JP2001119822A - Overhead transmission line and method for re-stringing the same - Google Patents

Overhead transmission line and method for re-stringing the same

Info

Publication number
JP2001119822A
JP2001119822A JP29332199A JP29332199A JP2001119822A JP 2001119822 A JP2001119822 A JP 2001119822A JP 29332199 A JP29332199 A JP 29332199A JP 29332199 A JP29332199 A JP 29332199A JP 2001119822 A JP2001119822 A JP 2001119822A
Authority
JP
Japan
Prior art keywords
phase
wires
wire
sag
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29332199A
Other languages
Japanese (ja)
Other versions
JP4198840B2 (en
Inventor
Shuichi Yamaguchi
秀一 山口
Atsushi Yamada
淳 山田
Hiromitsu Takagi
博光 高木
Yuichi Komuro
裕一 小室
Kyoji Kobayashi
恭司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP29332199A priority Critical patent/JP4198840B2/en
Publication of JP2001119822A publication Critical patent/JP2001119822A/en
Application granted granted Critical
Publication of JP4198840B2 publication Critical patent/JP4198840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method by which transmission lines can be re-stringed inexpensively in a short time without numerous dangerous works on a steel towers. SOLUTION: In a method for re-stringing overhead transmission line, the uppermost upper-phase transmission line of three-phase transmission lines stringed between steel towers is re-stringed by utilizing an existing line 1 and the lowermost lower-phase transmission line is re-stringed by using a sag suppressing aluminum conductor steel reinforced 3 which can exhibit such a large sag suppressing effect that can secure a sufficient separating vertical distance from a ground structure 8. The intermediate middle-phase transmission line is re-stringed by using a sag suppressing aluminum conductor steel reinforced 2 which exhibits a smaller sag suppressing effect than the aluminum conductor steel reinforced 3 does, but can secure necessary separating distances 5 and 6 from the upper- and lower-phase transmission lines. Since the quantity of the transmission line re-stringing work is reduced, the period and cost of the work can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、既設の架空送電線
路において通電容量を増大させるに当たり、送電線を張
り替える工法及び該工法によって架設される架空送電線
路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for replacing a transmission line in order to increase the current carrying capacity in an existing overhead transmission line, and an overhead transmission line constructed by the method.

【0002】[0002]

【従来の技術】近年、既設の架空送電線路において通電
容量の増大化が盛んに行われている。その際、既存設備
を利用し、延命化を図ることで経済的に実施することが
強く望まれている。通電容量を増大すると電線温度が高
くなる。そのため、図4に示すように鋼芯アルミ撚り線
等の既設線1の弛度7が大きくなり、線路によっては地
上の構造物8との地上高離隔距離4が確保できないとこ
ろも出てくる。そこで、図5に示すように弛度抑制型鋼
芯アルミ撚り線3を用いて回線全体の張替を行い、地上
高離隔距離4、各相の電線との離隔距離5、6を確保す
る方法が行われている。弛度抑制型鋼芯アルミ撚り線は
図7に示すように、鋼芯アルミ撚り線のアルミ層15を
予め伸ばすことで塑性変形させ、鋼芯16とアルミ層1
5の間に空隙17を有する構造としたものである。鋼芯
アルミ撚り線は通電による温度上昇が生じた場合、線膨
張係数は鋼とアルミの合成された値となり、結果的には
アルミの線膨張係数に近似した値となるため弛度が大き
くなる。しかし、弛度抑制型鋼芯アルミ撚り線は、アル
ミ層を予め塑性変形させることで温度上昇時にはアルミ
層が架線張力を分担しなくなり、鋼芯のみが架線張力を
分担する。鋼はアルミの約半分の線膨張係数であるか
ら、温度上昇時の伸び、ひいては、電線の弛度を抑制す
ることができる(特公昭56−19936号公報参
照)。従来の方法によれば、鋼芯アルミ撚り線などの既
設線を全て撤去した後、弛度抑制型鋼芯アルミ撚り線に
張り替える作業を行い、通電容量増大時にも必要な地上
高離隔距離、各相の電線との離隔距離を確保していた。
2. Description of the Related Art In recent years, the current carrying capacity of existing overhead transmission lines has been actively increased. At that time, there is a strong demand for economical implementation by using existing equipment to extend the life. Increasing the current carrying capacity increases the wire temperature. Therefore, as shown in FIG. 4, the sag 7 of the existing wire 1 such as a steel core aluminum stranded wire becomes large, and depending on the track, there may be places where the ground clearance 4 from the ground structure 8 cannot be secured. Therefore, as shown in FIG. 5, a method is used in which the entire circuit is replaced by using a sag-restraining type steel-core aluminum stranded wire 3 to secure a high clearance 4 above the ground and clearances 5 and 6 with electric wires of each phase. Is being done. As shown in FIG. 7, the sagging suppression type steel core aluminum stranded wire is plastically deformed by previously stretching the aluminum layer 15 of the steel core aluminum stranded wire, and the steel core 16 and the aluminum layer 1 are deformed.
5 has a structure having a gap 17. When the temperature rise due to energization occurs in the steel core aluminum stranded wire, the coefficient of linear expansion becomes the combined value of steel and aluminum, and as a result, the value approximates the coefficient of linear expansion of aluminum, so the sag increases. . However, in the sag restraint type steel core aluminum stranded wire, the aluminum layer does not share the overhead wire tension when the temperature rises by plastically deforming the aluminum layer in advance, and only the steel core shares the overhead wire tension. Since steel has a coefficient of linear expansion about half that of aluminum, it can suppress elongation when the temperature rises and, consequently, sag of electric wires (see Japanese Patent Publication No. 56-19936). According to the conventional method, after removing all the existing wires such as steel core aluminum stranded wire, work to replace the wire with a sag-reduction type steel core aluminum stranded wire is performed, and even if the current carrying capacity increases The separation distance from the phase electric wire was secured.

【0003】[0003]

【発明が解決しようとする課題】従来の方法では回線全
体の張替を行うため、工事に時間がかかり、危険な鉄塔
上での作業が増え、施工費用も大きくなる。また、工事
に時間がかかり通電停止状態が長びけば、電力の安定供
給の面からも問題が生じてくる。本発明は既設の架空送
電線路における通電容量の増大に当たって、電線の張替
工事を少なくし、工期の短縮、コストの低減等を図れる
電線の張替工法と設備を提供することを目的とする。
In the conventional method, since the entire line is replaced, the construction takes time, the work on dangerous steel towers increases, and the construction cost also increases. In addition, if the construction takes time and the power supply stop state is prolonged, a problem arises in terms of stable power supply. SUMMARY OF THE INVENTION An object of the present invention is to provide an electric wire replacement method and equipment capable of reducing the wire replacement work, shortening the construction period, reducing the cost, and the like when increasing the current carrying capacity of the existing overhead transmission line.

【0004】[0004]

【課題を解決するための手段】本発明は鋼芯アルミ撚り
線等の既設線を、一部にはそのまま利用すると共に、一
部は弛度抑制型鋼芯アルミ撚り線を用いて張り替えるこ
とにより従来技術における課題を解決したものである。
通常、架空送電線路には3相の電線が張られており、こ
こでは便宜的に架空状態で最も高い位置にある電線を上
相の電線、中位にある電線を中相の電線、最下位にある
電線を下相の電線と呼ぶことにする。本発明によれば上
相の電線、場合によっては上相及び中相の電線は鋼芯ア
ルミ撚り線等の既設線をそのまま利用し、その他の相の
電線のみを弛度抑制型鋼芯アルミ撚り線に張り替える。
弛度抑制型鋼芯アルミ撚り線は弛度抑制効果の異なるも
のを組み合わせて使用し、あるいは立地条件によって所
望の弛度抑制効果をもった弛度抑制型鋼芯アルミ撚り線
を使用する。弛度抑制効果は遷移点の異なる弛度抑制型
鋼芯アルミ撚り線を選択することにより任意に変化させ
ることができる。
According to the present invention, an existing wire such as a steel core aluminum stranded wire is partially used as it is, and a part thereof is replaced by using a sag suppressing type steel core aluminum stranded wire. It is a solution to the problem in the prior art.
Normally, three-phase electric wires are stretched on the overhead power transmission line. Here, for convenience, the highest electric wire in the overhead state is the upper electric wire, the middle electric wire is the middle electric wire, and the lowest electric wire is the lowest electric wire. Will be referred to as the lower-phase wires. According to the present invention, the upper phase electric wire, and in some cases, the upper phase and the middle phase electric wire use the existing wire such as a steel core aluminum stranded wire as it is, and only the other phase electric wires are made of the sag suppressing type steel core aluminum stranded wire. Replace it with
As the sag suppressing type steel core aluminum stranded wire, one having a different sagging suppressing effect is used in combination, or a sag suppressing type steel core aluminum stranded wire having a desired sag suppressing effect is used depending on a location condition. The sag suppression effect can be arbitrarily changed by selecting a sag suppression type steel core aluminum stranded wire having different transition points.

【0005】ここで遷移点について説明する。図6は温
度による電線の弛度変化についてACSR(鋼芯アルミ
撚り線)と、それぞれ遷移点の異なる複数の弛度抑制型
鋼芯アルミ撚り線との特性を比較表示したものである。
弛度は鉄塔間距離300mにおける値を示す。遷移点1
5℃の弛度抑制型鋼芯アルミ撚り線は、温度15℃まで
はACSRと同じ特性で弛度変化し、15℃以上になる
と弛度抑制効果が現われ、弛度変化が小さくなる。同様
に遷移点30℃、45℃の各弛度抑制型鋼芯アルミ撚り
線は、それぞれ温度30℃、45℃以上で弛度抑制効果
が得られる。すなわち、本発明について使用する遷移点
とは、張力分担が鋼芯に移行して弛度抑制が始まる電線
温度をいう。遷移点はアルミ層の塑性変形加工度により
任意に変えられるが、遷移点が高いと弛度抑制効果は小
さくなり、遷移点が15℃より低いと電線の機械的強度
に悪影響を及ぼす。常温では鋼芯アルミ撚り線と弛度抑
制型鋼芯アルミ撚り線との弛度の差はそれ程大きくない
が、高温になるほど弛度の差は大きくなる。既設線と弛
度抑制型鋼芯アルミ撚り線との組み合わせ態様について
は以下の項で詳細に説明する。
Here, the transition point will be described. FIG. 6 shows a comparison of the characteristics of the sag change of the electric wire depending on the temperature between an ACSR (steel core aluminum stranded wire) and a plurality of sag suppressing type steel core aluminum stranded wires having different transition points.
The sag indicates a value at a distance between the towers of 300 m. Transition point 1
The 5 ° C sag-reducing steel core aluminum stranded wire changes in sag with the same characteristics as the ACSR up to a temperature of 15 ° C, and when the temperature exceeds 15 ° C, the sag-suppressing effect appears and the sag change is reduced. Similarly, each of the sag-restraining-type steel core aluminum stranded wires at the transition points of 30 ° C. and 45 ° C. exhibits a sag suppressing effect at temperatures of 30 ° C. and 45 ° C. or higher, respectively. That is, the transition point used in the present invention refers to the temperature of the electric wire at which the tension sharing shifts to the steel core and the sag control begins. The transition point can be arbitrarily changed according to the degree of plastic deformation of the aluminum layer. However, if the transition point is high, the effect of suppressing the sag becomes small, and if the transition point is lower than 15 ° C., the mechanical strength of the electric wire is adversely affected. At room temperature, the difference in the sag between the steel core aluminum stranded wire and the sag-reduction-type steel core aluminum stranded wire is not so large, but the difference in the sag increases as the temperature increases. The combination of the existing wire and the sagging-suppressing steel core aluminum stranded wire will be described in detail in the following sections.

【0006】[0006]

【発明の実施の形態】本発明の第1の実施の形態につい
て図1により具体的な数値を適用して説明する。径間長
10が300m、鉄塔高9が32mである鉄塔間に3相
の電線が張られている。最も高い位置にある相の電線が
上相の電線であり、次の高さのものが中相の電線、最も
低い位置にあるものが下相の電線である。鉄塔位置にお
いて、上相と中相の電線の距離11を2.5m、中相と
下相の電線の距離12を3.0m、下相の電線から構造
物8までの距離13を15mにとる。上相と中相、中相
と下相の各上下電線間で確保しなければならない離隔距
離は1.5m以上、下相の電線と構造物の間で確保しな
ければならない地上高離隔距離は6.0m以上とする。
上相の電線に鋼芯アルミ撚り線等の既設線1をそのまま
使用すると、既設線1の通電容量増大時(電線温度12
0℃)の弛度は約10mとなる。一方、下相の電線では
既設線をそのまま使用すると、通電容量増大時の地上高
離隔距離が不足するので弛度抑制型鋼芯アルミ撚り線3
に張り替える。この場合、通電容量増大時(電線温度1
20℃)の弛度が約8.5mのものを選ぶと、構造物ま
での距離は6.5mとなり必要な地上高離隔距離を確保
できる。次に、中相は既設線のままでも計算上は1.5
mの離隔距離5を確保できるが、実際の使用状態を考慮
して余裕をもたせるため弛度抑制効果を減少させた弛度
抑制型鋼芯アルミ撚り線2に張り替える。遷移点60℃
程度の弛度抑制型鋼芯アルミ撚り線を選ぶと、通電容量
増大時(電線温度120℃)の弛度は約9.3mとなる
ので上相の電線との離隔距離6が1.8m、下相の電線
との離隔距離5が2.2mとなり、いずれも必要な離隔
距離を確保できる。上記の説明は1回線の電線について
行ったが、2回線の送電線路では、同様の方法を各回線
について行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. A three-phase electric wire is stretched between steel towers having a span length of 10 m and a tower height 9 of 32 m. The highest phase wire is the upper phase wire, the next height is the middle phase wire, and the lowest wire is the lower phase wire. At the tower position, the distance 11 between the upper-phase and middle-phase wires is 2.5 m, the distance 12 between the middle-phase and lower-phase wires is 3.0 m, and the distance 13 from the lower-phase wires to the structure 8 is 15 m. . The separation distance between the upper and lower wires of the upper phase and the middle phase, and the upper and lower wires of the middle and lower phases must be 1.5 m or more, and the clearance above the ground that must be ensured between the lower phase wires and the structure is 6.0 m or more.
If the existing wire 1 such as a steel core aluminum stranded wire is used as it is for the upper phase wire, the current carrying capacity of the existing wire 1 increases (wire temperature 12
(0 ° C.) is about 10 m. On the other hand, if the existing wire is used as it is for the lower phase wire, the ground clearance at the time of increasing the current carrying capacity will be insufficient, so the sag restraint type steel core aluminum stranded wire 3
Replace it with In this case, when the energizing capacity is increased (wire temperature 1
(20 ° C) with a dip of about 8.5 m, the distance to the structure is 6.5 m, and the required clearance above ground can be secured. Next, even if the middle phase is the existing line, it is calculated to be 1.5.
Although a separation distance 5 of m can be ensured, in order to allow a margin in consideration of the actual use state, the wire is replaced with a sag-restraint type steel core aluminum stranded wire 2 having a reduced sag-restraining effect. Transition point 60 ° C
When the degree of sag control steel core aluminum stranded wire is selected, the sag when the current carrying capacity is increased (wire temperature 120 ° C.) is about 9.3 m, so the separation distance 6 from the upper-phase wire is 1.8 m, and the lower distance is 1.8 m. The separation distance 5 from the phase electric wire is 2.2 m, and the required separation distance can be secured in any case. Although the above description has been made with respect to one electric wire, the same method is applied to each line in the case of two power transmission lines.

【0007】本発明の第2の実施の形態について説明す
る。図2のように鉄塔の径間距離が小さい場合には通電
容量増大時にも電線温度の上昇による弛度の増加が小さ
い。このような場合には、上相と中相の電線は鋼芯アル
ミ撚り線などの既設線1をそのまま使用し、下相の既設
線のみを弛度抑制型鋼芯アルミ撚り線に張り替えて必要
な地上高離隔距離4を確保するようにすればよい。した
がって弛度抑制効果を減少させた弛度抑制型鋼芯アルミ
撚り線2を使用することで充分対応できる。
[0007] A second embodiment of the present invention will be described. As shown in FIG. 2, when the distance between the towers is small, the increase in the sag due to the increase in the wire temperature is small even when the current carrying capacity is increased. In such a case, it is necessary to use the existing wire 1 such as a steel core aluminum stranded wire as it is for the upper phase and middle phase wires, and replace only the lower phase existing wire with a sag-reducing type steel core aluminum stranded wire. What is necessary is just to secure the clearance 4 above the ground. Therefore, it is possible to sufficiently cope with the use of the sagging suppression type steel core aluminum stranded wire 2 in which the sag suppressing effect is reduced.

【0008】本発明の第3の実施の形態について説明す
る。図3に示すように、鉄塔位置での上相と中相の電線
の距離11、中相と下相の電線の距離12が広く、地上
高離隔距離4が狭い送電線路では、上相と中相の電線は
鋼芯アルミ撚り線等の既設線1をそのまま使用し、下相
の電線は既設線1を撤去し、必要な地上高離隔距離、中
相の電線との離隔距離が確保できるような弛度抑制効果
の大きな弛度抑制型鋼芯アルミ撚り線3に張り替える。
[0008] A third embodiment of the present invention will be described. As shown in FIG. 3, the distance 11 between the upper phase and the middle phase wires, the distance 12 between the middle phase and the lower phase wires 12 at the tower position, and the narrow transmission distance 4 above the ground, at the tower position, For the phase wire, use the existing wire 1 such as a steel core aluminum stranded wire as it is, and for the lower phase wire, remove the existing wire 1 so that the required clearance above ground and the required distance from the middle phase wire can be secured. It is replaced with a steel core aluminum stranded wire 3 having a large sag-reducing effect with a large sag-reducing effect.

【0009】[0009]

【発明の効果】本発明の工法によれば、既設の架空送電
線路のうち上相の電線あるいは上相と中相の電線は既設
線をそのまま使用し、その他の相の電線を弛度抑制型鋼
芯アルミ撚り線に張り替えるだけで通電容量の増大化が
可能となり、施工期間が短縮され、危険な塔上での作業
も減り、費用を減らすことができる。また施工期間の短
縮は電力の安定供給にも役立てることができる。更に、
設備としても既存の設備を利用することで経済的に通電
容量の増大化を実施できる。
According to the method of the present invention, the upper phase electric wire or the upper phase and the middle phase electric wire of the existing overhead transmission line are used as they are, and the electric wires of the other phases are replaced with the sag suppressing type steel. By simply replacing the core aluminum stranded wire, the current carrying capacity can be increased, the construction period is shortened, work on dangerous towers is reduced, and costs can be reduced. Shortening the construction period can also contribute to a stable supply of power. Furthermore,
By using the existing equipment, the current capacity can be increased economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の張替工法を採用した架空送電線路の第
1の例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing a first example of an overhead power transmission line adopting the method of the present invention.

【図2】本発明の張替工法を採用した架空送電線路の第
2の例を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a second example of an overhead power transmission line employing the reshuffling method of the present invention.

【図3】本発明の張替工法を採用した架空送電線路の第
3の例を示す概略構成図。
FIG. 3 is a schematic configuration diagram showing a third example of an overhead power transmission line employing the reshuffling method of the present invention.

【図4】既設の架空送電線路において通電容量を増大し
た場合の弛度を示す概略構成図。
FIG. 4 is a schematic configuration diagram showing the sag when the current carrying capacity is increased in an existing overhead transmission line.

【図5】従来の張替方法を使用した架空送電線路の例を
示す概略構成図。
FIG. 5 is a schematic configuration diagram showing an example of an overhead transmission line using a conventional replacement method.

【図6】ACSRと遷移点の異なる複数の弛度抑制型鋼
芯アルミ撚り線について、電線温度と弛度変化の関係を
示す図。
FIG. 6 is a diagram showing a relationship between a wire temperature and a change in sag for a plurality of sag-restraint-type steel core aluminum stranded wires having different transition points from the ACSR.

【図7】弛度抑制型鋼芯アルミ撚り線の構造図。FIG. 7 is a structural diagram of a sag suppressing type steel core aluminum stranded wire.

【符号の説明】[Explanation of symbols]

1 既設線 2 弛度抑制型鋼芯アルミ撚り線 3 弛度抑制型鋼芯アルミ撚り線 4 地上高離隔距離 5 中相と下相の電線の離隔距離 6 上相と中相の電線の離隔距離 7 弛度 8 構造物 9 鉄塔高 10 径間長 11 鉄塔位置での上相と中相の電線の距離 12 鉄塔位置での中相と下相の電線の距離 13 下相の電線から構造物までの距離 14 上相の電線の最下点と下相の電線の最下点までの
距離 15 アルミ層 16 鋼芯 17 空隙 18 弛度抑制型鋼芯アルミ撚り線
DESCRIPTION OF SYMBOLS 1 Existing wire 2 Aluminum wire with restrained sagness aluminum stranded wire 3 Aluminum wire with restrained sagness aluminum wire 4 High ground separation 5 Separation distance between middle and lower phase wires 6 Separation distance between upper and middle phase wires 7 Relaxation Degree 8 Structure 9 Tower height 10 Spanning length 11 Distance between upper and middle phase wires at tower position 12 Distance between middle and lower phase wires at tower position 13 Distance from lower phase wires to structure 14 Distance between the lowermost point of the upper phase electric wire and the lowermost point of the lower phase electric wire 15 Aluminum layer 16 Steel core 17 Air gap 18 Suppression-reduced steel core aluminum stranded wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 淳 茨城県日立市川尻町4丁目10番1号 日立 電線株式会社豊浦工場内 (72)発明者 高木 博光 茨城県日立市川尻町4丁目10番1号 日立 電線株式会社豊浦工場内 (72)発明者 小室 裕一 茨城県日立市川尻町4丁目10番1号 日立 電線株式会社豊浦工場内 (72)発明者 小林 恭司 茨城県日立市川尻町4丁目10番1号 日立 電線株式会社豊浦工場内 Fターム(参考) 5G367 FA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Yamada 4-10-1, Kawajiri-cho, Hitachi City, Ibaraki Prefecture Inside the Toyoura Plant, Hitachi Cable Co., Ltd. (72) Hiromitsu Takagi 4--10, Kawajiri-cho, Hitachi City, Ibaraki Prefecture 1 Hitachi Cable Co., Ltd. Toyoura Plant (72) Inventor Yuichi Komuro 4-1-1 Kawajiri-cho, Hitachi City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Toura Plant (72) Inventor Kyoji Kobayashi 4-chome Kawajiri-cho, Hitachi City, Ibaraki Prefecture No.10 No.1 F-term in Toyoura Plant of Hitachi Cable, Ltd. (reference) 5G367 FA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄塔間にそれぞれ上下方向に所定の離隔
距離をおいて架線した、上相、中相、及び下相の電線か
らなる架空送電線路の張替工法において、少なくとも上
相の電線には鋼芯アルミ撚り線等の既設線を利用し、他
の相の電線は、通電容量増大に伴う電線温度上昇による
弛度増加に際しても必要な地上高離隔距離、各相の電線
間の離隔距離を確保することができるよう弛度抑制型鋼
芯アルミ撚り線を用いて張り替えることを特徴とする架
空送電線路の張替工法。
Claims: 1. In a method of reconstructing an overhead transmission line composed of upper-phase, middle-phase, and lower-phase electric wires, each of which is wired with a predetermined distance between the towers in the vertical direction, at least an upper-phase electric wire is provided. Use existing wires such as steel core aluminum stranded wires, and use wires of other phases for clearance above ground required even when sag increases due to wire temperature rise due to increase in current carrying capacity, separation between wires of each phase A method of rebuilding an overhead power transmission line, characterized in that the rebuilding is carried out using a steel core aluminum stranded wire with reduced sag so as to secure the required space.
【請求項2】 鉄塔間にそれぞれ上下方向に所定の離隔
距離をおいて架線した、上相、中相、及び下相の電線か
らなる架空送電線路の張替工法において、上相の電線に
は鋼芯アルミ撚り緑等の既設線を利用し、中相と下相の
電線は、通電容量増大に伴う電線温度上昇による弛度増
加に際しても必要な地上高離隔距離、各相の電線との離
隔距離を確保することができるよう、それぞれ弛度抑制
効果の異なる弛度抑制型鋼芯アルミ撚り線を用いて張り
替えることを特徴とする架空送電線路の張替工法。
2. In the method of rebuilding an overhead transmission line composed of upper, middle and lower phase electric wires, each of which is overhead with a predetermined vertical distance between the towers, the upper phase electric wires are Using existing wires such as steel cored aluminum twisted green, the middle and lower phase wires are required to have a high clearance above the ground, even when the sag increases due to a rise in wire temperature due to an increase in current carrying capacity, and separation from wires in each phase. An overhead power transmission line replacement method characterized in that reconnection is performed using a sag-restraint type steel core aluminum stranded wire having different sag-response effects so that a distance can be secured.
【請求項3】 鉄塔間にそれぞれ上下方向に所定の離隔
距離をおいて架線した、上相、中相、及び下相の電線か
らなる架空送電線路の張替工法において、上相及び中相
の電線には鋼芯アルミ撚り線等の既設線を利用し、下相
の電線は、通電容量増大に伴う電線温度上昇による弛度
増加に際しても必要な地上高離隔距離、中相の電線との
離隔距離を確保することができるよう弛度抑制型鋼芯ア
ルミ撚り線を用いて張り替えることを特徴とする架空送
電線路の張替工法。
3. An overhead transmission line construction method comprising upper, middle, and lower phases of electric wires, each of which is arranged with a predetermined distance between the towers in the vertical direction. Existing wires, such as steel core aluminum stranded wires, are used for the wires, and the lower-phase wires are separated from the middle-phase wires by the clearance above the ground, which is necessary even when the sag increases due to the rise in wire temperature due to the increase in current carrying capacity. A method for rebuilding an overhead power transmission line, wherein the rebuilding is carried out using a steel core aluminum stranded wire with reduced sag so that the distance can be secured.
【請求項4】 鉄塔間にそれぞれ上下方向に所定の離隔
距離をおいて架線した、上相、中相、及び下相の電線か
らなる架空送電線路において、上相の電線は鋼芯アルミ
撚り線等の既設線からなり、中相の電線は、通電容量増
大に伴う電線温度上昇による弛度増加に際しても上相及
び下相の電線との必要な離隔距離を確保することができ
る弛度抑制型鋼芯アルミ撚り線からなり、下相の電線
は、中相の電線よりも弛度抑制効果が大きく、前記の弛
度増加に際しても必要な地上高離隔距離を確保すること
ができる弛度抑制型鋼芯アルミ撚り線からなることを特
徴とする架空送電線路。
4. An overhead power transmission line composed of upper phase, middle phase, and lower phase electric wires, each of which is wired with a predetermined separation distance in the vertical direction between the towers, wherein the upper phase electric wire is a steel core aluminum stranded wire. The medium-phase electric wire is a slackness-restricted steel that can secure the required separation distance from the upper-phase and lower-phase electric wires even when the sag increases due to an increase in the electric wire temperature due to an increase in the current carrying capacity. The lower-phase electric wire is made of a core aluminum stranded wire, and the lower-phase electric wire has a greater sag suppressing effect than the middle-phase electric wire, so that even when the sag increases, the required sagging clearance-type steel core can be secured. An overhead power transmission line, comprising an aluminum stranded wire.
【請求項5】 鉄塔間にそれぞれ上下方向に所定の離隔
距離をおいて架線した、上相、中相、及び下相の電線か
らなる架空送電線路において、上相及び中相の電線は鋼
芯アルミ撚り線等の既設線からなり、下相の電線は、通
電容量増大に伴う電線温度上昇による弛度増加に際して
も必要な地上高離隔距離、中相の電線との離隔距離を確
保することができる弛度抑制型鋼芯アルミ撚り線からな
ることを特徴とする架空送電線路。
5. In an overhead power transmission line composed of upper-phase, middle-phase, and lower-phase electric wires, each of which is overhead with a predetermined vertical distance between the towers, the upper-phase and medium-phase electric wires are steel cores. It consists of existing wires such as aluminum stranded wires, and the lower-phase wires can secure the necessary clearance above ground and the middle-phase wires even when the sag increases due to the rise in wire temperature due to the increase in current carrying capacity. An overhead power transmission line, comprising a steel core aluminum stranded wire capable of suppressing sag.
JP29332199A 1999-10-15 1999-10-15 Overhanging method for overhead power transmission lines Expired - Lifetime JP4198840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29332199A JP4198840B2 (en) 1999-10-15 1999-10-15 Overhanging method for overhead power transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29332199A JP4198840B2 (en) 1999-10-15 1999-10-15 Overhanging method for overhead power transmission lines

Publications (2)

Publication Number Publication Date
JP2001119822A true JP2001119822A (en) 2001-04-27
JP4198840B2 JP4198840B2 (en) 2008-12-17

Family

ID=17793329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29332199A Expired - Lifetime JP4198840B2 (en) 1999-10-15 1999-10-15 Overhanging method for overhead power transmission lines

Country Status (1)

Country Link
JP (1) JP4198840B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034539A1 (en) * 2004-09-28 2006-04-06 John William Van Pelt Method and apparatus for installing electrical lines or cables
JP2010515420A (en) * 2006-12-28 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Overhead power line
JP2010515422A (en) * 2006-12-28 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Overhead power transmission line
AU2005289366B2 (en) * 2004-09-28 2010-09-09 John William Van Pelt Method and apparatus for installing electrical lines or cables
CN106786186A (en) * 2016-12-26 2017-05-31 上海电力设计院有限公司 For the cable rod rising device in city
CN110645939A (en) * 2019-08-30 2020-01-03 四川中机航飞无人机科技有限公司 System and method for dynamically predicting relative vertical distance between two wires
CN111082360A (en) * 2019-12-23 2020-04-28 深圳供电局有限公司 Power transmission line mobile monitoring device, system and method
CN111539059A (en) * 2020-05-09 2020-08-14 国网湖南省电力有限公司 Phase line distance evaluation method and device for power transmission overhead line
CN115307604A (en) * 2022-10-12 2022-11-08 国网山东省电力公司五莲县供电公司 Transmission line clearance value measuring method and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034539A1 (en) * 2004-09-28 2006-04-06 John William Van Pelt Method and apparatus for installing electrical lines or cables
AU2005289366B2 (en) * 2004-09-28 2010-09-09 John William Van Pelt Method and apparatus for installing electrical lines or cables
JP2010515420A (en) * 2006-12-28 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Overhead power line
JP2010515422A (en) * 2006-12-28 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー Overhead power transmission line
CN106786186A (en) * 2016-12-26 2017-05-31 上海电力设计院有限公司 For the cable rod rising device in city
CN110645939A (en) * 2019-08-30 2020-01-03 四川中机航飞无人机科技有限公司 System and method for dynamically predicting relative vertical distance between two wires
CN111082360A (en) * 2019-12-23 2020-04-28 深圳供电局有限公司 Power transmission line mobile monitoring device, system and method
CN111539059A (en) * 2020-05-09 2020-08-14 国网湖南省电力有限公司 Phase line distance evaluation method and device for power transmission overhead line
CN115307604A (en) * 2022-10-12 2022-11-08 国网山东省电力公司五莲县供电公司 Transmission line clearance value measuring method and device
CN115307604B (en) * 2022-10-12 2023-02-24 国网山东省电力公司五莲县供电公司 Transmission line clearance value measuring method and device

Also Published As

Publication number Publication date
JP4198840B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP2001119822A (en) Overhead transmission line and method for re-stringing the same
EP3224929B1 (en) Permanent-magnet synchronous machine and motor vehicle system
JP5193557B2 (en) Armature
JP4839840B2 (en) Rotating electric machine
US10381130B2 (en) Wire harness
JP4340001B2 (en) Branching method for overhead transmission lines
Thrash ACSS/TW-an improved conductor for upgrading existing lines or new construction
RU2742951C2 (en) Aluminum conductors
JP2009170178A (en) Automobile wire harness
EP1887588A1 (en) Prism-type electrical converter for the generation, transmission, distribution and supply of electric current, and production method thereof
US1123321A (en) Method of operating polyphase induction-motors.
JPH0660739A (en) Electrical wire conductor for automobile
JP3276733B2 (en) Method of winding wire around gap type electric wire
JP2003123542A (en) Aerial insulated wire
JP2009170177A (en) Automobile wire harness
Douglass The objectives of ampacity uprating (attractive conductor parameters for re-conductoring existing lines)
Kumar Aluminium Alloy Conductors
Pettersson et al. Al 59-a Swedish standard for overhead aluminium alloy conductors with 59% conductivity (IACS)
US688318A (en) Winding for electric machines.
USRE27805E (en) Self-damping cable
JP2002124141A (en) Dc power cable
JPH0676641A (en) Double wire-shielded cv cable
CN117153519A (en) Arrangement method of ampere-turn regulator and ampere-turn regulator
US1525559A (en) Electrical coil
US593244A (en) Charles f

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4