JP2001121939A - Suspension controlling device - Google Patents

Suspension controlling device

Info

Publication number
JP2001121939A
JP2001121939A JP30660799A JP30660799A JP2001121939A JP 2001121939 A JP2001121939 A JP 2001121939A JP 30660799 A JP30660799 A JP 30660799A JP 30660799 A JP30660799 A JP 30660799A JP 2001121939 A JP2001121939 A JP 2001121939A
Authority
JP
Japan
Prior art keywords
valve
hydraulic circuit
gas spring
proportional solenoid
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30660799A
Other languages
Japanese (ja)
Other versions
JP3977968B2 (en
Inventor
Toshikazu Hayashi
利和 林
Toru Goto
通 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30660799A priority Critical patent/JP3977968B2/en
Publication of JP2001121939A publication Critical patent/JP2001121939A/en
Application granted granted Critical
Publication of JP3977968B2 publication Critical patent/JP3977968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a suspension controlling device that makes a gas spring of a semi-active suspension variable to give fully a damping function. SOLUTION: A proportional solenoid valve 5 is intervened in a hydraulic circuit that connects a hydraulic damper 3 with an accumulator 4, and a hydraulic circuit connected with at least one other accumulator 14 is branched from the hydraulic circuit connected between the proportional solenoid valve 5 and the accumulator 4 to intervene an ON-OFF valve 15 for gas spring variation with the hydraulic circuit. A controller 6A that opens fully the proportional solenoid valve 5 and opens the ON-OFF valve 15 for gas spring variation at the time of minimum damping force to control in a way that the proportional solenoid valve 5 is throttled in proportion to a vertical speed of vehicle body and the ON-OFF vale 15 for gas spring variation is closed when a damping force is needed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の脚(転輪)
に対しそれぞれ油圧ダンパ(懸架シリンダ)を介して車
体が支持(懸架)される貨客車両の懸架制御装置に関す
る。
TECHNICAL FIELD The present invention relates to a plurality of legs (wheels).
The present invention relates to a suspension control device for a passenger vehicle in which a vehicle body is supported (suspended) via a hydraulic damper (suspension cylinder).

【0002】[0002]

【従来の技術】近年、上記のような懸架制御装置におい
て、乗り心地と操縦安定性を高いレベルで両立させるシ
ステムとして油圧式アクティブサスペンション等が実用
化されているが、油圧ポンプなど消費エネルギの大きい
パワー源を必要とするという問題点があった。
2. Description of the Related Art In recent years, in such a suspension control device, a hydraulic active suspension or the like has been put into practical use as a system for achieving a high level of ride comfort and steering stability. There is a problem that a power source is required.

【0003】これに対し、車両の振動状態に合わせて油
圧ダンパの減衰力をリアルタイムで制御するセミアクテ
ィブサスペンションは、操縦安定性の面ではアクティブ
サスペンションに劣るものの、乗り心地は近いものが得
られると言われており、油圧ポンプなどのパワー源を不
要とし消費エネルギの面でも優れることから注目を集め
ている。
On the other hand, a semi-active suspension that controls the damping force of a hydraulic damper in real time in accordance with the vibration state of a vehicle is inferior to the active suspension in terms of steering stability, but is expected to provide a ride quality close to that of the active suspension. It is said that it does not require a power source such as a hydraulic pump and is excellent in energy consumption.

【0004】このセミアクティブサスペンションは、例
えば図7に示すような油圧回路で構成される。
This semi-active suspension is constituted by a hydraulic circuit as shown in FIG. 7, for example.

【0005】これによれば、転輪1にベルクランク2を
介して連結した油圧ダンパ(懸架シリンダ)3とアキュ
ムレータ4とを結ぶ油圧回路途中に比例電磁弁5が介装
され、この比例電磁弁5がコントローラ6により、下記
の表1に示す制御方式で開度調整されて減衰力が調整さ
れるようになっている。
According to this, a proportional solenoid valve 5 is interposed in the hydraulic circuit connecting a hydraulic damper (suspension cylinder) 3 connected to the rolling wheel 1 via a bell crank 2 and an accumulator 4. 5 is controlled by the controller 6 in accordance with the control method shown in Table 1 below, so that the damping force is adjusted.

【0006】[0006]

【表1】 上記表1で、 vb-vw : 転輪−車体間上下相対速度センサ出力 vb : 車体上下速度センサ出力 Fd : 減衰力 min : 最小減衰力 C : 係数[Table 1] In Table 1 above, vb-vw: Output of vertical relative speed sensor between wheel and vehicle vb: Output of vehicle vertical speed sensor Fd: Damping force min: Minimum damping force C: Coefficient

【0007】尚、図中7は回路内の油圧過上昇を防止す
るリリーフ弁、8は比例電磁弁5の油圧駆動用の自動切
換弁、9は比例電磁弁5の故障対策用のパッシブ制御
(何も制御しない)要素で、逆止弁と固定オリフィスか
らなる。
In the figure, reference numeral 7 denotes a relief valve for preventing an excessive rise in the hydraulic pressure in the circuit, 8 denotes an automatic switching valve for driving the hydraulic pressure of the proportional solenoid valve 5, and 9 denotes a passive control (see FIG. Control), consisting of a check valve and a fixed orifice.

【0008】前記制御方式を達成するための制御ロジッ
クを、図8に示したセミアクティブ制御のブロック線図
を用いて説明する。
The control logic for achieving the above control method will be described with reference to the block diagram of the semi-active control shown in FIG.

【0009】先ず、車体上下速度センサ(図1の車体上
下速度センサ12参照)からの車体上下速度計測電圧
は、演算部20で車体上下速度計測電圧物理量変換係数
Gdzbを乗じて速度に変換された後、演算部21で、後述
するスイッチ22が懸架が停止している時に不必要にO
N−OFF動作するのを回避するために、バイアス値Cv
(一定値,例えば2cm/sec)が加算されて演算部23と
演算部24とに分岐して入力される。
First, a vehicle vertical speed measurement voltage from a vehicle vertical speed sensor (refer to the vehicle vertical speed sensor 12 in FIG. 1) is calculated by a calculation unit 20 as a vehicle vertical speed measured voltage physical quantity conversion coefficient.
After the speed is converted by multiplying by Gdzb, the operation unit 21 unnecessarily turns off the switch 22 when the suspension is stopped.
To avoid N-OFF operation, the bias value Cv
(A constant value, for example, 2 cm / sec) is added and branched and input to the operation unit 23 and the operation unit 24.

【0010】次に、前記演算部23では絶対値が求めら
れ、この絶対値に演算部25でマイナスの目標減衰力係
数Ksemi を乗じて目標減衰力が決定される(例えば、図
9の比例電磁弁開度と車体上下絶対速度の関係を示すグ
ラフからわかるように両者は逆の関係にあるので減少関
数のかたちで与えられる。逆の場合は増加関数のかたち
で与えられる。弁の特性を踏まえて対応する。)。この
後、演算部26で比例電磁弁電圧信号変換係数Ksp を乗
じて電圧信号に変換された後、演算部27に入力され
る。
Next, an absolute value is obtained by the arithmetic unit 23, and the absolute damping value is multiplied by a negative target damping force coefficient Ksemi by the arithmetic unit 25 to determine a target damping force (for example, the proportional electromagnetic force shown in FIG. 9). As can be seen from the graph showing the relationship between the valve opening degree and the absolute vertical velocity of the vehicle body, the two are inversely related, so they are given in the form of a decreasing function, and in the opposite case, they are given in the form of an increasing function. Corresponding.) Thereafter, the voltage is converted into a voltage signal by multiplying the proportional solenoid valve voltage signal conversion coefficient Ksp by the calculation unit 26, and then input to the calculation unit 27.

【0011】次に、前記演算部27では、前記演算部2
6からの電圧信号と後述するスイッチ22からの電圧信
号にKbias (一定値)が加算され、ここでスイッチ22
からの電圧信号が無い(最小0V )場合は、前記演算部
26からの電圧信号にKbias(一定値)が加算されもの
が比例電磁弁5のリミッタ28にかけられて比例電磁弁
電圧指令として比例電磁弁ドライバ29に入力される。
Next, in the operation unit 27, the operation unit 2
Kbias (constant value) is added to the voltage signal from switch 6 and a voltage signal from switch 22 described later.
When there is no voltage signal from the controller (minimum 0 V), the voltage signal from the operation unit 26 plus Kbias (constant value) is applied to the limiter 28 of the proportional solenoid valve 5 to generate a proportional solenoid valve voltage command as a proportional solenoid valve voltage command. It is input to the valve driver 29.

【0012】一方、転輪−車体間上下相対速度センサ
(図1の転輪−車体間上下相対速度・変位センサ11参
照)からの転輪−車体間上下相対速度計測電圧は、演算
部30で転輪−車体間上下相対速度計測電圧物理量変換
係数Gdw を乗じて速度に変換された後、演算部31で、
後述するスイッチ22が懸架が停止している時に不必要
にON−OFF動作するのを回避するために、バイアス
値Cv(一定値,例えば2cm/sec)が加算されて演算部2
4に入力される。
On the other hand, the measurement unit 30 calculates the voltage between the wheel and the vehicle relative vertical speed from the wheel and vehicle vertical relative speed sensor (see the wheel and vehicle vertical relative speed / displacement sensor 11 in FIG. 1). After being converted into a speed by multiplying the measured relative physical speed conversion coefficient Gdw between the up-down relative speed between the wheel and the vehicle, the arithmetic unit 31 calculates
A bias value Cv (a constant value, for example, 2 cm / sec) is added to the arithmetic unit 2 in order to avoid unnecessary ON-OFF operation when the suspension of a switch 22 described later is stopped.
4 is input.

【0013】前記演算部24では、演算部21と演算部
31との速度信号が乗算され、この信号swが前記スイッ
チ22に入力される。このスイッチ22では、前記信号
swがsw≧0 の時はin1 即ち、最小0V を出力し、sw<0の
時はin2 即ち、最大Kbias (比例電磁弁全開信号)×5
V を出力する。従って、前記演算部27では、スイッチ
22からの電圧信号が最大Kbias ×5V の場合は、これ
に前記演算部26からの電圧信号とKbias (一定値)が
加算されものが前記リミッタ28にかけられて比例電磁
弁電圧指令として比例電磁弁ドライバ29に入力され
る。
The arithmetic unit 24 multiplies the speed signals of the arithmetic unit 21 and the arithmetic unit 31, and the signal sw is input to the switch 22. In this switch 22, the signal
When sw is sw ≧ 0, in1 is output, that is, minimum 0V. When sw <0, in2 is output, ie, maximum Kbias (proportional solenoid valve fully open signal) × 5.
Output V. Therefore, when the voltage signal from the switch 22 is Kbias × 5V at the maximum, the arithmetic unit 27 adds the voltage signal from the arithmetic unit 26 and Kbias (constant value) to the result, and the result is applied to the limiter 28. It is input to the proportional solenoid valve driver 29 as a proportional solenoid valve voltage command.

【0014】このようにして、減衰力最小(min) の時、
比例電磁弁5を全開にして圧油を低圧側(アキュムレー
タ側)に戻す一方、減衰力が必要な場合は、車体上下速
度に比例した減衰力を発生させるため、比例電磁弁5を
車体上下速度に比例して絞るのである。
Thus, when the damping force is at a minimum (min),
When the proportional solenoid valve 5 is fully opened to return the pressure oil to the low-pressure side (accumulator side), if a damping force is required, a damping force proportional to the vehicle body vertical speed is generated. Is squeezed in proportion to.

【0015】これにより、図10のアクティブ制御の各
車速における懸架制御性能(三角波時間応答)のグラフ
と図11の従来型セミアクティブ制御の各車速における
懸架制御性能のグラフからもわかるように、比較的車速
の高い領域では、両者は略同じような乗り心地(制振効
果)が得られる一方で、従来型セミアクティブ制御は油
圧ポンプなどのパワー源を不要とするので、消費エネル
ギが小さくて済む。
As can be seen from the graph of the suspension control performance (triangular wave time response) at each vehicle speed of the active control in FIG. 10 and the graph of the suspension control performance at each vehicle speed of the conventional semi-active control in FIG. In a high vehicle speed range, the two can obtain substantially the same riding comfort (damping effect), while the conventional semi-active control does not require a power source such as a hydraulic pump, so that energy consumption can be reduced. .

【0016】[0016]

【発明が解決しようとする課題】ところが、前述したよ
うな従来のセミアクティブサスペンションにおいては、
アキュムレータ4が一つで、比例電磁弁5が全開となる
減衰力最小(Fd=min)の時のガスバネが一定であるた
め、車速が小さい場合にはガスバネが固めとなり、制振
作用が十分に発揮されないという問題点があった。ま
た、セミアクティブ制御はパッシブ制御的な要素も含ん
でいることから、元来、車速が低い時には、その制振効
果が小さいという問題点もあった(図10と図11のグ
ラフ参照)。
However, in the conventional semi-active suspension as described above,
Since the gas spring at the time of the minimum damping force (Fd = min) at which one accumulator 4 is fully opened and the proportional solenoid valve 5 is fully opened is constant, when the vehicle speed is low, the gas spring becomes firm, and the vibration damping action is sufficient. There was a problem that it was not exhibited. Further, since the semi-active control also includes a passive control element, there is a problem that the damping effect is small when the vehicle speed is low (see the graphs of FIGS. 10 and 11).

【0017】本発明は、上述した実情に鑑みてなされた
もので、セミアクティブサスペンションのガスバネを可
変にして十分な制振作用が発揮される懸架制御装置を提
供すると共に、前記ガスバネを可変にしたセミアクティ
ブ制御にアクティブ制御を組み合わせて消費エネルギの
低減を図りつつ車速が低速から高速まで広い範囲で大き
な制振効果が得られる懸架制御装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a suspension control device capable of exerting a sufficient damping action by changing a gas spring of a semi-active suspension, and changing the gas spring. It is an object of the present invention to provide a suspension control device capable of obtaining a large vibration damping effect in a wide range of vehicle speeds from a low speed to a high speed while reducing energy consumption by combining active control with semi-active control.

【0018】[0018]

【課題を解決するための手段】斯かる目的を達成する本
発明の懸架制御装置は、複数の転輪に対しそれぞれ油圧
ダンパを介して車体が支持される車両の懸架制御装置に
おいて、前記油圧ダンパとアキュムレータとを結ぶ油圧
回路に比例電磁弁を介装すると共に、該比例電磁弁と前
記アキュムレータとの間の油圧回路から少なくとももう
一つのアキュムレータに繋がる油圧回路を分岐して該油
圧回路にガスバネ可変用ON−OFF弁を介装し、且つ
減衰力最小時に前記比例電磁弁を全開にすると共にガス
バネ可変用ON−OFF弁を開き、減衰力が必要な場合
は比例電磁弁を車体上下速度に比例して絞ると共にガス
バネ可変用ON−OFF弁を閉じるように制御するコン
トローラを設けたことを特徴とする。
According to the present invention, there is provided a suspension control device for a vehicle in which a vehicle body is supported via a hydraulic damper for each of a plurality of rolling wheels. And a hydraulic circuit that connects the accumulator with a proportional solenoid valve. A hydraulic circuit that is connected to at least another accumulator is branched from a hydraulic circuit between the proportional solenoid valve and the accumulator, and a gas spring is changed to the hydraulic circuit. When the damping force is minimum, the proportional solenoid valve is fully opened and the gas spring variable ON-OFF valve is opened. When damping force is required, the proportional solenoid valve is proportional to the vehicle vertical speed. And a controller that controls to close the gas spring variable ON-OFF valve.

【0019】また、前記油圧ダンパと比例電磁弁との間
の油圧回路に油圧ポンプからの油圧回路を接続して該油
圧回路にサーボ弁を介装し、前記コントローラは車体の
振動や動揺を検出して最大限のフラット感を得るように
前記サーボ弁を開閉制御することを特徴とする。
Further, a hydraulic circuit from a hydraulic pump is connected to a hydraulic circuit between the hydraulic damper and the proportional solenoid valve, and a servo valve is interposed in the hydraulic circuit. The controller detects vibration or sway of the vehicle body. The servo valve is controlled to open and close so as to obtain a maximum flat feeling.

【0020】また、前記ガスバネ可変用ON−OFF弁
は電磁切換弁の切換により開閉制御されることを特徴と
する。
Further, the gas spring variable ON-OFF valve is controlled to open and close by switching an electromagnetic switching valve.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る懸架制御装置
を実施例により図面を用いて詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a suspension control device according to the present invention.

【0022】[第1実施例] [構成]図1は本発明の第1実施例を示す、懸架制御装
置の概略構成図、図2は同じく油圧回路図、図3は同じ
くガスバネ可変セミアクティブ制御のブロック線図であ
る。尚、図1乃至図3において、図7及び図8と同一部
材には同一符号を付して重複する説明は省略する。
[First Embodiment] [Structure] FIG. 1 is a schematic diagram of a suspension control device according to a first embodiment of the present invention, FIG. 2 is a hydraulic circuit diagram, and FIG. 3 is a gas spring variable semi-active control. FIG. 1 to 3, the same members as those in FIGS. 7 and 8 are denoted by the same reference numerals, and redundant description will be omitted.

【0023】図1に示すように、複数(図中では4個)
の転輪1に対しそれぞれベルクランク2と油圧ダンパ
(懸架シリンダ)3を介して車体10が支持(懸架)さ
れる。そして、車体10と転輪1間にはそれぞれ転輪−
車体間上下相対速度・変位センサ11が配設されると共
に、当該転輪−車体間上下相対速度・変位センサ11に
近接した車体10には車体上下速度センサ12がそれぞ
れ取り付けられる。また、油圧ダンパ3には圧力センサ
(シリンダ圧力センサ)13がそれぞれ取り付けられ
る。これらのセンサ出力は、後述するコントローラ6A
に入力される。
As shown in FIG. 1, a plurality (four in the figure)
The vehicle body 10 is supported (suspended) via the bell crank 2 and the hydraulic damper (suspension cylinder) 3 for each of the rolling wheels 1. And, between the vehicle body 10 and the wheel 1,
A vertical relative speed / displacement sensor 11 between the vehicle bodies is provided, and a vehicle vertical speed sensor 12 is attached to the vehicle body 10 close to the vertical relative speed / displacement sensor 11 between the wheel and the vehicle. Further, a pressure sensor (cylinder pressure sensor) 13 is attached to the hydraulic damper 3. These sensor outputs are supplied to a controller 6A described later.
Is input to

【0024】図2に示すように、比例電磁弁5とアキュ
ムレータ4とを結ぶ油圧回路途中からもう一つのアキュ
ムレータ14に接続する油圧回路が分岐され、この油圧
回路途中に油圧駆動のガスバネ可変用ON−OFF弁
(開閉弁)15が介装される。このON−OFF弁15
は、電磁切換弁16を介してコントローラ6Aにより開
閉制御される。
As shown in FIG. 2, a hydraulic circuit connected to another accumulator 14 branches from a hydraulic circuit connecting the proportional solenoid valve 5 and the accumulator 4 to a hydraulic circuit. An -OFF valve (open / close valve) 15 is interposed. This ON-OFF valve 15
Is controlled by the controller 6A via the electromagnetic switching valve 16.

【0025】前記コントローラ6Aにより、下記の表2
に示す制御方式で、比例電磁弁5が開度調整されると共
にON−OFF弁15が開閉制御されて減衰力が調整さ
れるようになっている。その他の構成は図7と同様であ
る。
The controller 6A operates as shown in Table 2 below.
In the control method shown in (1), the opening of the proportional solenoid valve 5 is adjusted, and the ON / OFF valve 15 is controlled to open and close to adjust the damping force. Other configurations are the same as those in FIG.

【0026】[0026]

【表2】 上記表2で、 vb-vw : 転輪−車体間上下相対速度センサ出力 vb : 車体上下速度センサ出力 Fd : 減衰力 min : 最小減衰力 C : 係数[Table 2] In the above Table 2, vb-vw: Output of the vertical relative speed sensor between the wheel and the vehicle vb: Output of the vehicle vertical speed sensor Fd: Damping force min: Minimum damping force C: Coefficient

【0027】前記制御方式を達成するための制御ロジッ
クを、図3に示したガスバネ可変セミアクティブ制御の
ブロック線図を用いて説明する。
The control logic for achieving the above control method will be described with reference to the block diagram of the gas spring variable semi-active control shown in FIG.

【0028】これによれば、図8で説明したスイッチ2
2からの電圧信号が演算部27に入力されると共にON
−OFF弁15のリミッタ32にかけられ、ここでスイ
ッチ22からの電圧信号が無い(最小0V )場合は、O
N−OFF弁指令としてOFF(閉)信号がON−OF
F弁ドライバ33に入力され、スイッチ22からの電圧
信号が最大Kbias ×5V の場合は、ON(開)信号がO
N−OFF弁ドライバ33に入力されるようになってい
る。その他の構成は図8と同様である。
According to this, the switch 2 described with reference to FIG.
2 is input to the arithmetic unit 27 and turned on.
The signal is applied to the limiter 32 of the -OFF valve 15, and when there is no voltage signal from the switch 22 (minimum 0 V),
OFF (close) signal is ON-OF as N-OFF valve command
When the voltage signal input to the F-valve driver 33 and the voltage signal from the switch 22 is Kbias × 5V at the maximum, the ON (open) signal is
The data is input to the N-OFF valve driver 33. Other configurations are the same as those in FIG.

【0029】[作用・効果]このようにして、本実施例
では、減衰力最小(min) の時、比例電磁弁5を全開にし
て圧油を低圧側(アキュムレータ側)に戻すと共に、O
N−OFF弁15を開きアキュムレータ14を使用可能
にして2個のアキュムレータ4,14の作用下でガスバ
ネを柔らかくする一方、減衰力が必要な場合は、ガスバ
ネを固くするためON−OFF弁15を閉じてアキュム
レータ14を使用不能にすると共に、車体上下速度に比
例した減衰力を発生させるため比例電磁弁5を車体上下
速度に比例して絞るのである。
In this embodiment, when the damping force is minimum (min), the proportional solenoid valve 5 is fully opened to return the pressure oil to the low pressure side (accumulator side) and
The N-OFF valve 15 is opened to enable the use of the accumulator 14 to soften the gas spring under the action of the two accumulators 4 and 14. On the other hand, when a damping force is required, the ON-OFF valve 15 is used to harden the gas spring. When closed, the accumulator 14 becomes unusable, and the proportional solenoid valve 5 is throttled in proportion to the vehicle body vertical speed in order to generate a damping force proportional to the vehicle body vertical speed.

【0030】これにより、油圧ポンプなどのパワー源を
不要とし消費エネルギの面でも優れるセミアクティブサ
スペンションの優位性を生かしつつそのガスバネを可変
にして十分な制振作用が発揮される(図12のガスバネ
可変セミアクティブ制御の各車速における懸架制御性能
(三角波時間応答)のグラフ参照)。
This makes it possible to make the gas spring variable while using the advantage of the semi-active suspension, which does not require a power source such as a hydraulic pump and is also excellent in energy consumption, thereby exhibiting a sufficient vibration damping action (the gas spring shown in FIG. 12). Suspension control performance (triangle wave time response) at various vehicle speeds with variable semi-active control (see graph).

【0031】[第2実施例] [構成]図4は本発明の第2実施例を示す、懸架制御装
置の油圧回路図、図5は同じくアクティブ制御のブロッ
ク線図である。尚、図4において、図2と同一部材には
同一符号を付して重複する説明は省略する。
[Second Embodiment] [Configuration] FIG. 4 is a hydraulic circuit diagram of a suspension control device according to a second embodiment of the present invention, and FIG. 5 is a block diagram of the same active control. In FIG. 4, the same members as those in FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted.

【0032】この実施例は、先の実施例のガスバネ可変
セミアクティブ制御にアクティブ制御を組み合わせて、
所謂ハイブリット制御を行い得るようにしたものであ
る。即ち、図4に示すように、油圧ダンパ3と比例電磁
弁5とを結ぶ油圧回路途中に油圧ポンプからの油圧回路
が接続され、この油圧回路途中にサーボ弁17とその下
流に(油圧ダンパ3側に)位置して油圧駆動のアクティ
ブ用ON−OFF弁(開閉弁)18が介装される。この
ON−OFF弁18は電磁切換弁19を介して、前記サ
ーボ弁17と同様にコントローラ6Bにより開閉制御さ
れる。
This embodiment combines active control with the gas spring variable semi-active control of the previous embodiment,
This is so-called hybrid control. That is, as shown in FIG. 4, a hydraulic circuit from a hydraulic pump is connected in the middle of a hydraulic circuit connecting the hydraulic damper 3 and the proportional solenoid valve 5, and a servo valve 17 and a downstream of the servo valve 17 (hydraulic damper 3) are connected in the middle of this hydraulic circuit. Side), a hydraulically driven active ON-OFF valve (open / close valve) 18 is interposed. The ON / OFF valve 18 is controlled to be opened and closed by a controller 6B via an electromagnetic switching valve 19, similarly to the servo valve 17.

【0033】前記コントローラ6Bにより、前述した表
2に示す制御方式で、比例電磁弁5が開度調整されると
共にON−OFF弁15が開閉制御され、これと同時
に、サーボ弁17が図5に示す制御ロジックで開度調整
される。ON−OFF弁18はセミアクティブ制御の
み、(セミアクティブ制御−アクティブ制御)を切り
換えるためだけの弁である。の制御は、常に開の状態
で使用制御されて減衰力が調整されるようになってい
る。その他の構成は図2と同様である。
The controller 6B controls the opening of the proportional solenoid valve 5 and controls the opening and closing of the ON-OFF valve 15 by the control method shown in Table 2 above. The opening is adjusted by the control logic shown. The ON-OFF valve 18 is a valve for switching only between semi-active control and (semi-active control-active control). Is always controlled to be open and the damping force is adjusted. Other configurations are the same as those in FIG.

【0034】前記サーボ弁17の制御ロジックを、図5
に示したアクティブ制御のブロック線図を用いて説明す
る。
The control logic of the servo valve 17 is shown in FIG.
This will be described with reference to the block diagram of the active control shown in FIG.

【0035】先ず、車体上下速度センサ12(図1参
照)からの車体上下速度計測電圧が、演算部34で車体
上下速度計測電圧物理量変換係数Gdzbを乗じて速度に変
換された後、所定のゲインK1をかけられて演算部39に
入力される。
First, a vehicle body vertical speed measurement voltage from the vehicle body vertical speed sensor 12 (see FIG. 1) is converted into a speed by a calculation unit 34 by multiplying the vehicle body vertical speed measured voltage physical quantity conversion coefficient Gdzb, and then a predetermined gain is obtained. The result is multiplied by K1 and input to the calculation unit 39.

【0036】また、車体上下変位計測電圧が、演算部3
5で車体上下変位計測電圧物理量変換係数Gzb を乗じて
変位に変換された後、所定のゲインK2をかけられて演算
部39に入力される。尚、車体上下変位は車体上下速度
を積分して算出される。
The measurement voltage of the vehicle body vertical displacement is calculated by the arithmetic unit 3.
After being converted into a displacement by multiplying the vehicle body vertical displacement measurement voltage physical quantity conversion coefficient Gzb at 5, the displacement is multiplied by a predetermined gain K2 and input to the calculation unit 39. The vehicle body vertical displacement is calculated by integrating the vehicle body vertical speed.

【0037】また、転輪−車体間上下相対速度・変位セ
ンサ11(図1参照)からの転輪上下速度計測電圧が、
演算部36で転輪上下速度計測電圧物理量変換係数Gdw
を乗じて速度に変換された後、所定のゲインK3をかけら
れて演算部39に入力される。尚、転輪上下速度は車体
上下速度から転輪−車体間上下相対速度を減算して得ら
れる。
Further, the voltage for measuring the vertical speed of the rolling wheel from the vertical relative speed / displacement sensor 11 (see FIG. 1) between the rolling wheel and the vehicle body is expressed by:
The calculation unit 36 calculates the rolling wheel vertical speed measured voltage physical quantity conversion coefficient Gdw
, And is converted into a speed, multiplied by a predetermined gain K3, and input to the calculation unit 39. The rolling wheel vertical speed is obtained by subtracting the rolling wheel-vehicle vertical relative speed from the vehicle body vertical speed.

【0038】また、転輪上下変位計測電圧が、演算部3
7で転輪上下変位計測電圧物理量変換係数Gwを乗じて変
位に変換された後、所定のゲインK4をかけられて演算部
39に入力される。尚、転輪上下変位は車体上下変位か
ら転輪−車体間上下相対変位を減算して得られる。
The measured voltage of the vertical displacement of the wheel is calculated by the arithmetic unit 3.
After being converted into a displacement by multiplying the rolling wheel vertical displacement measurement voltage physical quantity conversion coefficient Gw at 7, the displacement is multiplied by a predetermined gain K4 and input to the calculation unit 39. Note that the rolling wheel vertical displacement is obtained by subtracting the rolling wheel-vehicle vertical relative displacement from the vehicle body vertical displacement.

【0039】また、圧力センサ13(図1参照)からの
シリンダ圧力計測電圧が、演算部38でシリンダ圧力計
測電圧物理量変換係数Gpを乗じて圧力に変換された後、
所定のゲインK5をかけられて演算部39に入力される。
After the cylinder pressure measurement voltage from the pressure sensor 13 (see FIG. 1) is converted into a pressure by the calculation unit 38 by multiplying the cylinder pressure measurement voltage physical quantity conversion coefficient Gp,
The signal is multiplied by a predetermined gain K5 and input to the calculation unit 39.

【0040】そして、前記演算部39では、前記5つの
信号を全て引き算して制御信号を作り、該制御信号が演
算部40でサーボ弁電圧信号変換係数Ksを乗じて電圧信
号に変換された後、サーボ弁ドライバ41に入力され
る。尚、ON−OFF弁18のON−OFF弁ドライバ
42には適宜ON/OFF信号が入力される。
The arithmetic section 39 subtracts all of the five signals to generate a control signal. After the control signal is multiplied by the servo valve voltage signal conversion coefficient Ks in the arithmetic section 40, the control signal is converted into a voltage signal. Are input to the servo valve driver 41. An ON / OFF signal is appropriately input to the ON-OFF valve driver 42 of the ON-OFF valve 18.

【0041】[作用・効果]このようにして、アクティ
ブ制御下には、路面の凹凸や車両の走行状態に応じて発
生する振動や動揺を、車体上下速度センサ12,転輪−
車体間上下相対速度・変位センサ11及び圧力センサ1
3で検出して、最大限のフラット感を得るように、懸架
シリンダ(油圧ダンパ)3を連続的に作動させ、乗り心
地と操縦安定性を高いレベルで両立させる(図10のア
クティブ制御の各車速における懸架制御性能(三角波時
間応答)のグラフ参照)。
[Operation / Effect] As described above, under the active control, the vehicle body vertical speed sensor 12, the wheel-
Vertical relative speed / displacement sensor 11 and pressure sensor 1 between vehicle bodies
3, the suspension cylinder (hydraulic damper) 3 is continuously operated so as to obtain a maximum flat feeling, thereby achieving a high level of both riding comfort and steering stability (each of the active control in FIG. 10). Suspension control performance at vehicle speed (triangle wave time response) graph).

【0042】従って、前記各ゲインK1,K2,K3,K4,K5
を小さくし(これで、油圧ポンプの消費エネルギを小さ
くできる)、常時ON−OFF弁18を開いてアクティ
ブ制御とガスバネ可変セミアクティブ制御を併用すれ
ば、即ちハイブリット制御を行なえば、車速の低い領域
はアクティブ制御で持たせ車速の高い領域はガスバネ可
変セミアクティブ制御に持たせることができ、消費エネ
ルギの低減を図りつつ車速が低速から高速まで広い範囲
で大きな制振効果が得られる。尚、上述したハイブリッ
ト制御を行う場合、ON−OFF弁18は特に設けなく
ても良い。
Therefore, each of the gains K1, K2, K3, K4, K5
(This makes it possible to reduce the energy consumption of the hydraulic pump), and if the active control and the gas spring variable semi-active control are used in combination by opening the ON-OFF valve 18 at all times, that is, if the hybrid control is performed, the region where the vehicle speed is low is reduced. The region with high vehicle speed can be provided by the active control, and the gas spring variable semi-active control can be provided by the gas spring variable semi-active control. A large vibration suppression effect can be obtained in a wide range of vehicle speed from low speed to high speed while reducing energy consumption. When performing the above-described hybrid control, the ON-OFF valve 18 may not be particularly provided.

【0043】また、上記実施例で、前記各ゲインK1,K
2,K3,K4,K5を高くし、車速の低い領域はON−OF
F弁18を開いて(この場合は、比例電磁弁5を固定開
度に制御して減衰力を一定にする必要がある)アクティ
ブ制御を行い、車速の高い領域はON−OFF弁18を
閉じてガスバネ可変セミアクティブ制御に切り換えるこ
ともできる。この場合も、消費エネルギを可及的に低減
しつつ車速が低速から高速まで広い範囲で大きな制振効
果が得られる。また、常時ON−OFF弁18を閉じて
ガスバネ可変セミアクティブ制御だけを行うことができ
ることは言うまでもない。
In the above embodiment, each of the gains K1, K
2, K3, K4, K5 are increased, and the area where the vehicle speed is low is ON-OF.
Active control is performed by opening the F valve 18 (in this case, it is necessary to control the proportional solenoid valve 5 to a fixed opening to keep the damping force constant), and close the ON-OFF valve 18 in a region where the vehicle speed is high. To switch to gas spring variable semi-active control. Also in this case, a large vibration damping effect can be obtained in a wide range of vehicle speeds from a low speed to a high speed while reducing energy consumption as much as possible. Needless to say, only the gas spring variable semi-active control can be performed by always closing the ON-OFF valve 18.

【0044】[第3実施例] [構成]図6は本発明の第3実施例を示す、アクティブ
制御のブロック線図である。
[Third Embodiment] [Configuration] FIG. 6 is a block diagram of active control according to a third embodiment of the present invention.

【0045】これは、第2実施例における図5のアクテ
ィブ制御のブロック線図において、演算部39と演算部
40との間にローパスフィルタ45を挿入し、設定周波
数よりも低い周波数ではアクティブ制御を作用させ、設
定周波数よりも高い周波数では信号を減衰させてアクテ
ィブ制御の制御動作を減衰させるようにした例である。
In the active control block diagram of FIG. 5 in the second embodiment, a low-pass filter 45 is inserted between the operation unit 39 and the operation unit 40, and the active control is performed at a frequency lower than the set frequency. This is an example in which a signal is attenuated at a frequency higher than the set frequency to attenuate the control operation of the active control.

【0046】これによれば、設定した周波数よりも高い
周波数では、ガスバネ可変セミアクティブ制御が効果を
示し、アクティブ制御は減衰するので消費電力は少なく
て済む。尚、ローパスフィルタ45の設定周波数は、車
両と懸架から構成されるシステムの共振周波数付近に設
定する。
According to this, at a frequency higher than the set frequency, the gas spring variable semi-active control has an effect and the active control is attenuated, so that the power consumption is small. The set frequency of the low-pass filter 45 is set near the resonance frequency of the system including the vehicle and the suspension.

【0047】尚、本発明は上記各実施例に限定されず、
本発明の要旨を逸脱しない範囲で、アキュムレータを3
以上設ける等各種変更が可能である。
The present invention is not limited to the above embodiments,
The accumulator is set to 3 without departing from the gist of the present invention.
Various changes such as the above can be made.

【0048】[0048]

【発明の効果】以上詳細に説明したように、本発明の請
求項1に係る懸架制御装置は、複数の転輪に対しそれぞ
れ油圧ダンパを介して車体が支持される車両の懸架制御
装置において、前記油圧ダンパとアキュムレータとを結
ぶ油圧回路に比例電磁弁を介装すると共に、該比例電磁
弁と前記アキュムレータとの間の油圧回路から少なくと
ももう一つのアキュムレータに繋がる油圧回路を分岐し
て該油圧回路にガスバネ可変用ON−OFF弁を介装
し、且つ減衰力最小時に前記比例電磁弁を全開にすると
共にガスバネ可変用ON−OFF弁を開き、減衰力が必
要な場合は比例電磁弁を車体上下速度に比例して絞ると
共にガスバネ可変用ON−OFF弁を閉じるように制御
するコントローラを設けたことを特徴とするので、減衰
力最小時に少なくとも2個のアキュムレータの作用下で
ガスバネを柔らかくする一方、減衰力が必要な場合は1
個のアキュムレータの作用下でガスバネを固くすること
ができ、油圧ポンプなどのパワー源を不要とし消費エネ
ルギの面でも優れるセミアクティブサスペンションの優
位性を生かしつつそのガスバネを可変にして十分な制振
作用が発揮される。
As described above in detail, the suspension control apparatus according to the first aspect of the present invention is a suspension control apparatus for a vehicle in which a vehicle body is supported via a hydraulic damper for each of a plurality of wheels. A hydraulic circuit connecting the hydraulic damper and the accumulator is provided with a proportional solenoid valve, and a hydraulic circuit connected to at least another accumulator is branched from a hydraulic circuit between the proportional solenoid valve and the accumulator to form a hydraulic circuit. When the damping force is at a minimum, the proportional solenoid valve is fully opened and the gas spring variable ON-OFF valve is opened. A controller is provided to control the throttle in proportion to the speed and to close the gas spring variable ON / OFF valve. While soften gas spring under the action of two accumulators, if the damping force is required 1
The gas spring can be hardened under the action of a single accumulator, eliminating the need for a power source such as a hydraulic pump and making use of the advantage of a semi-active suspension, which is also excellent in energy consumption. Is exhibited.

【0049】本発明の請求項2に係る懸架制御装置は、
前記油圧ダンパと比例電磁弁との間の油圧回路に油圧ポ
ンプからの油圧回路を接続して該油圧回路にサーボ弁を
介装し、前記コントローラは車体の振動や動揺を検出し
て最大限のフラット感を得るように前記サーボ弁を開閉
制御することを特徴とするので、コントローラによる各
種制御ゲインを小さくしてアクティブ制御とガスバネ可
変セミアクティブ制御を併用する即ち、ハイブリット制
御を行なうことができ、車速の低い領域はアクティブ制
御で持たせ車速の高い領域はガスバネ可変セミアクティ
ブ制御に持たせて消費エネルギの低減を図りつつ車速が
低速から高速まで広い範囲で大きな制振効果が得られ
る。
The suspension control device according to claim 2 of the present invention
A hydraulic circuit from a hydraulic pump is connected to a hydraulic circuit between the hydraulic damper and the proportional solenoid valve, and a servo valve is interposed in the hydraulic circuit. Since the opening and closing control of the servo valve is obtained so as to obtain a flat feeling, the active control and the gas spring variable semi-active control can be used together by reducing various control gains by the controller, that is, the hybrid control can be performed. A region with a low vehicle speed is provided with active control, and a region with a high vehicle speed is provided with gas spring variable semi-active control, so that a large vibration suppression effect can be obtained in a wide range of vehicle speeds from low to high while reducing energy consumption.

【0050】本発明の請求項3に係る懸架制御装置は、
前記ガスバネ可変用ON−OFF弁は電磁切換弁の切換
により開閉制御されることを特徴とするので、回路圧を
有効に利用して電力消費を抑えられる。
A suspension control device according to a third aspect of the present invention comprises:
Since the gas spring variable ON-OFF valve is controlled to open and close by switching an electromagnetic switching valve, power consumption can be suppressed by effectively using circuit pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す、懸架制御装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of a suspension control device according to a first embodiment of the present invention.

【図2】同じく油圧回路図である。FIG. 2 is a hydraulic circuit diagram.

【図3】同じくガスバネ可変セミアクティブ制御のブロ
ック線図である。
FIG. 3 is a block diagram of a gas spring variable semi-active control.

【図4】本発明の第2実施例を示す、懸架制御装置の油
圧回路図である。
FIG. 4 is a hydraulic circuit diagram of a suspension control device according to a second embodiment of the present invention.

【図5】同じくアクティブ制御のブロック線図である。FIG. 5 is a block diagram of active control.

【図6】本発明の第3実施例を示す、アクティブ制御の
ブロック線図である。
FIG. 6 is a block diagram of active control according to a third embodiment of the present invention.

【図7】従来の懸架制御装置の油圧回路図である。FIG. 7 is a hydraulic circuit diagram of a conventional suspension control device.

【図8】同じくセミアクティブ制御のブロック線図であ
る。
FIG. 8 is a block diagram of semi-active control.

【図9】比例電磁弁開度と車体上下絶対速度の関係を示
すグラフである。
FIG. 9 is a graph showing a relationship between a proportional electromagnetic valve opening and a vehicle body vertical absolute speed.

【図10】アクティブ制御の各車速における懸架制御性
能(三角波時間応答)のグラフである。
FIG. 10 is a graph of suspension control performance (triangular wave time response) at each vehicle speed of active control.

【図11】従来型セミアクティブ制御の各車速における
懸架制御性能(三角波時間応答)のグラフである。
FIG. 11 is a graph of suspension control performance (triangular wave time response) at each vehicle speed in the conventional semi-active control.

【図12】ガスバネ可変セミアクティブ制御の各車速に
おける懸架制御性能(三角波時間応答)のグラフであ
る。
FIG. 12 is a graph of suspension control performance (triangular wave time response) at each vehicle speed of the gas spring variable semi-active control.

【符号の説明】[Explanation of symbols]

1 転輪 2 ベルクランク 3 懸架シリンダ(油圧ダンパ) 4 アキュムレータ 5 比例電磁弁 6,6A,6B コントローラ 7 リリーフ弁 8 自動切換弁 9 パッシブ制御要素 11 転輪−車体間上下相対速度・変位センサ 12 車体上下速度センサ 13 圧力センサ(シリンダ圧力センサ) 14 アキュムレータ 15 ON−OFF弁 16 電磁切換弁 17 サーボ弁 18 ON−OFF弁 19 電磁切換弁 DESCRIPTION OF SYMBOLS 1 Roller wheel 2 Bell crank 3 Suspension cylinder (hydraulic damper) 4 Accumulator 5 Proportional solenoid valve 6, 6A, 6B controller 7 Relief valve 8 Automatic switching valve 9 Passive control element 11 Roller-vehicle relative vertical speed / displacement sensor 12 Body Vertical speed sensor 13 Pressure sensor (cylinder pressure sensor) 14 Accumulator 15 ON-OFF valve 16 Solenoid switching valve 17 Servo valve 18 ON-OFF valve 19 Solenoid switching valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の転輪に対しそれぞれ油圧ダンパを
介して車体が支持される車両の懸架制御装置において、
前記油圧ダンパとアキュムレータとを結ぶ油圧回路に比
例電磁弁を介装すると共に、該比例電磁弁と前記アキュ
ムレータとの間の油圧回路から少なくとももう一つのア
キュムレータに繋がる油圧回路を分岐して該油圧回路に
ガスバネ可変用ON−OFF弁を介装し、且つ減衰力最
小時に前記比例電磁弁を全開にすると共にガスバネ可変
用ON−OFF弁を開き、減衰力が必要な場合は比例電
磁弁を車体上下速度に比例して絞ると共にガスバネ可変
用ON−OFF弁を閉じるように制御するコントローラ
を設けたことを特徴とする懸架制御装置。
1. A suspension control device for a vehicle in which a vehicle body is supported via a hydraulic damper for each of a plurality of wheels,
A hydraulic circuit connecting the hydraulic damper and the accumulator is provided with a proportional solenoid valve, and a hydraulic circuit connected to at least another accumulator is branched from a hydraulic circuit between the proportional solenoid valve and the accumulator to form a hydraulic circuit. When the damping force is at a minimum, the proportional solenoid valve is fully opened and the gas spring variable ON-OFF valve is opened. A suspension control device provided with a controller for controlling the throttle in proportion to the speed and closing the gas spring variable ON-OFF valve.
【請求項2】 前記油圧ダンパと比例電磁弁との間の油
圧回路に油圧ポンプからの油圧回路を接続して該油圧回
路にサーボ弁を介装し、前記コントローラは車体の振動
や動揺を検出して最大限のフラット感を得るように前記
サーボ弁を開閉制御することを特徴とする請求項1記載
の懸架制御装置。
2. A hydraulic circuit from a hydraulic pump is connected to a hydraulic circuit between the hydraulic damper and the proportional solenoid valve, and a servo valve is interposed in the hydraulic circuit. The controller detects vibration and sway of the vehicle body. 2. The suspension control device according to claim 1, wherein the servo valve is opened and closed so as to obtain a maximum flat feeling.
【請求項3】 前記ガスバネ可変用ON−OFF弁は電
磁切換弁の切換により開閉制御されることを特徴とする
請求項1又は2記載の懸架制御装置。
3. The suspension control device according to claim 1, wherein the gas spring variable ON-OFF valve is opened and closed by switching an electromagnetic switching valve.
JP30660799A 1999-10-28 1999-10-28 Suspension control device Expired - Lifetime JP3977968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30660799A JP3977968B2 (en) 1999-10-28 1999-10-28 Suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30660799A JP3977968B2 (en) 1999-10-28 1999-10-28 Suspension control device

Publications (2)

Publication Number Publication Date
JP2001121939A true JP2001121939A (en) 2001-05-08
JP3977968B2 JP3977968B2 (en) 2007-09-19

Family

ID=17959121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30660799A Expired - Lifetime JP3977968B2 (en) 1999-10-28 1999-10-28 Suspension control device

Country Status (1)

Country Link
JP (1) JP3977968B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032596A1 (en) * 2006-09-15 2008-03-20 Toyota Jidosha Kabushiki Kaisha Suspension system for vehicle
CN102069813A (en) * 2010-12-15 2011-05-25 青岛四方车辆研究所有限公司 Switch type semi-active suspension system
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US9662954B2 (en) 2012-11-07 2017-05-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US10124709B2 (en) 2015-05-15 2018-11-13 Polaris Industries Inc. Utility vehicle
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10946736B2 (en) 2018-06-05 2021-03-16 Polaris Industries Inc. All-terrain vehicle
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11110913B2 (en) 2016-11-18 2021-09-07 Polaris Industries Inc. Vehicle having adjustable suspension
US11285964B2 (en) 2014-10-31 2022-03-29 Polaris Industries Inc. System and method for controlling a vehicle
US11904648B2 (en) 2020-07-17 2024-02-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles
US11970036B2 (en) 2022-06-27 2024-04-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105235702B (en) * 2015-10-12 2017-08-25 浙江大学 A kind of active safety control method of bullet train half

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032596A1 (en) * 2006-09-15 2008-03-20 Toyota Jidosha Kabushiki Kaisha Suspension system for vehicle
US7938410B2 (en) 2006-09-15 2011-05-10 Toyota Jidosha Kabushiki Kaisha Suspension system for vehicle
CN102069813A (en) * 2010-12-15 2011-05-25 青岛四方车辆研究所有限公司 Switch type semi-active suspension system
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US9662954B2 (en) 2012-11-07 2017-05-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US10005335B2 (en) 2012-11-07 2018-06-26 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400787B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400784B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400785B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11400786B2 (en) 2012-11-07 2022-08-02 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11124036B2 (en) 2012-11-07 2021-09-21 Polaris Industries Inc. Vehicle having suspension with continuous damping control
US11285964B2 (en) 2014-10-31 2022-03-29 Polaris Industries Inc. System and method for controlling a vehicle
US11919524B2 (en) 2014-10-31 2024-03-05 Polaris Industries Inc. System and method for controlling a vehicle
US10124709B2 (en) 2015-05-15 2018-11-13 Polaris Industries Inc. Utility vehicle
US11752860B2 (en) 2015-05-15 2023-09-12 Polaris Industries Inc. Utility vehicle
US11110913B2 (en) 2016-11-18 2021-09-07 Polaris Industries Inc. Vehicle having adjustable suspension
US11878678B2 (en) 2016-11-18 2024-01-23 Polaris Industries Inc. Vehicle having adjustable suspension
US10987989B2 (en) 2017-06-09 2021-04-27 Polaris Industries Inc. Adjustable vehicle suspension system
US11479075B2 (en) 2017-06-09 2022-10-25 Polaris Industries Inc. Adjustable vehicle suspension system
US11912096B2 (en) 2017-06-09 2024-02-27 Polaris Industries Inc. Adjustable vehicle suspension system
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
US10946736B2 (en) 2018-06-05 2021-03-16 Polaris Industries Inc. All-terrain vehicle
US10987987B2 (en) 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11884117B2 (en) 2018-11-21 2024-01-30 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
US11904648B2 (en) 2020-07-17 2024-02-20 Polaris Industries Inc. Adjustable suspensions and vehicle operation for off-road recreational vehicles
US11970036B2 (en) 2022-06-27 2024-04-30 Polaris Industries Inc. Vehicle having suspension with continuous damping control

Also Published As

Publication number Publication date
JP3977968B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
CN106515348B (en) Intelligent acceleration damping semi-active control method for vehicle suspension system
JP2001121939A (en) Suspension controlling device
JPS62108319A (en) Vibration control device
US20140001717A1 (en) Anti-causal vehicle suspension
US20140005888A1 (en) Active wheel damping
JPH02299918A (en) Active suspension control unit for vehicle
JPH0450015A (en) Active suspension device for vehicle
JPS60248417A (en) Active suspension apparatus
JPH04500490A (en) Vehicle chassis control method and device
JPH0667684B2 (en) Control device for automobile active suspension
JP6607229B2 (en) Vehicle attitude control device
JP2001018623A (en) Method and device for controlling automotive, semiactive suspension
JPH05201225A (en) Chassis control system
Huang et al. A self-organizing fuzzy controller for an active suspension system
JP2840076B2 (en) Vehicle height adjustment device with air suspension
JPH06247126A (en) System for closed and/or open loop control of car chassis
US20060038370A1 (en) Method of controlling a vehicle wheel suspension
JPH06219125A (en) Method and device for closed and/or open loop control of vehicle chassis
JPH04232111A (en) Method and device for processing signal
JPH0392413A (en) Active suspension for vehicle
Jianmin et al. Comparative study on vibration control of engineering vehicle suspension system
JP2004182031A (en) Suspension control device
JP3037714B2 (en) Vehicle suspension device
KR20020049826A (en) Electronic control semi-active suspension
WO2011051035A1 (en) Method for chassis control of a vehicle and corresponding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3977968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term