出口
Kozo Makino
耕三 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP30417099A priority Critical patent/JP2001122999A/en
Publication of JP2001122999A publication Critical patent/JP2001122999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a thermoplastic resin form which enables the foam having a thin non-foaming layer and expanded in a high multiplying factor to be produced even when a resin composition comprises a filler. SOLUTION: The method for producing the thermoplastic resin foam features that a thermoplastic resin composition C impregnated with gas under a high pressure and comprising a thermoplastic resin A and a filler is fed from an extruder 1 into a die assembly 5 and then a thermoplastic resin B is fed from an extruder 4 into the die assembly 5 in such a way as to extrude the composition C and the resin B from the tip of the die assembly to release pressure under a condition where the resin B covers at least a part of the surface of the resin composition C along the die cavity surface in the die assembly 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱可塑性樹脂発泡体
の製造方法に関するものである。
The present invention relates to a method for producing a thermoplastic resin foam.

【0002】[0002]

【従来の技術】従来の熱可塑性樹脂発泡体の製造方法と
して、押出機内に溶融熱可塑性樹脂を供給した後に、二
酸化炭素等の無機ガスやフロンガス等の有機ガスを供給
し、金型先端において圧力を解放することにより発泡さ
せるガス発泡法が広く知られている。例えば特表平6−
506724号公報には、超臨界状態の流体を用いるこ
とによって、気泡径が数μm程度の熱可塑性樹脂発泡体
が得られることが開示されている。
2. Description of the Related Art As a conventional method for producing a thermoplastic resin foam, an inorganic gas such as carbon dioxide or an organic gas such as chlorofluorocarbon is supplied after a molten thermoplastic resin is supplied into an extruder, and a pressure is applied at a mold tip. A gas foaming method for foaming by releasing a gas is widely known. For example,
Japanese Patent Publication No. 506724 discloses that a thermoplastic resin foam having a cell diameter of about several μm can be obtained by using a fluid in a supercritical state.

【0003】しかし、従来のガス発泡法は溶融樹脂中に
ガスを高い圧力で混入し、そのまま金型の先端で大気圧
まで圧力を解放するので、発泡体表面部のガスは、気泡
核の生成後、急激に成長して破泡するか、気泡核生成に
至らず樹脂中を拡散して大気中に放出されてしまう。こ
のために発泡体表面に30〜100μm程度の非発泡層
がどうしても発生した。
However, in the conventional gas foaming method, a gas is mixed into a molten resin at a high pressure, and the pressure is released to the atmospheric pressure at the tip of a mold as it is. Thereafter, it grows rapidly and breaks bubbles, or diffuses in the resin without producing bubble nuclei and is released to the atmosphere. For this reason, a non-foamed layer of about 30 to 100 μm was inevitably generated on the foam surface.

【0004】そこで特開平10−176076号公報で
は、金型から吐出した直後のシート状樹脂を、ガス不透
過性のシートと接合させた上で発泡させる方法が示され
ており、この方法によれば、発泡体表面の非発泡層が1
0μm以下程度にまで薄くできる旨、開示されている。
Japanese Patent Laid-Open Publication No. Hei 10-176076 discloses a method in which a sheet-like resin immediately after being discharged from a mold is bonded to a gas-impermeable sheet and then foamed. If the non-foamed layer on the foam surface is 1
It is disclosed that the thickness can be reduced to about 0 μm or less.

【0005】しかし、本発明者等の研究によれば、前記
特開平10−176076号公報記載の方法を採用して
も、適用する樹脂の種類によっては、例えば溶融時に十
分伸長せず破断に至る樹脂、又はガスの拡散速度が速い
樹脂を用いた場合は、金型から吐出した樹脂がガス不透
過性のシートに接合するまでの間に、樹脂中に含浸して
いたガスが大気中へと放出され、非発泡層を薄くするこ
とができない場合があった。
However, according to the study by the present inventors, even if the method described in JP-A-10-176076 is adopted, depending on the type of the resin to be applied, for example, the resin does not sufficiently elongate at the time of melting and breaks. When a resin or a resin having a high gas diffusion rate is used, the gas impregnated in the resin is released to the atmosphere before the resin discharged from the mold is bonded to the gas-impermeable sheet. In some cases, it was released and the non-foamed layer could not be thinned.

【0006】この状況は、充填材、特に多量の充填材を
配合した場合に顕著となり、充填材を配合しない場合に
比べると、金型から吐出した樹脂組成物から樹脂と充填
材の界面を伝って格段に速い速度で大気中へガスが放出
されるため、樹脂吐出直後にガス不透過性のシートとい
くら接合させても非発泡層を薄くする効果はほとんど認
められず、また、肉厚方向の中央部でも1〜1.5 倍程度
の非常に低い発泡倍率となる場合もあった。
This situation is remarkable when a filler, particularly a large amount of a filler, is blended. Compared with a case where no filler is blended, the resin composition discharged from the mold travels along the interface between the resin and the filler. Gas is released into the atmosphere at a remarkably fast rate, so no matter how much it is bonded to the gas-impermeable sheet immediately after the resin is discharged, the effect of thinning the non-foamed layer is hardly recognized. In some cases, a very low foaming ratio of about 1 to 1.5 times was obtained even at the center of the film.

【0007】すなわち、従来のガス発泡法では、充填材
を含む樹脂を金型から吐出した瞬間に、表層部のガスが
放出するために非発泡層が厚くなり、その結果、発泡体
全体の発泡倍率が低くなり、発泡体の柔軟性が低下し、
質感を損なう場合が多いという問題点があった。
That is, in the conventional gas foaming method, the gas in the surface layer is released at the moment when the resin containing the filler is discharged from the mold, so that the non-foamed layer becomes thicker. Magnification decreases, the flexibility of the foam decreases,
There is a problem that the texture is often impaired.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来の
ガス発泡法の問題点を解決し、金型から吐出した直後に
ガスの放出が起こり易い樹脂、特に、充填材を含む樹脂
組成物であっても、非発泡層の薄い、高発泡倍率の発泡
体の製造が可能な熱可塑性樹脂発泡体の製造方法を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the conventional gas foaming method, and a resin which easily releases gas immediately after being discharged from a mold, particularly a resin composition containing a filler. Even in this case, it is an object of the present invention to provide a method for producing a thermoplastic resin foam capable of producing a foam having a thin non-foamed layer and a high expansion ratio.

【0009】[0009]

【課題を解決するための手段】請求項1記載の本発明に
係る熱可塑性樹脂発泡体の製造方法は、上記目的を達成
するために、ガスが高圧で含浸されてなる熱可塑性樹脂
Aを、押出機から金型に供給し、次いで金型に熱可塑性
樹脂Bを供給し、金型内で熱可塑性樹脂Aの少なくとも
一部の表面を型面に沿って熱可塑性樹脂Bで被覆した状
態で、金型先端から押出して圧力を解放することを特徴
とする。
According to a first aspect of the present invention, there is provided a method for producing a thermoplastic resin foam, comprising the steps of: The extruder supplies the thermoplastic resin B to the mold, and then supplies the thermoplastic resin B to the mold. In the mold, at least a part of the surface of the thermoplastic resin A is covered with the thermoplastic resin B along the mold surface. It is characterized in that the pressure is released by pushing out from the tip of the mold.

【0010】請求項2記載の本発明に係る熱可塑性樹脂
発泡体の製造方法は、熱可塑性樹脂Aの代わりに、熱可
塑性樹脂A100重量部に対し、充填材を50〜100
0重量部含む熱可塑性樹脂組成物Cを用いることを特徴
とする。請求項3記載の本発明に係る熱可塑性樹脂発泡
体の製造方法は、熱可塑性樹脂Bが熱可塑性樹脂Aと同
じであることを特徴とする。以下、本発明を更に詳細に
説明する。
According to a second aspect of the present invention, there is provided a method for producing a thermoplastic resin foam according to the present invention, wherein a filler is added in an amount of 50 to 100 parts by weight per 100 parts by weight of the thermoplastic resin A instead of the thermoplastic resin A.
It is characterized by using a thermoplastic resin composition C containing 0 parts by weight. The method for producing a thermoplastic resin foam according to the present invention described in claim 3 is characterized in that the thermoplastic resin B is the same as the thermoplastic resin A. Hereinafter, the present invention will be described in more detail.

【0011】上記熱可塑性樹脂Aとしては特に限定され
ず、例えば、ポリエチレン、ポリプロピレン、エチレン
−酢酸ビニル共重合体(EVA)等のポリオレフィン樹
脂、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリロニ
トリル−スチレン共重合体(AS樹脂)、アクリロニト
リル−ブタジエン−スチレン共重合体(ABS樹脂)、
ポリスチレン、メタクリル樹脂、ポリアミド、ポリカー
ボネート、ポリアセタール、ポリエステル、アクリル樹
脂、熱可塑性エラストマー、粉末ゴム等が挙げられる。
The thermoplastic resin A is not particularly restricted but includes, for example, polyolefin resins such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer (EVA), polyvinyl chloride, polyvinylidene chloride, acrylonitrile-styrene copolymer. (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin),
Examples include polystyrene, methacrylic resin, polyamide, polycarbonate, polyacetal, polyester, acrylic resin, thermoplastic elastomer, and powdered rubber.

【0012】好ましくは、発泡に適した溶融張力、伸張
粘度特性を有するものであって、例えば、ポリエチレ
ン、ポリプロピレン、EVA等のポリオレフィイン樹脂
の他、ポリスチレン系樹脂、アクリルニトリル−ブタジ
エン−スチレン(ABS)樹脂、塩化ビニル系樹脂など
が挙げられる。
Preferably, it has a melt tension and an extensional viscosity characteristic suitable for foaming. For example, in addition to polyolefin resins such as polyethylene, polypropylene and EVA, polystyrene resins, acrylonitrile-butadiene-styrene ( ABS) resin, vinyl chloride resin and the like.

【0013】これらの樹脂の内でも、EVAやポリエチ
レン、ポリプロピレンは、リサイクル性や物性等の点で
特に好ましい。これらは単独で用いても良いし、組み合
わせて用いても良い。また本発明の目的を損なわない範
囲でこれらを変性、もしくは架橋した樹脂を用いても良
い。
Among these resins, EVA, polyethylene and polypropylene are particularly preferable in view of recyclability and physical properties. These may be used alone or in combination. In addition, a modified or cross-linked resin may be used as long as the object of the present invention is not impaired.

【0014】本発明においては、上記熱可塑性樹脂A
に、必要により、充填剤、滑剤、安定剤、難燃剤、アン
チブロッキング剤、消泡剤、顔料、染料等の添加剤を本
発明の目的を損なわない程度で配合しても構わない。ま
た、場合によっては、可塑剤、溶剤を同様に配合するこ
とも可能であるが、これらは、環境・安全面より極力使
用しないことが望ましい。
In the present invention, the thermoplastic resin A
If necessary, additives such as a filler, a lubricant, a stabilizer, a flame retardant, an antiblocking agent, an antifoaming agent, a pigment, and a dye may be added to such an extent that the object of the present invention is not impaired. In some cases, it is possible to mix a plasticizer and a solvent in the same manner. However, it is desirable that these are not used as much as possible from the viewpoint of environment and safety.

【0015】充填剤は特に限定されないが、例えばシリ
カ、マイカ、タルク、石粉、珪藻土、クレー、グラファ
イト、カーボンブラック、炭酸カルシウム、酸化チタ
ン、アルミナ、アルミニウム粉末、鉄粉、二硫化モリブ
デン、硫酸バリウム、リチウム石けん、木粉、ガラス、
パルプ等の無機もしくは有機の充填剤が挙げられる。こ
れらは単独で用いても良いし、組み合わせて用いても良
い。
The filler is not particularly limited. For example, silica, mica, talc, stone powder, diatomaceous earth, clay, graphite, carbon black, calcium carbonate, titanium oxide, alumina, aluminum powder, iron powder, molybdenum disulfide, barium sulfate, Lithium soap, wood powder, glass,
Inorganic or organic fillers such as pulp. These may be used alone or in combination.

【0016】上記充填剤の量は100重量部の熱可塑性
樹脂Aに対し、50〜1000重量部が好ましい。すな
わち、請求項2記載の如く、熱可塑性樹脂Aの代わり
に、熱可塑性樹脂A100重量部に対し、充填材を50
〜1000重量部含む熱可塑性樹脂組成物Cを用いるの
が好ましい。50重量部未満では、充填剤の特性を発現
し難く、また、通常の押出成形を行うことが可能である
場合が多いため、本発明を適用する必要性が乏しい。一
方、1000重量部を超えて熱可塑性樹脂Aに混合しよ
うとすると、Aの粘度が著しく増大するか、又は、得ら
れる発泡成形体が非常に脆くなり形状を保てない場合が
ある。
The amount of the filler is preferably 50 to 1000 parts by weight based on 100 parts by weight of the thermoplastic resin A. That is, as described in claim 2, instead of the thermoplastic resin A, 50 parts by weight of the filler is added to 100 parts by weight of the thermoplastic resin A.
It is preferable to use the thermoplastic resin composition C containing up to 1000 parts by weight. If the amount is less than 50 parts by weight, it is difficult to exhibit the properties of the filler, and it is often possible to carry out ordinary extrusion, so that it is not necessary to apply the present invention. On the other hand, if it is attempted to mix the thermoplastic resin A in an amount exceeding 1000 parts by weight, the viscosity of A may be remarkably increased, or the obtained foamed molded article may be so brittle that the shape cannot be maintained.

【0017】本発明で用いられるガスは、常温常圧で気
体状態の有機或いは無機物質であって、高温・高圧下で
樹脂への含浸性が良好で、樹脂を劣化させないものであ
れば特に限定されずに使用できるが、火災、爆発等の危
険がなく、環境、作業者の健康に対して安全で回収が容
易なガスが望ましい。常温・常圧で気体状態の為、使用
後、容易に樹脂から除去することが可能である。
The gas used in the present invention is not particularly limited as long as it is an organic or inorganic substance which is in a gaseous state at normal temperature and normal pressure and has good impregnating property at high temperature and high pressure and does not deteriorate the resin. Although it can be used without any risk, it is desirable to use a gas that is safe for the environment and worker's health and has no danger of fire or explosion and is easy to collect. Since it is in a gaseous state at normal temperature and normal pressure, it can be easily removed from the resin after use.

【0018】このようなガスとしては、例えば二酸化炭
素、窒素、アルゴン、ネオン、ヘリウム、酸素等の無機
ガスや、フロンガス、低分子量の炭化水素等の有機ガス
が挙げられ、用いる樹脂に最も含浸するものが好ましく
選択される。
Examples of such a gas include inorganic gases such as carbon dioxide, nitrogen, argon, neon, helium and oxygen, and organic gases such as chlorofluorocarbon and low molecular weight hydrocarbons. Are preferably selected.

【0019】また前記ガスは含浸速度が速い超臨界状態
であることが望ましい。超臨界状態とは、臨界温度以上
であって臨界圧力以上の状態をいう。例えばガスが二酸
化炭素の場合は臨界温度は30.9℃、臨界圧力は7.
4MPa、窒素の場合は臨界温度は−146.9℃、臨
界圧力は3.4MPaである。
The gas is preferably in a supercritical state where the impregnation rate is high. The supercritical state refers to a state at a critical temperature or higher and a critical pressure or higher. For example, when the gas is carbon dioxide, the critical temperature is 30.9 ° C. and the critical pressure is 7.
In the case of 4 MPa and nitrogen, the critical temperature is −146.9 ° C., and the critical pressure is 3.4 MPa.

【0020】上記ガスの含浸時の圧力すなわち押出機に
供給時の圧力は、(ガスの臨界圧力−3MPa )以上で
(ガスの臨界圧力+100MPa)以下が好ましく、
(ガスの臨界圧力+3MPa )以上で(ガスの臨界圧力
+60MPa)以下がより好ましく、熱可塑性樹脂にガ
スを効率的に含浸するため、ガスが超臨界状態であるの
が特に好ましい。
The pressure at the time of impregnation of the gas, that is, the pressure at the time of supply to the extruder, is preferably not less than (critical pressure of gas-3 MPa) and not more than (critical pressure of gas + 100 MPa).
The pressure is more preferably (critical pressure of gas + 3 MPa) or more and (critical pressure of gas + 60 MPa), and it is particularly preferable that the gas is in a supercritical state in order to efficiently impregnate the thermoplastic resin with the gas.

【0021】すなわち、(ガスの臨界圧力−3MPa )
未満では、含浸量が少なく発泡倍率が低くなってしま
い、(ガスの臨界圧力+100MPa)を越えると圧力
が高すぎ、設備が大がかりなものとなってしまい、好ま
しくない。
That is, (critical pressure of gas -3 MPa)
If it is less than this, the impregnation amount will be small and the foaming ratio will be low. If it exceeds (critical pressure of gas + 100 MPa), the pressure will be too high and the equipment will be large, which is not preferable.

【0022】また、熱可塑性樹脂Aにガスを高圧で含浸
させる手段としては、例えば特開平10−230541
号公報に開示されているように、ガスの含浸から押出機
の供給までを閉鎖した高圧の空間中で行える、耐圧ホッ
パを備えた押出機を用いても良い。或いは、熱可塑性樹
脂Aを常圧下で押出機に供給した後、押出機内に超臨界
ガスと樹脂Aを密閉して混練しても良い。
Means for impregnating the thermoplastic resin A with gas at a high pressure is described in, for example, Japanese Patent Application Laid-Open No. H10-230541.
As disclosed in Japanese Patent Application Laid-Open Publication No. H10-107, an extruder equipped with a pressure-resistant hopper that can perform in a closed high-pressure space from gas impregnation to supply of the extruder may be used. Alternatively, after supplying the thermoplastic resin A to the extruder under normal pressure, the supercritical gas and the resin A may be sealed and kneaded in the extruder.

【0023】この内容を具現化する手段としては、タン
デム方式の押出機を用いて、接続部にガスを供給する方
法や、押出機内に2ヶ所の溶融樹脂シールを構成できる
スクリューを用いて、樹脂シール間にガスを供給する方
法が挙げられる。押出機は、1軸又は2軸以上或いはこ
れらを組み合わせた押出機で、2軸の場合、スクリュー
の回転方向がそれぞれの軸で反対のもの、同じものであ
っても良く、軸のタイプはパラレルタイプでもコニカル
タイプでも良い。また押出機を多段に組み合わせたタン
デム方式を用いても良い。
Means for realizing this content include a method of supplying a gas to a connection portion by using a tandem type extruder, and a method of forming a resin by using a screw capable of forming two molten resin seals in the extruder. A method of supplying a gas between the seals may be used. The extruder is an extruder that is one screw or two or more screws or a combination thereof. In the case of two screws, the rotation direction of the screw may be opposite or the same in each shaft, and the shaft type may be parallel. Type or conical type may be used. Further, a tandem system in which extruders are combined in multiple stages may be used.

【0024】熱可塑性樹脂Aへのガスの含浸量は、ガス
の種類によって適宜選択することができるが、樹脂10
0重量部に対し3〜50重量部のガスを含浸させること
が望ましい。ガスの含浸は飽和状態で有ることが最も好
ましいが、必ずしも達成される必要は無い。
The amount of gas impregnated in the thermoplastic resin A can be appropriately selected depending on the type of gas.
It is desirable to impregnate 3 to 50 parts by weight of gas with respect to 0 parts by weight. Most preferably, gas impregnation is in a saturated state, but need not necessarily be achieved.

【0025】賦形のための金型は、「熱可塑性樹脂Aの
少なくとも一部の表面を型面に沿って熱可塑性樹脂Bで
被覆した状態」を現出できるものであれば特に限定はさ
れない。例えば、シート金型としては、Tダイであれ
ば、マルチマニホールドダイ、スタックプレートダイ、
フィードブロックダイが、サーキュラーダイであれば多
層のスパイラルダイが挙げられる。また、シート金型以
外にも、丸、異形などの金型に多層化できる機構を持た
せたものであっても良い。
The mold for shaping is not particularly limited as long as it can exhibit "a state where at least a part of the surface of the thermoplastic resin A is covered with the thermoplastic resin B along the mold surface". . For example, as a sheet die, if it is a T die, a multi-manifold die, a stack plate die,
If the feed block die is a circular die, a multilayer spiral die may be used. In addition to the sheet mold, a mold having a multi-layered mechanism may be used for a mold having a round shape or an irregular shape.

【0026】上記熱可塑性樹脂Bは、特に限定されず、
熱可塑性樹脂Aとして例示されたものが全て使用可能で
あり、樹脂Aと同種であっても異種であってもよいが、
好ましくは、熱可塑性樹脂Aよりも融点もしくは溶融温
度が同程度かもしくは稍高いものが用いられる。
The thermoplastic resin B is not particularly limited.
All those exemplified as the thermoplastic resin A can be used, and may be the same or different from the resin A,
Preferably, a resin whose melting point or melting temperature is about the same as or slightly higher than that of the thermoplastic resin A is used.

【0027】また、金型に熱可塑性樹脂Bを供給する手
段としては、安定的に熱可塑性樹脂Bを供給できれば特
に限定しないが、押出機を用いることが望ましい。ま
た、金型に熱可塑性樹脂Bを供給する時期は、本発明に
よる熱可塑性樹脂発泡体の製造の連続的な実施が開始さ
れ、熱可塑性樹脂A及びBが定常的に供給されている場
合は、熱可塑性樹脂A及びBが同時に金型に供給されて
いると言い得るものである。
The means for supplying the thermoplastic resin B to the mold is not particularly limited as long as the thermoplastic resin B can be supplied stably, but it is desirable to use an extruder. When the thermoplastic resin B is supplied to the mold, continuous production of the thermoplastic resin foam according to the present invention is started, and when the thermoplastic resins A and B are constantly supplied, It can be said that the thermoplastic resins A and B are simultaneously supplied to the mold.

【0028】上記の「熱可塑性樹脂Aの少なくとも一部
の表面を型面に沿って熱可塑性樹脂Bで被覆した状態」
とは、高圧ガスが含浸された発泡素材である熱可塑性樹
脂Aの少なくとも一部において、熱可塑性樹脂Bが金型
内で型面に沿って密着している状態をいう。勿論、シー
ト状の熱可塑性樹脂Aの両面を熱可塑性樹脂Bで被覆し
ている状態でも良い。
The above-mentioned “state in which at least a part of the surface of the thermoplastic resin A is covered with the thermoplastic resin B along the mold surface”.
The term “state” refers to a state where at least a part of the thermoplastic resin A, which is a foamed material impregnated with a high-pressure gas, has the thermoplastic resin B adhered along the mold surface in the mold. Of course, both sides of the sheet-like thermoplastic resin A may be covered with the thermoplastic resin B.

【0029】また金型先端からの吐出物は、熱可塑性樹
脂Aと熱可塑性樹脂Bが一体化した状態で、金型から押
し出し吐出され、その状態が維持されることが必要であ
る。吐出後に自然に分離してしまっては、ガスの大気へ
の放出を抑制することができないからである。また、一
体化した状態で吐出した後、力を作用させることによっ
て分離できないほど強固に密着していてもよいし、分離
できる程度に密着したものであっても良い。
It is necessary that the material discharged from the tip of the mold is extruded and discharged from the mold in a state where the thermoplastic resin A and the thermoplastic resin B are integrated, and that state must be maintained. This is because if the gas is spontaneously separated after the discharge, the release of the gas into the atmosphere cannot be suppressed. Further, after being discharged in an integrated state, they may be tightly adhered so that they cannot be separated by applying a force, or they may be so closely adhered that they can be separated.

【0030】尚、吐出後の分離の可否には、熱可塑性樹
脂Aと熱可塑性樹脂Bの材料としての特性によるところ
が大きいため一概には言えないが、強固に密着した状態
を実現させる為には、金型内の比較的上流部で、高い圧
力と融点もしくは溶融温度以上の高い温度において、熱
可塑性樹脂Aと熱可塑性樹脂Bとを合流させればよい。
また、分離を可能とするには、逆に、金型内の比較的下
流部で、低い圧力と融点もしくは溶融温度近傍の低い温
度において、熱可塑性樹脂Aと熱可塑性樹脂Bとを合流
させればよい。
The possibility of separation after ejection largely depends on the properties of the thermoplastic resin A and the thermoplastic resin B as materials, and cannot be said unconditionally. However, in order to realize a tightly adhered state, The thermoplastic resin A and the thermoplastic resin B may be combined at a high pressure and a high melting point or higher than the melting temperature at a relatively upstream portion in the mold.
On the other hand, in order to enable separation, the thermoplastic resin A and the thermoplastic resin B are merged at a relatively low pressure in the mold and at a low temperature near the melting point or the melting temperature. I just need.

【0031】(作用)本発明においては、従来の技術で
は、金型から吐出した直後にガス抜けが発生する種類の
熱可塑性樹脂Aであっても、金型内の高い圧力で、樹脂
Aの少なくとも一部の表面を型面に沿って熱可塑性樹脂
Bが被覆した状態とし、その状態で金型先端から押出し
て圧力を解放するので、金型吐出直後のガスの放出を遮
断することができ、熱可塑性樹脂Aの未発泡層を薄くす
ることができる。特に、多量の充填材を配合した熱可塑
性樹脂組成物Cの場合は、上記被覆を行わなければ金型
直後のガス抜けが瞬時に発生するが、上述の作用により
同様に未発泡層を薄くすることが可能である。
(Operation) In the present invention, according to the prior art, even if the thermoplastic resin A is of a type in which outgassing occurs immediately after the resin A is discharged from the mold, the resin A can be discharged at a high pressure in the mold. At least a part of the surface is covered with the thermoplastic resin B along the mold surface, and in this state, the pressure is released by extruding from the tip of the mold, so that the release of gas immediately after discharging the mold can be blocked. The thickness of the unfoamed layer of the thermoplastic resin A can be reduced. In particular, in the case of the thermoplastic resin composition C in which a large amount of filler is blended, outgassing occurs immediately after the mold unless the above-mentioned coating is performed, but the unfoamed layer is similarly thinned by the above-described action. It is possible.

【0032】[0032]

【発明の実施の形態】以下、実施例により本発明を具体
的に説明するが、本発明はこれに限定されるものではな
い。 (実施例1)以下の設備を用いて、目的とする略平板状
の熱可塑性樹脂発泡体を得た。 押出機a:熱可塑性樹脂組成物C用・・・φ70単軸押出機 L/D=30 押出機b:熱可塑性樹脂B用・・・φ30単軸押出機 L/D=22 金型 :幅100mmの2種3層Tダイ(フィードブロックダイ)、リップ厚 み1mm、オイル温度調節による温度制御方式採用。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. (Example 1) A target substantially flat thermoplastic resin foam was obtained using the following equipment. Extruder a: For thermoplastic resin composition C: φ70 single screw extruder L / D = 30 Extruder b: For thermoplastic resin B: φ30 single screw extruder L / D = 22 Die: width 100mm two-layer, three-layer T-die (feed block die), lip thickness 1mm, temperature control by oil temperature adjustment.

【0033】 熱可塑性樹脂組成物C:下記原料を事前混合した。 エチレン−酢酸ビニル共重合樹脂(熱可塑性樹脂A、日本ポリケム 社製「ノバテックEVA LV660」を粉砕して使用)100重量部 木粉(三和セルロシン社製、#100メッシュ通過品、平均粒径2 8μm)100重量部 滑剤(花王社製、カオーワックス220)5重量部 熱可塑性樹脂B: エチレン−酢酸ビニル共重合樹脂(熱可塑性樹脂A、日本ポリケ ム社製「ノバテックEVA LV660」を粉砕して使用)を単体で 使用した。[0033] Thermoplastic resin composition C: The following raw materials were premixed. 100 parts by weight of ethylene-vinyl acetate copolymer resin (thermoplastic resin A, pulverized from Novatech EVA LV660 manufactured by Nippon Polychem Co., Ltd.) Wood flour (manufactured by Sanwa Cellulosin, # 100 mesh, average particle size 2) 8 μm) 100 parts by weight Lubricant (Kaohax 220, manufactured by Kao Corporation) 5 parts by weight Thermoplastic resin B: Ethylene-vinyl acetate copolymer resin (thermoplastic resin A, “Novatech EVA LV660” manufactured by Nippon Polychem Co., Ltd.) Used) alone.

【0034】 ガス :二酸化炭素、含浸圧力20MPa、平均含浸量10重量部(押出量 とガス供給量より算出)、押出機aの途中に、設定温度130℃で 提供した。 成形条件:金型温度設定:60〜70℃ 押出量 :熱可塑性樹脂組成物C・・・5kg/時間 熱可塑性樹脂B・・・・・・1kg/時間Gas: carbon dioxide, impregnation pressure of 20 MPa, average impregnation amount of 10 parts by weight (calculated from extrusion amount and gas supply amount), and provided at a set temperature of 130 ° C. in the middle of extruder a. Molding condition: Mold temperature setting: 60 to 70 ° C. Extrusion amount: Thermoplastic resin composition C: 5 kg / hour Thermoplastic resin B: 1 kg / hour

【0035】図1に示す押出機aとしての1のホッパー
6から上記熱可塑性樹脂組成物Cをシリンダー2に供給
し、シリンダー2の中央部に高圧ガス供給装置3から上
記二酸化炭素を供給し、熱可塑性樹脂組成物Cに含浸さ
せ、このガス含浸樹脂組成物Cをシリンダー2から金型
5に供給した。次いで、押出機bとしての4から樹脂B
を多層金型5に導入し、金型5内で、熱可塑性樹脂組成
物Cの少なくとも一部の表面を略平板状の型面に沿って
熱可塑性樹脂Bで被覆した状態で、金型先端から押出し
て圧力を解放することにより、略平板状の熱可塑性樹脂
発泡体を得た。
The thermoplastic resin composition C is supplied to a cylinder 2 from one hopper 6 as an extruder a shown in FIG. 1, and the carbon dioxide is supplied to a central portion of the cylinder 2 from a high-pressure gas supply device 3. The thermoplastic resin composition C was impregnated, and the gas-impregnated resin composition C was supplied from the cylinder 2 to the mold 5. Next, the resin B is used as the extruder 4 for the resin B
Is introduced into the multilayer mold 5, and in the mold 5, at least a part of the surface of the thermoplastic resin composition C is covered with the thermoplastic resin B along the substantially flat mold surface. To release a pressure to obtain a substantially flat thermoplastic resin foam.

【0036】この発泡体の特性を以下の通り評価し、そ
の結果を表1に示した。 ・熱可塑性樹脂組成物C及び熱可塑性樹脂B対応部分の
厚み 押出発泡成形したシートサンプルを液体窒素にて冷凍破
断し、走査型電子顕微鏡(SEM)にて観察した。被覆
層である樹脂Bと発泡層である樹脂組成物Cの厚みをそ
れぞれ10点測定して、平均値を樹脂組成物C及び樹脂
B対応部分の厚みとした。
The properties of this foam were evaluated as follows, and the results are shown in Table 1. -Thickness of portions corresponding to thermoplastic resin composition C and thermoplastic resin B The extruded and foamed sheet sample was frozen and broken with liquid nitrogen and observed with a scanning electron microscope (SEM). The thickness of each of the resin B as the coating layer and the resin composition C as the foamed layer was measured at 10 points, and the average value was taken as the thickness of the portion corresponding to the resin composition C and the resin B.

【0037】・気泡径 樹脂組成物C及び樹脂Bの厚みの測定と共に、発泡層で
ある樹脂組成物Cの代表的な大きさの気泡径を100個
測定して平均値を気泡径とした。
Bubble Diameter Along with the measurement of the thickness of the resin composition C and the resin B, 100 bubble diameters of a typical size of the resin composition C as the foamed layer were measured, and the average value was defined as the cell diameter.

【0038】・未発泡部厚み 気泡径の測定と共に樹脂組成物Cと樹脂Bの界面にある
樹脂組成物Cの未発泡部の厚みを10点測定して平均値
を未発泡部厚みとした。
-Thickness of non-foamed portion In addition to the measurement of the cell diameter, the thickness of the unfoamed portion of the resin composition C at the interface between the resin composition C and the resin B was measured at 10 points, and the average value was taken as the thickness of the unfoamed portion.

【0039】・発泡倍率(全体) 押出発泡成形したシートサンプル(樹脂組成物Cから形
成された発泡層と樹脂Bから形成された被覆層からなる
複層シート)の全体の密度を測定し、あらかじめ測定し
ておいた前記シートサンプル(被覆層を有するが、ガス
を供給せず発泡させていないもの)の密度とから発泡倍
率(全体)を計算した。なお比較例では、樹脂組成物C
のみの発泡したシートサンプルの密度と樹脂組成物Cか
らなるシートの密度から計算した。
The expansion ratio (total) The density of the entire extruded and foamed sheet sample (multilayer sheet composed of a foamed layer formed of the resin composition C and a coating layer formed of the resin B) was measured, and the The expansion ratio (entire) was calculated from the measured density of the sheet sample (having a coating layer but not supplied with gas and not expanded). In the comparative example, the resin composition C
The calculation was made from the density of the foamed sheet sample alone and the density of the sheet made of the resin composition C.

【0040】・発泡倍率(発泡部) 押出発泡成形したシートサンプル(樹脂組成物Cから形
成された発泡層と樹脂Bから形成された被覆層からなる
複層シート)の全体の密度Dと厚みtを測定し、あらか
じめ測定しておいた被覆層である樹脂Bの密度D2 と、
樹脂組成物Cから形成された発泡層の厚みt1 、及び樹
脂Bの片側の厚みt2 より、発泡層を形成する樹脂組成
物Cの密度D1 を算出した。
Expansion ratio (foamed portion) The overall density D and thickness t of the extruded and foamed sheet sample (multilayer sheet composed of a foamed layer formed of the resin composition C and a coating layer formed of the resin B) Is measured, and the density D2 of the resin B, which is the coating layer, measured in advance, and
From the thickness t1 of the foam layer formed from the resin composition C and the thickness t2 of one side of the resin B, the density D1 of the resin composition C forming the foam layer was calculated.

【0041】尚、計算式は以下の通りである。 D=D1 ×t1 /t+D2 ×2 ×t2 /t、ここで t
=t1 +2 ×t2 変形すると、D1 =(t×Dー2 ×t2 ×D2 )/(t
−2 ×t2 ) この後、発泡層である樹脂組成物Cの密度D1 と、あら
かじめ測定しておいた樹脂組成物Cからなるシートの密
度から発泡倍率を計算した。 (実施例2)熱可塑性樹脂組成物C中の充填剤(木粉)
100重量部に換えて充填剤(木粉)を200重量部用
いた以外は、実施例1と同様にして熱可塑性樹脂発泡体
を得て評価した。
The calculation formula is as follows. D = D1 × t1 / t + D2 × 2 × t2 / t, where t
= T1 + 2 × t2 When deformed, D1 = (t × D−2 × t2 × D2) / (t
−2 × t2) Thereafter, the expansion ratio was calculated from the density D1 of the resin composition C as the foamed layer and the density of the sheet composed of the resin composition C measured in advance. Example 2 Filler (Wood Flour) in Thermoplastic Resin Composition C
A thermoplastic resin foam was obtained and evaluated in the same manner as in Example 1 except that 200 parts by weight of a filler (wood flour) was used instead of 100 parts by weight.

【0042】(比較例1)熱可塑性樹脂Bを全く用い
ず、従って実施例1における押出機bを用いない点を除
いて、実施例1と同様にして熱可塑性樹脂発泡体を得て
評価した。 (比較例2)熱可塑性樹脂Bを全く用いず、従って実施
例2における押出機bを用いない点を除いて、実施例2
と同様にして熱可塑性樹脂発泡体を得て評価した。
(Comparative Example 1) A thermoplastic resin foam was obtained and evaluated in the same manner as in Example 1 except that no thermoplastic resin B was used, and thus the extruder b in Example 1 was not used. . Comparative Example 2 Example 2 was repeated except that no thermoplastic resin B was used, and thus no extruder b was used in Example 2.
In the same manner as in the above, a thermoplastic resin foam was obtained and evaluated.

【0043】[0043]

【表1】 [Table 1]

【0044】表1から明らかなように、樹脂Bの被覆層
を形成していない比較例1及び2では、未発泡層が10
0μm 以上発生し、発泡倍率も最大で2.3 倍と低かっ
た。これに対し、被覆層を形成した実施例1及び2で
は、未発泡層は10μm 程度と小さく、発泡倍率(全体)
は最大で3.7倍、発泡倍率(発泡部)は5.7倍と高
かった。このことより、被覆層を形成することにより樹
脂組成物Cに含浸されていたガスが十分に機能し、発泡
倍率が向上したことが判る。
As is clear from Table 1, in Comparative Examples 1 and 2 in which the resin B coating layer was not formed, the unfoamed layer was 10
Occurrence was 0 μm or more, and the expansion ratio was as low as 2.3 times at the maximum. In contrast, in Examples 1 and 2 in which the coating layer was formed, the unfoamed layer was as small as about 10 μm, and the foaming ratio (total)
Was 3.7 times at the maximum and the expansion ratio (foamed portion) was as high as 5.7 times. This indicates that the gas impregnated in the resin composition C by the formation of the coating layer functions sufficiently and the expansion ratio is improved.

【発明の効果】本発明の熱可塑性樹脂発泡体の製造方法
によれば、従来の技術では薄い未発泡層の形成は困難な
熱可塑性樹脂Aであっても、熱可塑性樹脂Aの少なくと
も一部の表面を型面に沿って熱可塑性樹脂Bで被覆した
状態で、金型先端から押出して圧力を解放することによ
り、金型から吐出した直後のガスの放出を防止し、樹脂
Aから形成された発泡層と樹脂Bから形成された部分的
もしくは全面的被覆層を備え、樹脂Aから形成された未
発泡層が薄いかもしくは形成されていない複層シート
が、容易に得られる。その結果、高い発泡倍率を実現で
きて、これにより柔軟で良好な質感をも持った熱可塑性
樹脂発泡体を提供することができる。請求項2記載の如
く、熱可塑性樹脂Aの代わりに、熱可塑性樹脂A100
重量部に対し、充填材を50〜1000重量部含む熱可
塑性樹脂組成物Cを用いる場合は、従来の技術では全く
困難な、未発泡層が薄い熱可塑性樹脂発泡体を製造する
ことができるので、本発明を採用して効果的である。ま
た、請求項3記載の如く、熱可塑性樹脂Bが熱可塑性樹
脂Aと同じである場合は、上記効果をより確実に奏する
ことができる。
According to the method for producing a thermoplastic resin foam of the present invention, even if it is difficult to form a thin unfoamed layer with the prior art, at least a part of the thermoplastic resin A In a state where the surface of the resin is covered with the thermoplastic resin B along the mold surface, the resin is extruded from the mold tip to release the pressure, thereby preventing the release of gas immediately after being discharged from the mold. A multi-layer sheet having a foamed layer and a partial or entire covering layer formed of resin B, and a thin or non-foamed layer formed of resin A is easily obtained. As a result, a high expansion ratio can be realized, and thereby a thermoplastic resin foam having flexibility and good texture can be provided. A thermoplastic resin A100 instead of the thermoplastic resin A as described in claim 2.
When using a thermoplastic resin composition C containing 50 to 1000 parts by weight of a filler with respect to parts by weight, a thermoplastic resin foam having a thin unfoamed layer, which is quite difficult with conventional techniques, can be produced. The present invention is effective. Further, when the thermoplastic resin B is the same as the thermoplastic resin A as described in claim 3, the above effects can be more reliably achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法に適用して好適な製造装置の
一形態を示す概略図である。
FIG. 1 is a schematic view showing one embodiment of a manufacturing apparatus suitable for being applied to a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 押出機a 4 押出機b 5 金型 A 熱可塑性樹脂 B (被覆用)熱可塑性樹脂 C 熱可塑性樹脂組成物 Reference Signs List 1 extruder a 4 extruder b 5 mold A thermoplastic resin B (for coating) thermoplastic resin C thermoplastic resin composition

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 101:12 B29K 101:12 105:04 105:04 B29L 9:00 B29L 9:00 Fターム(参考) 4F074 AA09D AA17 AA22 AA24 AA32 AA33 AA35 AA37 AA57 AA70 AA71 BA32 BA33 BA53 CA22 CA26 CB51 CB52 CC22X CC34X 4F207 AA04 AA10 AA11 AA13 AA15 AA21 AA24 AB02 AB05 AB06 AB07 AB11 AB12 AG01 AG03 AG20 KA01 KA11 KA12 KA14 KB22 KK23 KL65 KL84 4J002 BB031 BB061 BB121 BC031 BC061 BD041 BD101 BG001 BN151 CB001 CF001 CG001 CL001 DA007 DA026 DA036 DA086 DE017 DE136 DE146 DE236 DG046 DJ016 DJ046 DJ056 DL006 EB067 FD016 FD030 FD090 FD130 FD170 FD200 FD327 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B29K 101: 12 B29K 101: 12 105: 04 105: 04 B29L 9:00 B29L 9:00 F term ( Reference) 4F074 AA09D AA17 AA22 AA24 AA32 AA33 AA35 AA37 AA57 AA70 AA71 BA32 BA33 BA53 CA22 CA26 CB51 CB52 CC22X CC34X 4F207 AA04 AA10 AA11 AA13 AA15 AA21 AA24 AB02 AB05 AB06 AB07 AB12 AB12 AB01 AB12 AB05 BB061 BB121 BC031 BC061 BD041 BD101 BG001 BN151 CB001 CF001 CG001 CL001 DA007 DA026 DA036 DA086 DE017 DE136 DE146 DE236 DG046 DJ016 DJ046 DJ056 DL006 EB067 FD016 FD030 FD090 FD130 FD170 FD200 FD327

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガスが高圧で含浸されてなる熱可塑性樹
脂Aを、押出機から金型に供給し、次いで金型に熱可塑
性樹脂Bを供給し、金型内で熱可塑性樹脂Aの少なくと
も一部の表面を型面に沿って熱可塑性樹脂Bで被覆した
状態で、金型先端から押出して圧力を解放することを特
徴とする熱可塑性樹脂発泡体の製造方法。
1. A thermoplastic resin A impregnated with a gas at a high pressure is supplied from an extruder to a mold, and then a thermoplastic resin B is supplied to the mold, and at least the thermoplastic resin A in the mold is supplied to the mold. A method for producing a thermoplastic resin foam, wherein a part of the surface is covered with a thermoplastic resin B along a mold surface and the pressure is released by extruding from a die tip.
【請求項2】 熱可塑性樹脂Aの代わりに、熱可塑性樹
脂A100重量部に対し、充填材を50〜1000重量
部含む熱可塑性樹脂組成物Cを用いることを特徴とする
請求項1に記載の発泡体の製造方法。
2. The thermoplastic resin composition C according to claim 1, wherein a thermoplastic resin composition C containing 50 to 1000 parts by weight of a filler with respect to 100 parts by weight of the thermoplastic resin A is used in place of the thermoplastic resin A. A method for producing a foam.
【請求項3】 熱可塑性樹脂Bが熱可塑性樹脂Aと同じ
であることを特徴とする請求項1又は2に記載の発泡体
の製造方法。
3. The method for producing a foam according to claim 1, wherein the thermoplastic resin B is the same as the thermoplastic resin A.
JP30417099A 1999-10-26 1999-10-26 Method for producing thermoplastic resin foam Pending JP2001122999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30417099A JP2001122999A (en) 1999-10-26 1999-10-26 Method for producing thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30417099A JP2001122999A (en) 1999-10-26 1999-10-26 Method for producing thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JP2001122999A true JP2001122999A (en) 2001-05-08

Family

ID=17929895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30417099A Pending JP2001122999A (en) 1999-10-26 1999-10-26 Method for producing thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JP2001122999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171622A1 (en) * 2013-04-15 2014-10-23 삼성토탈 주식회사 Microporous separation membrane comprising polypropylene resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171622A1 (en) * 2013-04-15 2014-10-23 삼성토탈 주식회사 Microporous separation membrane comprising polypropylene resin

Similar Documents

Publication Publication Date Title
EP1471105B1 (en) Articles that include a polymer foam and method for preparing same
EP1075921A3 (en) Multilayer polyolefin foamed sheet and method and apparatus for producing the same
CA1181209A (en) Process for skin foam
JP2002542082A (en) Uniform small cell foam and continuous production method thereof
JP2003522218A (en) Breathable polymer foam
JP2005519178A (en) Polypropylene foam and foam core structure
JPH0557779A (en) Simultaneous extruding composite foam
US5605717A (en) Process for foaming an adhesive using moisture in a backing
JP2004501796A (en) Form and manufacturing method
KR20020042475A (en) Polyolefin resin foamed sheet and production method thereof
JP2003220550A (en) Abrasive pad and manufacturing method for the same
JP2001122999A (en) Method for producing thermoplastic resin foam
JP2003181904A (en) Production method for multilayer foam sheet
JP4300968B2 (en) Method for producing polypropylene resin laminated foam sheet, laminated foam sheet and molded article thereof
JP2008274031A (en) Antistatic resin composition and thermoplastic resin multilayered sheet
JP2002019056A (en) Polypropylene resin foamed sheet laminate and its manufacturing method as well as container
KR102132345B1 (en) Method for preparing multilayered polymeric sheet capable of degassing comprising foamed polymeric layer
JP2001113585A (en) Method of manufacturing foamed laminate
JP2002361768A (en) Multilayer molding
JP2000263621A (en) Manufacture of thermoplastic resin composition and the thermoplastic resin composition
JP2001098103A (en) Thermoplastic resin foam and its production
JPH10176076A (en) Production of expanded sheet
JP2000052370A (en) Preparation of multi-layer foamed molded body
JP2002166460A (en) Method for manufacturing polyolefinic resin foamed sheet
JP4032990B2 (en) Multi-layer foam sheet manufacturing apparatus and multi-layer foam sheet manufacturing method