JP2001122186A - Control method for vehicle with motor assist function and device therefor - Google Patents

Control method for vehicle with motor assist function and device therefor

Info

Publication number
JP2001122186A
JP2001122186A JP30311299A JP30311299A JP2001122186A JP 2001122186 A JP2001122186 A JP 2001122186A JP 30311299 A JP30311299 A JP 30311299A JP 30311299 A JP30311299 A JP 30311299A JP 2001122186 A JP2001122186 A JP 2001122186A
Authority
JP
Japan
Prior art keywords
motor
electric
assist
current
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30311299A
Other languages
Japanese (ja)
Other versions
JP4364365B2 (en
Inventor
Takayuki Atsumi
孝幸 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP30311299A priority Critical patent/JP4364365B2/en
Publication of JP2001122186A publication Critical patent/JP2001122186A/en
Application granted granted Critical
Publication of JP4364365B2 publication Critical patent/JP4364365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent wasteful consumption of energy during acceleration of a motor or inertial traveling, and to calculate a vehicle speed from a rotation speed of the motor without a sensor for detecting an actual vehicle speed. SOLUTION: This control method for a vehicle with a motor assist function provided with a human power drive system and an electric drive system in parallel generates an electric power drive force TM depending on human power drive force TP on the basis of a prescribed assist rate characteristic changing a ratio of the electric power drive force TM to the human power drive force TP according to the vehicle speed VSP. A motive power source of the electric drive system comprises the electric motor. When the human power drive force TP is below a lower limit value TPL, an assist rotation current iID is supplied to maintain a rotation speed v of the motor corresponding to the vehicle speed VSP at the time. When a prescribed assist stop condition set on the basis of the human drive force TP and the rotation speed v of the motor is satisfied, the assist rotation current iID is shut off.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、予め記憶した補
助率特性に基づいて人力駆動力に対する電気駆動力を制
御する電動補助機能付車両に適用する制御方法および装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method and apparatus applied to a vehicle with an electric assist function for controlling an electric driving force with respect to a human driving force based on an auxiliary ratio characteristic stored in advance.

【0002】[0002]

【従来の技術】踏力(人力駆動力)を検出し、この踏力
の大きさに応じて電動モータの駆動力(電力駆動力)を
制御する電動補助機能付自転車において、踏力に対する
電動モータの出力比(補助率、アシスト比)を、車速の
増加に対して高車速域で漸減させて前記電動モータを駆
動制御する制御方式(高車速域でのアシスト比漸減処理
方式)が公知である(特許第2623419号)。
2. Description of the Related Art An output ratio of an electric motor to a pedaling force in a bicycle with an electric assist function that detects a pedaling force (manual driving force) and controls the driving force (electric power driving force) of the electric motor according to the magnitude of the pedaling force. There is known a control method for gradually controlling an assist ratio (assist ratio) in a high vehicle speed range with respect to an increase in vehicle speed to control the drive of the electric motor (an assist ratio gradual decrease processing method in a high vehicle speed range) (Patent No. 1). 2623419).

【0003】この方式は、高速走行時では、不必要なモ
ータ駆動力を与えることを防ぎ、自転車として過大な車
速とならないようにするために、アシスト比を車速の増
加に対して漸減して制限を与えるものである。すなわ
ち、設定車速未満ではアシスト比を一定とし、この設定
車速以上ではアシスト比を減少させる補助率特性(アシ
スト比特性)を予めメモリしておき、マイクロコンピュ
ータの演算処理サイクルごとにモータ駆動力を演算しな
がら、モータ駆動力を制御するものである。また、この
ようにアシスト比を高車速域で漸減することにより、電
池の無駄な消耗を防ぐ効果もある。
In this system, during high-speed running, an assist ratio is gradually reduced with an increase in vehicle speed in order to prevent application of unnecessary motor driving force and prevent the vehicle speed from becoming excessively high as a bicycle. Is to give. That is, the assist ratio is constant when the vehicle speed is lower than the set vehicle speed, and the assist ratio characteristic (assist ratio characteristic) for decreasing the assist ratio when the vehicle speed is equal to or higher than the set vehicle speed is stored in advance, and the motor driving force is calculated every arithmetic processing cycle of the microcomputer. While controlling the motor driving force. In addition, by gradually reducing the assist ratio in the high vehicle speed range, there is also an effect of preventing unnecessary consumption of the battery.

【0004】この電動補助機能付自転車の駆動系の構造
は、人力駆動系とモータ駆動系の2つの系を並列に設け
たものであり、モータ駆動系には一方向クラッチが介在
され、モータの無通電時あるいは人力走行による車速が
モータの回転速度より速い時にモータが回されるのを防
止する構造となっている。また、モータ駆動系の駆動力
を伝えるときはクラッチが繋がってその駆動力を伝える
構造となっている。
The structure of the drive system of this bicycle with an electric assist function is such that two systems, a human drive system and a motor drive system, are provided in parallel, and a one-way clutch is interposed in the motor drive system. The motor is prevented from turning when no power is supplied or when the vehicle speed due to manual driving is higher than the rotation speed of the motor. When transmitting the driving force of the motor drive system, the clutch is connected to transmit the driving force.

【0005】人力駆動系の駆動力(踏力)は、クランク
ペダルから入力されるためにクランク軸の半回転の周期
をもって変化する。これはクランクペダルが上死点また
は下死点に来るときには踏力がほぼ零になるからであ
る。モータはこの踏力がほぼ零になる度にその回転速度
がほぼ零になるように、すなわちモータ駆動力が零にな
るように制御されるので、モータの駆動力はほぼ零の状
態から、ペダルを踏み込んだときに得られる踏力に応じ
た所望の駆動力との間で周期的に変動することになる。
[0005] The driving force (pedal force) of the human-powered driving system changes with a cycle of a half rotation of the crankshaft because it is input from a crank pedal. This is because the pedaling force becomes almost zero when the crank pedal comes to the top dead center or the bottom dead center. The motor is controlled so that its rotational speed becomes substantially zero each time the pedaling force becomes substantially zero, that is, the motor driving force becomes zero. The driving force periodically fluctuates between a desired driving force corresponding to the pedaling force obtained when the driver steps on the vehicle.

【0006】この時モータは速度がほぼ零の状態から車
速に対応した回転速度に到達するまでの間に一方向クラ
ッチが離れる状態が存在する。この一方向クラッチが切
れた状態の時にはモータの駆動力は走行に寄与しないた
め、モータの加速に要する時間だけモータの駆動力が踏
力に対して遅れることとなる。この遅れによりモータの
加速に要するエネルギーが無駄に消費されることにな
る。また、この遅れによって、モータが実際に回り始め
たときにクラッチが繋がるためそのショックが車体に伝
わり、乗り心地を悪いものにしていた。
At this time, there is a state in which the one-way clutch is disengaged from a state where the speed of the motor is substantially zero until the rotation speed reaches a rotation speed corresponding to the vehicle speed. When the one-way clutch is disengaged, the driving force of the motor does not contribute to traveling, so that the driving force of the motor is delayed from the pedaling force by the time required for acceleration of the motor. Due to this delay, the energy required for accelerating the motor is wasted. In addition, this delay causes the clutch to be engaged when the motor actually starts to rotate, so that the shock is transmitted to the vehicle body, resulting in a poor ride quality.

【0007】この問題を解決するために特許第2634
121号では、車速が零でなくかつ人力駆動力(踏力)
がほぼ零となる時には、その時の車速を発生させるため
に必要な回転速度でモータを駆動制御する方法がとられ
ている。この方法によれば、一方向クラッチが接続開始
する車速に対して、モータの回転速度がほぼ一致するよ
うにモータを駆動するため、モータが回り始めてクラッ
チがつながる時に発生するショックを軽減することがで
き、またモータの加速に要するエネルギーが無駄に消費
されることを防ぐことが可能となる。
To solve this problem, Japanese Patent No. 2634 is used.
In No. 121, the vehicle speed is not zero and the human driving force (pedal force)
When is substantially zero, a method of controlling the drive of the motor at a rotational speed necessary to generate the vehicle speed at that time is adopted. According to this method, the motor is driven so that the rotation speed of the motor substantially matches the vehicle speed at which the one-way clutch starts to be connected. Therefore, it is possible to reduce the shock that occurs when the motor starts rotating and the clutch is connected. It is possible to prevent the energy required for accelerating the motor from being wasted.

【0008】[0008]

【発明が解決しようとする課題】しかしこのような方法
は、連続的に踏力が発生しているときに有効であるが、
例えば車速が零ではないがペダル入力がなく惰性で車両
が走行している場合においても、常にモータに電圧が印
加されるため、電池が無駄に消耗するという不具合があ
った。
However, such a method is effective when the pedaling force is continuously generated.
For example, even when the vehicle speed is not zero but the vehicle is running by inertia without a pedal input, there is a problem that the battery is wasted because the voltage is always applied to the motor.

【0009】またこのような方法を実現させるには、モ
ータ駆動力がほぼ零のときの実車速を検出する必要があ
る。例えば、クランクや車輪の回転速度を検出するため
の回転速度センサーが必要となる。上記のようなコスト
低減が求められている電動補助機能付自転車等の電動車
両においては、モータを制御するために使用されている
回転子の位置検出センサーを利用して、モータが回って
いるときの回転子の回転速度から車速を演算して求める
ことで、車速センサーをなくしてコストダウンを図るこ
とが可能である。
In order to realize such a method, it is necessary to detect the actual vehicle speed when the motor driving force is almost zero. For example, a rotation speed sensor for detecting the rotation speed of a crank or a wheel is required. In an electric vehicle such as a bicycle with an electric assist function for which cost reduction is required as described above, when the motor is rotating by using a rotor position detection sensor used to control the motor. By calculating and calculating the vehicle speed from the rotation speed of the rotor, it is possible to eliminate the vehicle speed sensor and reduce the cost.

【0010】しかしこのようなシステムではモータが止
まると車速を得ることができないし、また、クラッチが
離れた状態では実車速が検出できない。従って、上記特
許で行っていた踏力がなくなってから車速に応じた電流
をモータに流すことができないという不具合があった。
However, in such a system, the vehicle speed cannot be obtained when the motor is stopped, and the actual vehicle speed cannot be detected when the clutch is released. Therefore, there is a problem that a current corresponding to the vehicle speed cannot be supplied to the motor after the pedaling force used in the above patent is lost.

【0011】[0011]

【発明の目的】この発明はこのような事情に鑑みなされ
たものであり、モータ速度がほぼ零の状態から車速に対
応した回転速度に到達するまでの間、一方向クラッチが
離れることによりモータの駆動力は走行に寄与しないた
め、モータの加速に要する時間だけモータの駆動力が踏
力に対して遅れることによりモータの加速に要するエネ
ルギーが無駄に消費されることを防ぐと共に、車速が零
ではないがペダル入力がなく惰性で車両が走行している
場合には、電池が無駄に消耗されることがなく、さらに
実車速を検出するセンサーを持たず、モータの回転速度
から車速を演算するような電動補助機能付車両において
も不都合が生じることがない電動補助機能付車両の制御
方法を提供することを第1の目的とする。またこの方法
の実施に直接使用する電動補助機能付車両の制御装置を
提供することを第2の目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and the one-way clutch is disengaged from the state in which the motor speed reaches a rotation speed corresponding to the vehicle speed from a state in which the motor speed is substantially zero, so that the motor is driven. Since the driving force does not contribute to traveling, the motor driving force is delayed with respect to the pedaling force by the time required for the motor acceleration to prevent the energy required for the motor acceleration from being wasted, and the vehicle speed is not zero. However, when the vehicle is running by inertia without pedal input, the battery is not wasted and there is no sensor to detect the actual vehicle speed, and the vehicle speed is calculated from the motor rotation speed. A first object is to provide a control method for a vehicle with an electric assist function, which does not cause any inconvenience even in a vehicle with an electric assist function. It is a second object of the present invention to provide a control device for a vehicle with an electric assist function which is directly used for carrying out this method.

【0012】[0012]

【発明の構成】この発明によれば第1の目的は、人力駆
動系と電動駆動系とを並列に設け、人力駆動力(TP
に対する電力駆動力(TM)の比を車速(VSP)と共に
変化させる所定の補助率特性に基づいて人力駆動力(T
P)に応じた電力駆動力(TM)を発生させる電動補助機
能付車両の制御方法において、前記電動駆動系の動力源
を電動モータで構成し、前記人力駆動力(TP)がその
下限値(TPL)以下の状態ではその時の車速(VSP)に
対応するモータの回転速度(v)に保つ連れ回り電流
(iID)を供給し、人力駆動力(TP)とモータ回転速
度(v)に基づいて設定した所定のアシスト停止条件を
満たす時に前記連れ回り電流(iID)を遮断することを
特徴とする電動補助機能付車両の制御方法、により達成
される。
According to the present invention, a first object is to provide a human-powered driving system and an electric driving system in parallel to provide a human-powered driving force ( TP ).
Based on a predetermined auxiliary rate characteristic that changes the ratio of the power driving force (T M ) to the vehicle speed (V SP ) with respect to the human driving force (T M ).
In a control method for a vehicle with an electric assist function that generates an electric driving force (T M ) according to P ), a power source of the electric driving system is constituted by an electric motor, and the human driving force (T P ) has a lower limit. In the state below the value (T PL ), a rotating current (i ID ) for maintaining the motor rotation speed (v) corresponding to the vehicle speed (V SP ) at that time is supplied, and the manual driving force (T P ) and the motor rotation speed are supplied. This is achieved by a control method for a vehicle with an electric assist function, wherein the following current (i ID ) is cut off when a predetermined assist stop condition set based on (v) is satisfied.

【0013】ここにモータは直流無整流子モータ(ブラ
シレスDCモータ)とし、このモータの回転位置検出器
で検出したロータの回転位置を示す信号を用いてモータ
回転速度(v)および車速(VSP)を求めることができ
る。この場合車速(VSP)は、モータ回転速度(v)に
電動駆動系の減速比を積算することにより求めることが
できる。
Here, the motor is a direct current non-commutator motor (brushless DC motor), and a motor rotation speed (v) and a vehicle speed (V SP ) are determined by using a signal indicating a rotation position of the rotor detected by a rotation position detector of the motor. ). In this case, the vehicle speed (V SP ) can be obtained by multiplying the motor rotation speed (v) by the reduction ratio of the electric drive system.

【0014】アシスト停止条件は、例えば人力駆動力
(踏力TP)がその下限値(TPL)以下の状態が一定時
間続いたこととすることができる。すなわちこの状態
(TP≦TPL)が一定時間以上続いたらアシストを停止
して連れ回り電流(iID)を遮断し、エネルギーの無駄
な消費を防ぐものである。
The assist stop condition may be, for example, that a state in which the human-powered driving force (pedal force T P ) is equal to or less than its lower limit (T PL ) has continued for a predetermined time. That is, if this state ( TPTPL ) continues for a predetermined time or more, the assist is stopped to cut off the accompanying current (i ID ), thereby preventing wasteful consumption of energy.

【0015】またこの状態(TP≦TPL)の間にモータ
回転速度(v)がその下限値(vL)以下になったこと
をアシスト停止条件とし、連れ回り電流(iID)を遮断
するようにしてもよい。すなわちモータ回転速度(v)
が下限値(vL)まで減速したら一定時間を待たずに連
れ回り電流(iID)を切るものである。このためエネル
ギーの無駄な消費を一層確実に防止できる。
During this state (T P ≦ T PL ), the condition that the motor rotation speed (v) falls below the lower limit value (v L ) is set as an assist stop condition, and the entrainment current (i ID ) is cut off. You may make it. That is, the motor rotation speed (v)
Is decelerated to the lower limit value (v L ) and cuts off the accompanying current (i ID ) without waiting for a certain time. For this reason, wasteful consumption of energy can be more reliably prevented.

【0016】アシスト停止条件下で連れ回り電流
(iID)を遮断した状態からアシスト再開する条件とし
ては、v>vLとなりかつTP≧TPLR(アシスト再開下
限値)となることとすることができる。このアシスト再
開時(再加速アシスト時)には、補助率(ηA)を最初
は補助率特性から求める補助率(η)よりも小さく設定
し、時間経過と共に漸増させて一定時間後に補助率特性
から求める補助率(η)に一致させるように変化させる
のがよい。このようにすることにより、アシスト再開時
のショックを小さくして乗り心地を一層向上させること
ができる。
The condition for restarting the assist from the state where the entrainment current (i ID ) is cut off under the assist stop condition is that v> v L and T PTP LR (assist lower limit value). Can be. When the assist is restarted (at the time of re-acceleration assist), the assist rate (η A ) is initially set to be smaller than the assist rate (η) obtained from the assist rate characteristic, and is gradually increased with time, and after a certain time, the assist rate characteristic is increased. Should be changed so as to match the auxiliary rate (η) obtained from By doing so, the shock at the time of restarting the assist can be reduced, and the riding comfort can be further improved.

【0017】第2の目的は、人力駆動系と電動駆動系と
を並列に設け、人力駆動力(TP)に対する電力駆動力
(TM)の比を車速(VSP)と共に変化させる所定の補
助率特性に基づいて人力駆動力(TP)に応じた電力駆
動力(TM)を発生させる電動補助機能付車両の制御装
置において、電動駆動系の動力源となる電動モータと、
人力駆動力(TP)と前記モータの回転速度(v)とに
基づいて連れ回り電流(iID)を求める連れ回り電流設
定部と、人力駆動力(TP)およびモータの回転速度
(v)に基づいてアシスト停止条件を判別するアシスト
停止条件判別部と、を備え、前記アシスト停止条件判別
部がアシスト停止条件を満たすと判別した時に前記連れ
回り電流設定部は連れ回り電流(iID)を遮断すること
を特徴とする電動補助機能付車両の制御装置、により達
成される。
A second object is to provide a man-powered drive system and an electric drive system in parallel, and to change the ratio of the power drive force (T M ) to the human drive force (T P ) together with the vehicle speed (V SP ). a control apparatus for an electric assist function equipped vehicle to generate human power on the basis of the auxiliary rate characteristic (T P) power driving force corresponding to the (T M), and an electric motor as a power source of the electric drive system,
Human power (T P) and the and the following rotation current setting unit for determining the rotational speed of the motor (v) and turns with based on the current (i ID), human power (T P) and the rotational speed of the motor (v ) and assist stop condition determining unit for determining the assist stop condition based on, wherein the Families around current setting unit brought Mawari current when the assist stop condition determining unit has determined that the assist stop condition is satisfied (i ID) This is achieved by a control device for a vehicle with an electric assist function, wherein

【0018】電動モータはベクトル制御される直流無整
流子モータ(ブラシレスDCモータ)とすることができ
る。この場合には、補助率特性に基づき車速(VSP)と
人力駆動力(踏力TP)に対応するモータの目標トルク
(TM=TP×η)を求める目標トルク演算部と、この目
標トルク(TM)に対応するモータの電流指令値
(i0 *)をベクトル制御により求めるトルク電流演算部
と、i0 *とiIDとの和(i0 *+iID=i*)を求める加
算器と、を備えるものとすることができる。この和i*
に基づいてモータ電流を制御する。例えばPWM(Pusl
e Width Modulation)制御する。
The electric motor is a vector-controlled DC irregular.
It can be a sprue motor (brushless DC motor)
You. In this case, the vehicle speed (VSP)When
Human driving force (pedal force TPTarget torque of motor corresponding to)
(TM= TP× η) and the target torque calculation unit
Target torque (TMMotor current command value corresponding to)
(I0 *) Is calculated by vector control.
And i0 *And iIDAnd the sum (i0 *+ IID= I*)
And a calculator. This sum i*
Control the motor current based on For example, PWM (Pusl
e Width Modulation) control.

【0019】この場合には、電流指令値i*には速度電
流(iSP)を追加してもよい。すなわち車速(VSP)に
対応したモータ回転速度(v)を発生させるのに必要な
モータ電流(速度電流iSP)を求める速度電流演算部
と、この速度電流(iSP)を電流指令値i*に加えて最
終的な電流指令値i*とする加算器とを付加すればよ
い。このようにすれば一層円滑なモータ速度制御が可能
になる。
In this case, a speed current (i SP ) may be added to the current command value i * . That is, a speed current calculation unit for obtaining a motor current (speed current i SP ) required to generate a motor rotation speed (v) corresponding to the vehicle speed (V SP ), and this speed current (i SP ) is used as a current command value i It is sufficient to add an adder that sets the final current command value i * in addition to * . In this way, smoother motor speed control is possible.

【0020】[0020]

【実施態様】図1は本発明を電動補助自転車に適用した
場合の動力伝達系統を示す図、図2はモータの制御装置
の説明図、図3はインバータの構成を説明する図、図4
は制御装置の構成を説明するブロック図、図5は動作の
概念図、図6はメインフローの動作流れ図、図7は本発
明に係るアシスト停止およびアシスト再開時の動作流れ
図である。
FIG. 1 is a diagram showing a power transmission system when the present invention is applied to an electric assisted bicycle, FIG. 2 is a diagram illustrating a motor control device, FIG. 3 is a diagram illustrating a configuration of an inverter, and FIG.
FIG. 5 is a block diagram illustrating the configuration of the control device, FIG. 5 is a conceptual diagram of the operation, FIG. 6 is an operation flow diagram of the main flow, and FIG. 7 is an operation flow diagram at the time of assist stop and assist restart according to the present invention.

【0021】図1において、運転者の踏力は、ペダル
(図示せず)により駆動されるクランク軸1と一方向ク
ラッチ2とを介して合力軸3に伝えられる。また3相直
流無整流子モータ4の出力は、減速部5および一方向ク
ラッチ6を介して合力軸3に伝えられる。合力軸3の回
転はフリーホイールクラッチ7を介して駆動輪である後
輪8に伝えられる。
In FIG. 1, the pedaling force of the driver is transmitted to a resultant shaft 3 via a crankshaft 1 driven by a pedal (not shown) and a one-way clutch 2. The output of the three-phase DC non-commutator motor 4 is transmitted to the resultant shaft 3 via the speed reducer 5 and the one-way clutch 6. The rotation of the resultant shaft 3 is transmitted to a rear wheel 8 as a driving wheel via a freewheel clutch 7.

【0022】人力駆動系はクランク軸1から後輪8に至
る伝動系であり、電動駆動系はモータ4から後輪8に至
る伝動系である。人力駆動系の駆動力すなわち踏力TP
は一方向クラッチ2と合力軸3の間から踏力センサ9に
より検出される。
The manual drive system is a transmission system from the crankshaft 1 to the rear wheel 8, and the electric drive system is a transmission system from the motor 4 to the rear wheel 8. The driving force of human-driven system that is pedaling force T P
Is detected by the pedaling force sensor 9 from between the one-way clutch 2 and the resultant shaft 3.

【0023】10はモータ4の制御装置である。この制
御装置10は踏力センサ9が検出する踏力TPと、車速
センサ11が検出する車速VSPとに基づいてモータ4の
出力トルクTMすなわちモータ電流を制御する。12は
電池などの直流電源である。ここに車速センサ11は、
後輪8や前輪(図示せず)や駆動系の回転部分などの回
転速度を検出するセンサ(図示せず)で形成することが
できる。また車速センサ11は、モータ4の電機子コイ
ルに誘起される逆起電圧により回転速度を検出する回路
で構成したり、後記する推定部17で検出する回転速度
vと減速比とを用いて計算により求めるもので構成する
こともできる。
Reference numeral 10 denotes a control device for the motor 4. The control device 10 and the depression force T P depression force sensor 9 detects, controls the output torque T M That the motor current of the motor 4 based on the vehicle speed V SP of the vehicle speed sensor 11 detects. Reference numeral 12 denotes a DC power supply such as a battery. Here, the vehicle speed sensor 11
It can be formed by a sensor (not shown) for detecting the rotation speed of the rear wheel 8, the front wheel (not shown), the rotating portion of the drive system, and the like. The vehicle speed sensor 11 may be configured by a circuit that detects a rotation speed based on a back electromotive voltage induced in an armature coil of the motor 4 or calculated using a rotation speed v and a reduction ratio detected by an estimation unit 17 described later. It can also be constituted by what is required by:

【0024】この制御装置10は図2,4に示すように
インバータ部13とゲート駆動部14と演算処理部15
とを有する。インバータ部13は図3に示すように公知
の3相ブリッジ回路で構成される。すなわちMOS−F
ETやバイポーラトランジスタなどのスイッチング素子
1〜Q6を2個ずつ直列接続した各組を電源12に並列
接続する一方、各組のスイッチング素子Q1とQ2、Q3
とQ4、Q5とQ6の間をモータ4の各相の電機子コイル
に接続したものである。ゲート駆動部14はスイッチン
グ素子Q1〜Q6を選択的にオン・オフするためのゲート
信号を各スイッチング素子Q1〜Q6のゲートに送る。
As shown in FIGS. 2 and 4, the control unit 10 includes an inverter unit 13, a gate driving unit 14, and an arithmetic processing unit 15.
And The inverter unit 13 is configured by a known three-phase bridge circuit as shown in FIG. That is, MOS-F
Each set in which two switching elements Q 1 to Q 6 such as ET and bipolar transistor are connected in series is connected in parallel to the power supply 12, while each set of switching elements Q 1 and Q 2 , Q 3
And Q 4 , and between Q 5 and Q 6 are connected to the armature coils of each phase of the motor 4. The gate driver 14 sends a gate signal to selectively turn on and off the switching element Q 1 to Q 6 to the gates of the switching elements Q 1 to Q 6.

【0025】演算処理部15は図4に示すように構成さ
れ、マイクロコンピュータ(MicroProcessor Unit ,MP
U)や種々のメモリなどによって構成される。この実施
態様では、モータ4の回転子(ロータ)の回転角θと回
転速度vとに基づいて、電機子(ステータ)に供給する
電機子電流iU、iV、iWの大きさと位相とを示す電流
指令値i*を計算で求める。すなわちベクトル制御を行
うものである。
The arithmetic processing unit 15 is configured as shown in FIG. 4 and includes a microcomputer (MicroProcessor Unit, MP).
U) and various memories. In this embodiment, the magnitude and phase of the armature currents i U , i V , i W supplied to the armature (stator) are determined based on the rotation angle θ and the rotation speed v of the rotor of the motor 4. Is obtained by calculation. That is, vector control is performed.

【0026】回転子の回転角θと速度vは、電機子の3
つの相についてそれぞれ設けた回転位置検出器としての
ホールIC16(16U、16V、16W)が出力する
位置信号P(PU、PV、PW)に基づいて、算出部17
で推定する。すなわちホールIC16は電気角で60°
ごとに設けられ、回転子が60°回転する度にいずれか
の位置信号Pがオン・オフ変化する。
The rotation angle θ and the speed v of the rotor are
One of hall IC16 as the rotational position detector provided respectively for the phases (16U, 16V, 16W) is output position signal P (P U, P V, P W) based on the calculating unit 17
Estimate by That is, the Hall IC 16 has an electrical angle of 60 °.
Each position signal P is turned on / off every time the rotor rotates 60 °.

【0027】算出部17では、この位置信号Pの変化か
ら回転子が電気角60°回ったことを検出し、位置信号
Pが変化せずに一定に保たれる時間間隔から回転速度v
を検出する。またこの回転速度vを用いて位置信号Pが
変化しない時間間隔内における回転角θを演算により求
める。この結果回転子の回転中における回転角θを高い
分解能で求めることができる。またこの算出部17は、
電動駆動系の減速比と駆動輪の径とを用いて車両の速度
(車速VSP)を求める。
The calculating section 17 detects from the change in the position signal P that the rotor has turned by an electrical angle of 60 °, and calculates the rotation speed v from the time interval in which the position signal P is kept constant without changing.
Is detected. Further, using this rotation speed v, a rotation angle θ within a time interval in which the position signal P does not change is calculated. As a result, the rotation angle θ during rotation of the rotor can be obtained with high resolution. Also, this calculating unit 17
The speed of the vehicle (vehicle speed V SP ) is determined using the reduction ratio of the electric drive system and the diameter of the drive wheels.

【0028】この算出部17で求めた回転角θと回転速
度vと車速VSPの推定値は、トルク電流演算部18に入
力される。この電流演算部18は目標トルク演算部19
で求めたトルク目標値TMと、回転角θおよび回転速度
vとに基づいて、電流指令値i0 *の大きさと位相とを計
算する(図5参照)。
The estimated values of the rotation angle θ, the rotation speed v, and the vehicle speed V SP obtained by the calculation unit 17 are input to a torque current calculation unit 18. The current calculator 18 is a target torque calculator 19
The magnitude and phase of the current command value i 0 * are calculated based on the torque target value T M obtained in the above, the rotation angle θ, and the rotation speed v (see FIG. 5).

【0029】目標トルク演算部19は、車速VSPと踏力
Pとに基づいて目標とするモータトルクTMを求める。
例えば図4に示すように、設定車速(例えば15km/
h)未満の車速VSPに対しては補助率(アシスト比)η
(=TM/TP)を1.0とし、この設定車速(例えば1
5km/h)以上の高速域では車速VSPの増加に伴って
補助率ηが直線的に漸減する補助率特性に従って、モー
タトルクTMの目標値をTM=TP・ηとして求める。な
おこの補助率ηは他の設定車速(例えば24km/h)
で0になる。
The target torque calculator 19 determines a target motor torque T M based on the vehicle speed V SP and the pedaling force T P.
For example, as shown in FIG. 4, the set vehicle speed (for example, 15 km /
h) Assistance ratio (assist ratio) η for vehicle speed V SP less than
(= T M / T P ) is set to 1.0, and the set vehicle speed (for example, 1
In a high-speed range of 5 km / h or more, the target value of the motor torque T M is obtained as T M = TP · η according to the assist ratio characteristic in which the assist ratio η decreases linearly with the increase of the vehicle speed V SP . Note that this auxiliary rate η is equal to another set vehicle speed (for example, 24 km / h).
And becomes 0.

【0030】このモータ4ではトルクTMは実際の電機
子電流iR(iU、iV、iW)に対応する。電流演算部1
8はこの目標トルク値TMを発生させるために必要とな
る電機子電流iRの大きさと位相とをベクトル計算によ
り求め、電流指令値i0 *として出力する。
In this motor 4, the torque T M corresponds to the actual armature current i R (i U , i V , i W ). Current calculator 1
Numeral 8 finds the magnitude and phase of the armature current i R required to generate the target torque value T M by vector calculation, and outputs it as a current command value i 0 * .

【0031】なおこの電流指令値i0 *は、実際にはU、
V、Wの各相に対して別々に出力される。すなわち電流
演算部18は、メモリ20に記憶した正弦波パターンデ
ータを用いて各相の互いに電気角で120°位相がずれ
た電流指令値i0 *(i0 * U、i0 * V、i0 * W)を出力す
る。各相の電流指令値i0 *は目標トルク値TMの大きさ
によって振幅が変化する正弦波であり、その振幅と位相
は回転角θと回転速度vと回転部の慣性などに基づいて
演算されたものである。
The current command value i 0 * is actually U,
It is output separately for each phase of V and W. That is, the current calculation unit 18 uses the sine wave pattern data stored in the memory 20 to specify the current command values i 0 * (i 0 * U , i 0 * V , i) in which the phases are shifted from each other by 120 ° in electrical angle. 0 * W ) is output. The current command value i 0 * of each phase is a sine wave whose amplitude changes according to the magnitude of the target torque value T M , and its amplitude and phase are calculated based on the rotation angle θ, the rotation speed v, the inertia of the rotating part, and the like. It was done.

【0032】図4において21は速度電流演算部であ
る。この速度電流演算部21は、人力駆動力(TP)が
その下限値(TPL)より大の時に車速VSPに相当するモ
ータ回転速度(v)とするために必要なモータ電流iSP
を計算する(図5参照)。なお人力駆動力(TP)が下
限値(TPL)より大の時はモータ4は回転しているか
ら、車速(VSP)の信号が一定レベル以上ならこの条件
P>TPLを満たすと考えられる。
In FIG. 4, reference numeral 21 denotes a speed current calculation unit. The speed current calculation unit 21 generates a motor current i SP necessary for setting a motor rotation speed (v) corresponding to the vehicle speed V SP when the human driving force (T P ) is larger than the lower limit value (T PL ).
Is calculated (see FIG. 5). When the manual driving force (T P ) is larger than the lower limit (T PL ), the motor 4 is rotating. Therefore, if the signal of the vehicle speed (V SP ) is a certain level or more, this condition T P > T PL is satisfied. it is conceivable that.

【0033】22は連れ回り電流設定部であり、モータ
回転速度(v)と人力駆動力(TP)に基づいて、人力
駆動力(TP)がその下限値(TPL)以下になった時に
(TP≦TPL)、この時の回転速度(v)でモータを駆
動するために必要な電流すなわち連れ回り電流(iID
を計算する。
Reference numeral 22 denotes a follow-up current setting unit, and based on the motor rotation speed (v) and the manual driving force (T P ), the human driving force (T P ) becomes equal to or lower than its lower limit value (T PL ). Sometimes (T P ≦ T PL ), the current required to drive the motor at the rotation speed (v) at this time, that is, the follow-up current (i ID )
Is calculated.

【0034】この連れ回り電流(iID)は加算器23で
電流指令値(i0 *)に加算される。この加算値(i0 *
ID)には、さらに加算器24において速度電流
(iSP)が加算されて、最終電流指令値i*(=i0 *
ID+iSP)とされる。図5から解るように、電流指令
値i0 *は踏力(TP)に相当する成分であり、速度電流
(iS P)は車速(VSP)に相当する成分であり、連れ回
り電流(iID)は踏力(TP)が零(厳密には下限値T
PL以下)の時にその時の回転速度(v)(すなわち無負
荷回転速度)にするための成分である。
The follow-up current (i ID ) is added to the current command value (i 0 * ) by the adder 23. This added value (i 0 * +
The speed current (i SP ) is further added to i ID ) in the adder 24, and the final current command value i * (= i 0 * +
i ID + i SP ). As can be seen from FIG. 5, the current command value i 0 * is a component corresponding to the treading force (T P ), the speed current (i S P ) is a component corresponding to the vehicle speed (V SP ), i ID ) is such that the pedaling force (T P ) is zero (strictly speaking, the lower limit T
This is a component for setting the rotation speed (v) (that is, the no-load rotation speed) at the time of ( PL or less).

【0035】図4で25はアシスト停止条件判別部であ
る。このアシスト停止条件判別部25は、人力駆動力
(踏力TP)とモータ回転速度(v)とに基づいてアシ
スト停止条件を満たすか否かを判定し、この条件を満た
す場合に連れ回り電流iIDを遮断する。また速度電流i
SPも遮断してアシストを停止する。一方連れ回り電流i
IDを供給している間に踏力(TP)がアシスト再開下限
値(TPLR)(ただしTPL R>TPL)以上に増加した時に
は、踏力(TP)を増やして走行を再開したものと考え
られるから、アシストを再開する。
In FIG. 4, reference numeral 25 denotes an assist stop condition determining unit.
You. The assist stop condition determining unit 25 is provided with a manual driving force.
(Treading force TP) And motor rotation speed (v)
It is determined whether or not the
Current iIDCut off. Also, the speed current i
SPAlso shuts off and stops assisting. On the other hand, the following current i
IDPedaling force (TP) Is the lower limit of assist restart
Value (TPLR) (TPL R> TPL)
Is the pedaling force (TP) Was increased and driving was resumed.
Assistance is resumed.

【0036】このアシストの再開(再加速アシスト開
始)時には、例えば特開平9−267791号に示され
た方法を使うことができる。すなわち目標トルク演算部
19で補助率(ηA)を補助率特性から求めた正規の補
助率(η)よりも小さく設定し、時間経過と共にこの補
助率(ηA)を漸増させて一定時間後に正規の補助率
(η)に一致させるように制御する。このようにすれば
走行中にアシストを再開するときにモータ回転速度が上
昇して一方向クラッチが繋がる際のショックを弱め、乗
り心地を向上させることができる。
When this assist is restarted (re-acceleration assist is started), for example, a method disclosed in Japanese Patent Application Laid-Open No. 9-267791 can be used. That auxiliary rate target torque calculating section 19 (η A) was smaller than the auxiliary rate of normal as determined from the auxiliary rate characteristic (eta), the auxiliary constant over time (eta A) a predetermined time after increased gradually to Control is performed so as to match the regular auxiliary rate (η). In this way, the shock when the one-way clutch is engaged is reduced when the assist is resumed during running and the one-way clutch is engaged, so that the riding comfort can be improved.

【0037】加算器23,24で速度電流(iSP)およ
び連れ回り電流(iID)が加算された最終電流指令値i
*は減算器25に入力され、ここで電機子の実際の電流
値iRとの差(i*−iR)が各相ごとに別々に求められ
る。この電流値iRは、電機子のUV相巻線の電流
(iU、iV)をホールCT(Current Transformer、変
流器)(CTU、CTV)などで検出し、W相の電流を計
算で求めることができる。この差(i*−iR)は電機子
電流誤差信号となり、指示電流制御部26に入力され
る。電流制御部26ではインバータ13のゲートをPW
M方式により駆動するゲート駆動信号が作られ、ゲート
駆動部14に送られる。この結果モータ4がPWM制御
されて目標トルク値TMを発生し、このモータ出力TM
踏力TPとによって自転車は走行することができる。
The final current command value i to which the speed current (i SP ) and the accompanying current (i ID ) are added by the adders 23 and 24
* Is input to the subtracter 25, wherein the difference between the actual current value i R of the armature (i * -i R) is determined separately for each phase. This current value i R is obtained by detecting the current (i U , i V ) of the UV phase winding of the armature with a Hall CT (Current Transformer, current transformer) ( C T U , C T V ) or the like, and detecting the W-phase current. Can be obtained by calculation. The difference (i * -i R) becomes armature current error signals are input to the command current control unit 26. The current control unit 26 sets the gate of the inverter 13 to PW
A gate drive signal driven by the M method is generated and sent to the gate drive unit 14. As a result, the motor 4 is subjected to PWM control to generate a target torque value T M , and the bicycle can run by the motor output T M and the pedaling force T P.

【0038】次に図6,7を用いて動作を説明する。ま
ず図6によってメインフロー動作を説明する。演算処理
部15(図2,3)には各センサーの出力が入力される
(図6のステップS100)。すなわち、回転位置検出
器16の位置信号P、踏力(TP)を検出すトルクセン
サ(図示せず)の出力信号(TP)、電池12(図2,
3)のバッテリ電圧検出信号などが入力インターフェー
スを介してデジタル化されて入力される。
Next, the operation will be described with reference to FIGS. First, the main flow operation will be described with reference to FIG. The output of each sensor is input to the arithmetic processing unit 15 (FIGS. 2 and 3) (step S100 in FIG. 6). That is, the position signal P of the rotational position detector 16, the output signal of the pedal force (T P) (not shown) torque sensor to detect a (T P), the battery 12 (FIG. 2,
The battery voltage detection signal and the like in 3) are digitized and input via the input interface.

【0039】演算処理部15はこのバッテリ電圧検出信
号に基づいてバッテリの充電状態を監視し、電池容量の
残量をLEDなどの残量表示手段に表示させる(ステッ
プS102)。演算処理部15は入力情報により種々の
動作状態を判断し、それぞれの状態に対応する動作モー
ドを決定してその処理を行う(ステップS104)。こ
の処理モードは、停止モード、発信モード、補助モー
ド、再発進モードなどである。また演算処理部15は、
各センサーの出力信号から異常の発生を検出すると、電
池保護(例えば過放電防止)などの異常時の所定の処理
を行う(ステップS106)。そして以上の動作を繰り
返す。
The arithmetic processing unit 15 monitors the state of charge of the battery based on the battery voltage detection signal, and displays the remaining amount of the battery capacity on the remaining amount display means such as an LED (step S102). The arithmetic processing unit 15 determines various operation states based on the input information, determines an operation mode corresponding to each state, and performs the processing (step S104). This processing mode includes a stop mode, a transmission mode, an auxiliary mode, a restart mode, and the like. The arithmetic processing unit 15
When the occurrence of an abnormality is detected from the output signal of each sensor, predetermined processing such as battery protection (for example, overdischarge prevention) is performed (step S106). Then, the above operation is repeated.

【0040】アシスト停止およびアシスト再開の動作は
図7に従って行われる。まず踏力(TP)がその下限値
(TPL)と比較され(ステップS150)、TP≦TPL
の時には連れ回り制御を行う(ステップS152)。す
なわち。連れ回り電流設定部22がその時の回転速度
(v)から連れ回り電流(iID)をモータ4に供給す
る。この状態で一定時間(例えば0.8秒)経過すると
(ステップS154)、モータ回転速度(v)が下限値
(vL、例えば150rpm)以下か否か判断される
(ステップS156)。下限値以下(v≦vL)なら停
車するものと考えられるから直ちにアシストを停止する
(ステップS158)。
The operation of assist stop and assist restart is performed according to FIG. First, the pedaling force (T P ) is compared with its lower limit (T PL ) (step S150), and T P ≦ T PL
In the case of (1), the rotation control is performed (step S152). That is. The entrainment current setting unit 22 supplies the entrainment current (i ID ) to the motor 4 from the rotation speed (v) at that time. When a predetermined time (for example, 0.8 seconds) elapses in this state (step S154), it is determined whether the motor rotation speed (v) is equal to or lower than a lower limit value (v L , for example, 150 rpm) (step S156). If it is equal to or less than the lower limit (v ≦ v L ), it is considered that the vehicle stops, and the assist is immediately stopped (step S158).

【0041】v>vLなら未だ停車せずに走行中である
と考えられるから(ステップS156)、連れ回り電流
(iID)を流し続ける(ステップS160)。そして踏
力(TP)が下限値(TPL)以下で(TP≦TPL、ステッ
プS162)、かつ回転速度(v)が下限値(vL)以
下なら(v≦vL、ステップS164)、停車するもの
と考えられるからアシストを停止する(ステップS15
8)。回転速度(v)が下限値(vL)より大であれば
(ステップS164)。未だ惰性走行中と考えられるの
で、一定時間(例えば4.2秒)この状態を続けた後
(ステップ166)、アシストを停止する(ステップS
158)。
If v> v L , it is considered that the vehicle is still running without stopping (step S156), so that the entrainment current (i ID ) is kept flowing (step S160). The pedaling force (T P) is the lower limit value (T PL) The following (T P ≦ T PL, step S162), and the rotational speed (v) is the lower limit value if (v L) or less (v ≦ v L, step S164) The assist is stopped because the vehicle is considered to stop (step S15).
8). If the rotation speed (v) is higher than the lower limit (v L ) (step S164). Since it is considered that the vehicle is still coasting, this state is continued for a certain time (for example, 4.2 seconds) (step 166), and then the assist is stopped (step S).
158).

【0042】踏力(TP)が下限値(TPL)より大で
(TP>TPL、ステップS162)、かつアシスト再開
下限値(TPLR、ただしTPLR>TPL)より小(TP<T
PLR、ステップS168)なら、再加速するほど踏力
(TP)が大きくないと考えられ、一定時間(例えば
4.2秒)の経過後にアシストを停止する(ステップS
166,S158)。踏力(TP)が再開下限値
(TPLR)より大なら(ステップS168)、惰性走行
中に踏力(TP)が増大し始めたと考えられ、再加速ア
シストを開始する(ステップS170)。
The pedal force (T P) is the lower limit value (T PL) than in large (T P> T PL, step S162), and assist resumed lower limit value (T PLR, where T PLR> T PL) than small (T P <T
In the case of PLR , step S168), it is considered that the pedaling force (T P ) is not large enough to re-accelerate, and the assist is stopped after a certain time (eg, 4.2 seconds) has elapsed (step S168).
166, S158). If pedaling force (T P) is larger than the resumption limit value (T PLR) (step S168), it believed to pedaling force (T P) began to increase during coasting starts reacceleration assist (step S170).

【0043】この再加速アシストは、前記したように補
助率(ηA)を最初に正規の補助率(η)よりも小さく
設定し、時間経過に伴って漸増させて正規の補助率
(η)に一致させるように制御するものである。また前
記ステップS150において踏力(TP)が下限値(T
PL)より大ならば正規のアシストを続ける(ステップS
172)。
In the re-acceleration assist, as described above, the auxiliary rate (η A ) is initially set smaller than the normal auxiliary rate (η), and is gradually increased with time to increase the normal auxiliary rate (η). This is controlled so as to match with. In step S150, the pedaling force (T P ) is reduced to the lower limit value (T P ).
PL ), the regular assist is continued (step S).
172).

【0044】[0044]

【発明の効果】本発明は以上のように、人力駆動力(T
P)がその下限値(TPL)以下の時には連れ回り電流
(iID)を供給するから、再加速時にモータ回転速度の
加速に要する時間が短くなり、モータの加速に要するエ
ネルギーを減らすことができる。また人力駆動力
(TP)とモータ回転速度(v)とに基づいて設定した
所定のアシスト停止条件を満たす時には連れ回り電流
(iID)を遮断するから、惰性走行中に電池の無駄な消
耗を防ぐことができる。
According to the present invention, as described above, the human driving force (T
When P ) is equal to or less than the lower limit value (T PL ), the follow-up current (i ID ) is supplied, so that the time required for accelerating the motor rotation speed at the time of re-acceleration becomes shorter, and the energy required for accelerating the motor can be reduced. it can. Further, when the predetermined assist stop condition set based on the manual driving force (T P ) and the motor rotation speed (v) is satisfied, the accompanying current (i ID ) is cut off. Can be prevented.

【0045】この場合にアシスト停止条件は車速
(VSP)を用いずに設定するから、実車速を検出するた
めのセンサを別途設けることなくモータ回転速度(v)
から車速(VSP)演算するような車両に適用することが
でき、部品点数の増加を招くことがない。請求項7の発
明によれば請求項1の方法の実施に直接使用する装置が
得られる。
In this case, since the assist stop condition is set without using the vehicle speed (V SP ), the motor rotation speed (v) can be set without separately providing a sensor for detecting the actual vehicle speed.
The present invention can be applied to a vehicle that calculates the vehicle speed (V SP ) from the vehicle speed without increasing the number of parts. According to a seventh aspect of the present invention, there is provided an apparatus directly used for performing the method of the first aspect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電動補助自転車に適用した動力伝達系
統を示す図
FIG. 1 is a diagram showing a power transmission system applied to an electric assist bicycle according to the present invention.

【図2】モータの制御装置の説明図FIG. 2 is an explanatory diagram of a motor control device.

【図3】インバータを示す図FIG. 3 shows an inverter.

【図4】制御装置の構成を示す図FIG. 4 is a diagram showing a configuration of a control device.

【図5】動作の概念図FIG. 5 is a conceptual diagram of the operation.

【図6】メインフローの動作流れ図FIG. 6 is an operation flowchart of a main flow.

【図7】アシスト停止・再開処理の動作流れ図FIG. 7 is an operation flowchart of assist stop / restart processing.

【符号の説明】[Explanation of symbols]

1 クランク軸 4 3相直流無整流子モータ 8 後輪(駆動輪) 10 制御装置 13 インバータ部 14 ゲート駆動部 15 演算処理部 18 トルク電流演算部 19 目標トルク演算部 21 車速電流演算部 22 連れ回り電流設定部 23、24 加算器 25 アシスト停止条件判別部 iR(iU、iV、iW) 電機子電流 P(PU、PV、PW) 位置信号 θ 回転角度 VSP 車速 TP 人力駆動力(踏力) TPL 人力駆動力の下限値 TPLR 人力駆動力のアシスト再開下限値 v モータ回転速度 vL モータ回転速度の下限値 TM 電力駆動力(モータ駆動力)DESCRIPTION OF SYMBOLS 1 Crankshaft 4 Three-phase DC non-commutator motor 8 Rear wheel (drive wheel) 10 Control device 13 Inverter unit 14 Gate drive unit 15 Operation processing unit 18 Torque current operation unit 19 Target torque operation unit 21 Vehicle speed current operation unit 22 current setting portions 23, 24 adder 25 assist stop condition determining unit i R (i U, i V , i W) armature current P (P U, P V, P W) position signal θ rotation angle V SP speed T P human power (tread force) T PL human power lower limit T PLR human power assist restarting the lower limit v motor rotation speed v L motor lower limit T M driving power of the rotational speed (motor driving force)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 人力駆動系と電動駆動系とを並列に設
け、人力駆動力(TP)に対する電力駆動力(TM)の比
を車速(VSP)と共に変化させる所定の補助率特性に基
づいて人力駆動力(TP)に応じた電力駆動力(TM)を
発生させる電動補助機能付車両の制御方法において、 前記電動駆動系の動力源を電動モータで構成し、前記人
力駆動力(TP)がその下限値(TPL)以下の状態では
その時の車速(VSP)に対応するモータの回転速度
(v)に保つ連れ回り電流(iID)を供給し、人力駆動
力(TP)とモータ回転速度(v)に基づいて設定した
所定のアシスト停止条件を満たす時に前記連れ回り電流
(iID)を遮断することを特徴とする電動補助機能付車
両の制御方法。
1. A man-powered driving system and an electric-powered driving system are provided in parallel, and a predetermined auxiliary ratio characteristic for changing the ratio of the electric power driving force (T M ) to the human driving force (T P ) together with the vehicle speed (V SP ). in human power (T P) control method of an electric auxiliary function with the vehicle for generating a driving power (T M) in accordance with the basis, and constitutes a power source of the electric drive system with an electric motor, the human power When (T P ) is equal to or less than the lower limit value (T PL ), a rotating current (i ID ) that maintains the rotation speed (v) of the motor corresponding to the vehicle speed (V SP ) at that time is supplied, and the manual driving force ( A method for controlling a vehicle with an electric assist function, wherein the following current (i ID ) is cut off when a predetermined assist stop condition set based on TP ) and a motor rotation speed (v) is satisfied.
【請求項2】 電動モータを直流無整流子モータで構成
し、モータ回転速度(v)および車速(VSP)は、モー
タの回転位置検出器の出力信号に基づいて求める請求項
1の電動補助機能付車両の制御方法。
2. The electric assist system according to claim 1, wherein the electric motor is a DC non-commutator motor, and the motor rotation speed (v) and the vehicle speed (V SP ) are obtained based on an output signal of a motor rotation position detector. Control method for vehicles with functions.
【請求項3】 アシスト停止条件を、人力駆動力
(TP)がその下限値(TP L)以下の状態が一定時間継
続したこととする請求項1または2の電動補助機能付車
両の制御方法。
3. The control of the vehicle with an electric assist function according to claim 1, wherein the assist stop condition is such that a state in which the human-powered driving force (T P ) is equal to or lower than the lower limit value (T P L ) has continued for a predetermined time. Method.
【請求項4】 人力駆動力(TP)がその下限値
(TPL)以下の状態を保つ間に、モータ回転速度(v)
がその下限値(vL)以下になったことをアシスト停止
条件とする請求項3の電動補助機能付車両の制御方法。
4. The motor rotation speed (v) while the human-powered driving force (T P ) keeps the state below its lower limit (T PL ).
4. The control method for a vehicle with an electric assist function according to claim 3, wherein an assist stop condition is set when the vehicle speed is equal to or less than the lower limit value (v L ).
【請求項5】 アシスト停止条件下で連れ回り電流(i
ID)を供給している間にモータの回転速度(v)がその
下限値(vL)を超え、かつ人力駆動力(TP)がアシス
ト再開下限値(TPLR)以上に増加した時に、電力駆動
力(TM)による補助を再開する請求項1〜4のいずれ
かの電動補助機能付車両の制御方法。
5. A follow-up current (i) under an assist stop condition.
When the rotation speed (v) of the motor exceeds the lower limit (v L ) while supplying the ID ) and the manual driving force (T P ) increases beyond the lower limit (T PLR ) of the assist, The control method for a vehicle with an electric assist function according to any one of claims 1 to 4, wherein the assist by the electric power driving force ( TM ) is restarted.
【請求項6】 人力駆動系と電動駆動系とを並列に設
け、人力駆動力(TP)に対する電力駆動力(TM)の比
を車速(VSP)と共に変化させる所定の補助率特性に基
づいて人力駆動力(TP)に応じた電力駆動力(TM)を
発生させる電動補助機能付車両の制御装置において、 電動駆動系の動力源となる電動モータと、人力駆動力
(TP)と前記モータの回転速度(v)とに基づいて連
れ回り電流(iID)を求める連れ回り電流設定部と、人
力駆動力(TP)およびモータの回転速度(v)に基づ
いてアシスト停止条件を判別するアシスト停止条件判別
部と、を備え、 前記アシスト停止条件判別部がアシスト停止条件を満た
すと判別した時に前記連れ回り電流設定部は連れ回り電
流(iID)を遮断することを特徴とする電動補助機能付
車両の制御装置。
6. A predetermined auxiliary ratio characteristic for providing a human drive system and an electric drive system in parallel and changing a ratio of a power drive force (T M ) to a human drive force (T P ) together with a vehicle speed (V SP ). A control device for a vehicle with an electric assist function that generates an electric driving force (T M ) according to a human driving force (T P ) based on an electric motor serving as a power source of an electric driving system and a human driving force (T P) ) And a rotational current (i ID ) based on the rotational speed (v) of the motor, and an assist stop based on the manual driving force (T P ) and the rotational speed (v) of the motor. An assist stop condition determining unit that determines a condition. The assisting current setting unit interrupts the accompanying current (i ID ) when the assist stop condition determining unit determines that the assist stop condition is satisfied. Vehicle with electric assist function Control device.
【請求項7】 請求項6において、電動モータはベクト
ル制御される直流無整流子モータであり、モータ回転速
度(v)および車速(VSP)はこのモータの回転位置検
出器の出力信号に基づいて求められる一方、補助率特性
に基づいて車速(VSP)および人力駆動力(TP)に対
応するモータの目標トルク(TM)を求める目標トルク
演算部と、この目標トルク(TM)に対応したモータの
電流指令値(i0 *)をベクトル制御により求めるトルク
電流演算部と、前記電流指令値(i0 *)と連れ回り電流
(iID)との和を最終電流指令値(i*)とする加算器
と、を備える電動補助機能付車両の制御装置。
7. The motor according to claim 6, wherein the electric motor is a vector-controlled DC non-commutator motor, and the motor rotation speed (v) and the vehicle speed (V SP ) are based on an output signal of a rotation position detector of the motor. while sought Te, the vehicle speed based on the auxiliary rate characteristic (V SP) and human power and the target torque computing section for obtaining the target torque (T M) of the motor corresponding to (T P), the target torque (T M) And a torque current calculator for obtaining a motor current command value (i 0 * ) corresponding to the following by vector control, and a sum of the current command value (i 0 * ) and the follow-up current (i ID ) as a final current command value (i ID ). a control device for a vehicle with an electric assist function, comprising: an adder i * ).
【請求項8】 請求項7において、人力駆動力(TP
がその下限値(TPL)より大の時に車速(VSP)に対応
したモータ回転速度(v)を発生させるの必要な速度電
流(iSP)を求める速度電流演算部と、 電流指令値(i0 *)と連れ回り電流(iID)と前記速度
電流(iSP)の和を求めて最終電流指令値(i*)とす
る加算器と、を備える電動補助機能付車両の制御装置。
8. The human-powered driving force (T P ) according to claim 7,
Is larger than the lower limit value (T PL ), a speed current calculator for obtaining a speed current (i SP ) required to generate a motor rotation speed (v) corresponding to the vehicle speed (V SP ), and a current command value ( A control device for a vehicle with an electric assist function, comprising: an adder that obtains a sum of (i 0 * ), a follow-up current (i ID ), and the speed current (i SP ) to obtain a final current command value (i * ).
JP30311299A 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function Expired - Fee Related JP4364365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30311299A JP4364365B2 (en) 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30311299A JP4364365B2 (en) 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function

Publications (2)

Publication Number Publication Date
JP2001122186A true JP2001122186A (en) 2001-05-08
JP4364365B2 JP4364365B2 (en) 2009-11-18

Family

ID=17917037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30311299A Expired - Fee Related JP4364365B2 (en) 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function

Country Status (1)

Country Link
JP (1) JP4364365B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335405A (en) * 2004-05-24 2005-12-08 Matsushita Electric Ind Co Ltd Vehicle with auxiliary power unit
JP2007191114A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Vehicle with power assist
CN102826160A (en) * 2012-09-05 2012-12-19 苏州科易特自动化科技有限公司 Intelligent power-assisted controller of electric bicycle
CN102897276A (en) * 2011-07-27 2013-01-30 株式会社岛野 Bicycle motor control apparatus and bicycle
CN105539197A (en) * 2015-12-15 2016-05-04 阳光电源股份有限公司 Electric vehicle, electric vehicle motor controller and control method and device of electric vehicle motor controller
WO2018123160A1 (en) * 2016-12-28 2018-07-05 ヤマハ発動機株式会社 Electric assist system and electric assist vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335405A (en) * 2004-05-24 2005-12-08 Matsushita Electric Ind Co Ltd Vehicle with auxiliary power unit
JP4641740B2 (en) * 2004-05-24 2011-03-02 パナソニック株式会社 Vehicle with auxiliary power unit
JP2007191114A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Vehicle with power assist
CN102897276A (en) * 2011-07-27 2013-01-30 株式会社岛野 Bicycle motor control apparatus and bicycle
JP2013028210A (en) * 2011-07-27 2013-02-07 Shimano Inc Bicycle motor control apparatus and bicycle
CN102826160A (en) * 2012-09-05 2012-12-19 苏州科易特自动化科技有限公司 Intelligent power-assisted controller of electric bicycle
CN105539197A (en) * 2015-12-15 2016-05-04 阳光电源股份有限公司 Electric vehicle, electric vehicle motor controller and control method and device of electric vehicle motor controller
WO2018123160A1 (en) * 2016-12-28 2018-07-05 ヤマハ発動機株式会社 Electric assist system and electric assist vehicle
JPWO2018123160A1 (en) * 2016-12-28 2019-10-31 ヤマハ発動機株式会社 Electric auxiliary system and electric auxiliary vehicle
US11014626B2 (en) 2016-12-28 2021-05-25 Yamaha Hatsudoki Kabushiki Kaisha Electric assist system and electric assist vehicle
EP4169824A1 (en) * 2016-12-28 2023-04-26 Yamaha Hatsudoki Kabushiki Kaisha Electric assist system and electric assist vehicle

Also Published As

Publication number Publication date
JP4364365B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP5689849B2 (en) Motor drive control device
EP2631165B1 (en) Power-assisted bicycle
TWI531506B (en) Motor drive control device
JP5636440B2 (en) Electric motorcycle
US9136780B2 (en) Controller for driving a motor and electric power-assisted vehicle
JPH10215504A (en) Device for controlling electric vehicle
US20090120714A1 (en) Electric Power Steering Apparatus
JP7308198B2 (en) MOTOR CONTROL DEVICE AND METHOD, AND POWER-ASSISTED VEHICLE
KR100913501B1 (en) Method for control of hybrid bicycle
JP6054645B2 (en) Electric assist vehicle
JP4924073B2 (en) Motor control device and vehicle driving force control device
JP2008167623A (en) Electric vehicle
JP4364365B2 (en) Method and apparatus for controlling vehicle with electric assist function
JP6475047B2 (en) Bicycle with electric motor
JP2002087369A (en) Assisting force controller for power-assisted bicycle
JP2009219189A (en) Four-wheel drive vehicle
JP2008306825A (en) Traveling control system for electric automobile
JPH0923508A (en) Controller for electric motor car
JP4623864B2 (en) Electric assist bicycle
JP2005132201A (en) Power steering device for hybrid vehicle
JP3798725B2 (en) Electric power steering device
JP3747935B2 (en) Four-wheel drive vehicle
JP4804681B2 (en) Electric vehicle control device
JP2001119803A (en) Method of driving and controlling motor for small electric vehicle and its device
JP2001119957A (en) Power current detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4364365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees