JP2001119092A - Substrate-connecting method for joining minute region and substrate-connecting structure - Google Patents

Substrate-connecting method for joining minute region and substrate-connecting structure

Info

Publication number
JP2001119092A
JP2001119092A JP29392099A JP29392099A JP2001119092A JP 2001119092 A JP2001119092 A JP 2001119092A JP 29392099 A JP29392099 A JP 29392099A JP 29392099 A JP29392099 A JP 29392099A JP 2001119092 A JP2001119092 A JP 2001119092A
Authority
JP
Japan
Prior art keywords
substrate
substrates
functional
bonding
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29392099A
Other languages
Japanese (ja)
Inventor
Masatake Akaike
正剛 赤池
Toshihiko Onouchi
敏彦 尾内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29392099A priority Critical patent/JP2001119092A/en
Publication of JP2001119092A publication Critical patent/JP2001119092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate connection method which joins separating a connection pat from a functional connection part and locally perform high frequency heating and/or ion irradiation, in order to further increase the intrinsic connection area of the functional connection part, and a substrate connection structure. SOLUTION: Functional connection faces 4, 5 and first and second substrates 1, 2 having joining parts in the periphery thereof are formed. The functional connection faces 4, 5 of both the substrates 1, 2 are counterposed to each other and the joining parts are counterposed to each other, and the substrates 1, 2 are jointed mechanically to each other under depressurization ambiance via joining members 12, 11 of the joining part. At this time, the functional connection faces 4, 5 are in proximity to each other, while forming a closed space 14 under depressurizing ambiance. After the closed space 14 is formed, the substrate 1 is thinned, and a part 13 where the substrate is made flexible, thereby being pushed into a side of the closed space 14 under atmospheric pressure to fulfill functional connection of the functional connection faces 4, 5. Furthermore, the position of the functional connection is further thinned, and simultaneously at least one of ion irradiation for local heating and high frequency electric field application for high-frequency heating is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同種或は異種材料
基板間の微小領域での機能的結合(電気的結合、光学的
結合)を微小領域内に、典型的には、複数形成する微小
領域接合を行なう基板結合法及び基板結合構造体に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for forming a plurality of functional couplings (electrical coupling, optical coupling) in a microscopic region between substrates of the same or different materials in a microscopic region, typically, a plurality of substrates. The present invention relates to a substrate bonding method and a substrate bonding structure for performing region bonding.

【0002】[0002]

【従来の技術】従来、光放出のために異種半導体同士を
直接接合させる方法として、「応用物理」第6巻、第1
号(和田浩、上條健、p.53、1994年)に記載さ
れている方法がある。ここでは、InP/GaAs及び
InP/Siの組み合わせの接合が、被接合面を浄化し
た後、基板に重りを載せて水素雰囲気中700℃で30
分間熱処理することによって得られてる。
2. Description of the Related Art Conventionally, as a method for directly joining different kinds of semiconductors for light emission, "Applied Physics", Vol.
No. (Hiroshi Wada, Ken Kamijo, p. 53, 1994). Here, bonding of a combination of InP / GaAs and InP / Si purifies the surface to be bonded and places a weight on the substrate at 700 ° C. in a hydrogen atmosphere at 30 ° C.
It is obtained by heat treatment for a minute.

【0003】また、Appl.Phys.Lett.
(Lincoln Lab. Z.L.Lian, 5
6(8),19,Feb.1990,p.737)に記
載されているように、InP/GaAsの組み合わせの
接合が、被接合表面を清浄化し、その後円筒状のグラフ
ァイト/クォーツ反応器の中で水素雰囲気中750℃で
熱処理することによって得られてる。
[0003] Appl. Phys. Lett.
(Lincoln Lab. ZL Lian, 5
6 (8), 19, Feb. 1990, p. As described in U.S. Pat. No. 737), a combined InP / GaAs combination is obtained by cleaning the surfaces to be joined and then heat treating at 750 ° C. in a hydrogen atmosphere in a cylindrical graphite / quartz reactor. Te

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では接合が約750℃の高温で、かつ基板同士での
接合のため、以下の様な欠点があった。
However, in the above conventional example, since the bonding is performed at a high temperature of about 750 ° C. and the substrates are bonded to each other, there are the following disadvantages.

【0005】1、熱膨張係数の異なる異種半導体同士の
接合の場合、上記の様な高温で接合後、室温までの冷却
中に、或は冷却後に、接合基板同士が反り返る現象が生
ずる。すなわち、接合基板に残留応力が生じて、様々な
問題が起きる。
[0005] 1. In the case of joining different kinds of semiconductors having different coefficients of thermal expansion, a phenomenon occurs in which the joined substrates warp after joining at a high temperature as described above, during cooling to room temperature, or after cooling. That is, residual stress is generated in the bonding substrate, and various problems occur.

【0006】2、機能的結合である電気的結合と、機械
的な結合強度(2つの材料が引き剥がされないための接
合強度)を兼ね合わせた接合であるため、機能的結合部
を小さくしようとして接合面積を小さくすることは機械
的な接合強度を小さくすることになる。こうした場合、
接合強度の低下はプロセス中に於ける接合個所での剥離
の要因になる。従って、電気的な機能的結合のために
は、それ程面積を必要としなくても、機械的な接合強度
を確保しなくてはならないので、接合面積を必要に応じ
て小さくすることは困難である。接合面積を小さくする
ことは、面発光型の半導体レ−ザ等において、しきい値
を小さくするために要求されるものである。
[0006] 2. Since the bonding is a combination of the electrical connection, which is a functional connection, and the mechanical bonding strength (the bonding strength for preventing the two materials from being peeled off), an attempt is made to reduce the functional connection portion. Reducing the bonding area reduces the mechanical bonding strength. In these cases,
A decrease in bonding strength causes peeling at a bonding point during the process. Therefore, for electrical and functional coupling, mechanical bonding strength must be ensured even if not so much area is required, so it is difficult to reduce the bonding area as necessary. . Reducing the junction area is required to reduce the threshold value in a surface-emitting type semiconductor laser or the like.

【0007】よって、本発明の目的は、上記課題に鑑
み、機械的な接合強度を確保する接合部と機能的結合を
達成する機能的結合部を分けて接合を行い、機能的結合
部の真実結合面積をさらに大きくするために、高周波加
熱或は/及びイオン照射を局部的に行い、典型的には、
微小な減圧密閉空間内に複数の電気的結合を有する構造
を達成する微小領域接合を行なう基板結合法及び基板結
合構造体を提供することにある。
SUMMARY OF THE INVENTION Accordingly, in view of the above problems, it is an object of the present invention to perform joining by separating a joining portion for securing mechanical joining strength and a functional joining portion for achieving functional joining, and In order to further increase the bonding area, high-frequency heating or / and ion irradiation are performed locally, typically,
It is an object of the present invention to provide a substrate bonding method and a substrate bonding structure for performing micro-region bonding that achieves a structure having a plurality of electrical connections in a minute reduced-pressure closed space.

【0008】[0008]

【課題を解決するための手段および作用】上記目的を達
成するための本発明の微小領域接合を行なう基板結合法
及び基板結合構造体は、高周波加熱及びイオン照射の少
なくとも一方を用いた結合法を用いて、基板同士におい
て基板間の微小空間の中に1つ或は複数の微小領域(微
小な結合面積)結合を可能にするものであり、機能的結
合を生ずる電気的或は光学的結合面と接合力を与えるた
めの接合部とを同種或は異種材料の第1と第2の基板に
各々形成し、これらの結合面同士及び接合部をそれぞれ
相対向させて、減圧雰囲気中で両基板に圧縮荷重を印加
することにより両基板を機械的に接合させ、これにより
機能的結合面を含む微小空間を形成し、同時に機能的結
合面同士を近接させ、この後少なくとも一方の基板を薄
片化することによって剛性を低下させ、剛性を低下した
基板を大気圧による押圧力で押し込むことにより機能的
結合面同士を密着させ、さらに薄片化基板側から高周波
を作用させて密着個所を加熱し、加熱によって界面の原
子拡散を促し、或は/及び、イオン照射による衝撃によ
って薄片化基板を更に薄片化し、同時に発熱した熱によ
って界面の原子拡散を促し、より安定した機能的結合を
完了することを特徴とする。加熱は、典型的には、数1
00度程度まで行なわれる。
In order to achieve the above object, the present invention provides a substrate bonding method and a substrate bonding structure for performing micro-region bonding, which employ a bonding method using at least one of high-frequency heating and ion irradiation. One or a plurality of micro regions (small coupling area) can be coupled in a micro space between the substrates by using the substrates, and an electrical or optical coupling surface that produces a functional coupling. And a bonding portion for providing bonding force are formed on the first and second substrates of the same or different materials, respectively, and these bonding surfaces and the bonding portion are opposed to each other. The two substrates are mechanically joined by applying a compressive load to them, thereby forming a minute space including the functional coupling surface, and at the same time bringing the functional coupling surfaces close to each other, and thereafter thinning at least one of the substrates. By doing The rigid connection is reduced, and the substrate with reduced rigidity is pressed with the pressing force of the atmospheric pressure to make the functional bonding surfaces adhere to each other. Further, the high frequency is applied from the thinned substrate side to heat the contact area, and the interface is heated. And / or further reduce the sliced substrate by the impact of ion irradiation, and at the same time promote the diffusion of atoms at the interface by the heat generated, thereby completing a more stable functional bond. . Heating is typically performed using the number 1
It is performed up to about 00 degrees.

【0009】すなわち、本発明による微小領域接合を行
なう基板結合法は、夫々、機能的結合(電気的結合、光
学的結合)を生ずる機能的結合面と接合力を与える接合
部を有し、機能的結合面の周囲に接合部を設けた同種或
は異種材料から成る第1と第2の基板を形成し、第1と
第2の基板の機能的結合面同士及び接合部同士をそれぞ
れ相対向させて、接合部の接合部材を介して第1と第2
の基板を減圧雰囲気中で機械的に接合すると共に、機能
的結合面同士を近接させつつ、機能的結合面を含む空間
を減圧雰囲気から成る密閉空間に形成し、密閉空間を形
成後、少なくとも一方の基板の密閉空間に近接する部分
を薄片化し、薄片化によって可撓化した基板の部分を大
気圧によって密閉空間側へ押し込んで機能的結合面の機
能的結合を果たし、さらに、機能的結合を果している個
所に、更なる薄片化を行うと同時に局所加熱を行うイオ
ン照射と局所的に高周波加熱を行う高周波電界印加との
少なくとも一方を行なうことを特徴とする。
That is, the substrate bonding method for performing micro-region bonding according to the present invention has a functional bonding surface for generating functional bonding (electrical coupling and optical coupling) and a bonding portion for providing bonding force. Forming first and second substrates made of the same or different materials, each having a bonding portion provided around a mechanically bonding surface, wherein the functional bonding surfaces of the first and second substrates and the bonding portions are opposed to each other. Then, the first and second members are joined via the joining member of the joining portion.
While mechanically bonding the substrates in a reduced-pressure atmosphere and making the functional coupling surfaces close to each other, a space including the functional coupling surface is formed in a closed space composed of the reduced-pressure atmosphere, and at least one of the closed spaces is formed. The portion of the substrate close to the closed space is thinned, and the portion of the substrate that has been made flexible by the thinning is pushed into the closed space side by the atmospheric pressure to perform the functional connection of the functional connection surface, and further, the functional connection is performed. At a portion where the heat treatment is performed, at least one of ion irradiation for performing local heating and application of a high-frequency electric field for locally performing high-frequency heating is performed while performing further thinning.

【0010】また、本発明による微小領域接合部を含む
基板結合構造体は、夫々、機能的結合(電気的結合、光
学的結合)を生ずる機能的結合面と接合力を与える接合
部を有し、機能的結合面の周囲に接合部を設けた同種或
は異種材料から成る第1と第2の基板の機能的結合面同
士及び接合部同士をそれぞれ相対向させて、接合部の接
合部材を介して第1と第2の基板を減圧雰囲気中で機械
的に接合すると共に、機能的結合面同士を近接させつ
つ、機能的結合面を含む空間を減圧雰囲気から成る密閉
空間に形成した後、少なくとも一方の基板の密閉空間に
近接する部分を薄片化し、薄片化によって可撓化した基
板の部分を大気圧によって密閉空間側へ押し込んで機能
的結合面の機能的結合を果たし、さらに、機能的結合を
果している個所に、更なる薄片化を行うと同時に局所加
熱を行うイオン照射と局所的に高周波加熱を行う高周波
電界印加との少なくとも一方を行なって構成されたこと
を特徴とする。
[0010] Further, the substrate bonding structures including the microregion bonding portion according to the present invention each have a functional bonding surface for generating functional bonding (electrical coupling and optical coupling) and a bonding portion for providing bonding force. The first and second substrates made of the same or different materials and provided with a bonding portion around the functional bonding surface are made to face each other with the functional bonding surfaces facing each other and the bonding portions are opposed to each other to form a bonding member of the bonding portion. After the first and second substrates are mechanically joined in a reduced-pressure atmosphere via the intermediary, and the functional coupling surfaces are brought close to each other, a space including the functional coupling surface is formed in a closed space composed of the reduced-pressure atmosphere. A portion of at least one of the substrates close to the sealed space is sliced, and the portion of the substrate which is made flexible by the thinning is pushed into the sealed space side by the atmospheric pressure to achieve a functional coupling of the functional coupling surface. At the place where the connection is achieved, Characterized in that it is constituted by performing at least one of the ion irradiation and locally high frequency electric field is applied to perform a high-frequency heating to carry out the local heating at the same time performing becomes thinned.

【0011】本発明では、圧縮応力印加中、接合部材か
ら成る接合部での塑性変形によって基板同士を接合する
ため、比較的低い温度、例えば室温で接合が可能にな
る。従って、接合後、減圧雰囲気になっている密閉空間
の中の機能的結合面は大気中の大気圧による押圧力によ
って室温で互いに密着状態にある。更に、一方の基板に
機能的結合面及び接合部を、他方の基板に機能的結合面
及び接合部をそれぞれ形成し、この後、両基板を相対向
し、機能的結合面同士で機能的結合を、接合部同士で機
械的接合力をそれぞれ分担するので、機能的結合面積を
限りなく微小にできる。そして、機能的結合面を含む領
域を減圧雰囲気の密閉空間にしてあるため、常に大気圧
による押圧によって機能的結合を果たしていることにな
る。
According to the present invention, since the substrates are joined by plastic deformation at the joining portion formed by the joining members during the application of the compressive stress, the joining can be performed at a relatively low temperature, for example, room temperature. Therefore, after joining, the functional bonding surfaces in the closed space in a reduced-pressure atmosphere are in close contact with each other at room temperature due to the pressing force of the atmospheric pressure in the atmosphere. Further, a functional coupling surface and a bonding portion are formed on one substrate, and a functional coupling surface and a bonding portion are formed on the other substrate, and thereafter, both substrates are opposed to each other, and the functional coupling surfaces are functionally coupled with each other. Since the mechanical joint force is shared between the joint portions, the functional joint area can be made extremely small. Since the region including the functional connection surface is a closed space of a reduced-pressure atmosphere, the functional connection is always achieved by pressing with the atmospheric pressure.

【0012】しかしながら、固体平面同士が室温付近で
接触した場合、固体平面は微視的に無数の凹凸から成っ
ているので、どうしても凸部同士で接触が生じて全面で
の接触は困難となる。そこで、機能的結合面に外部から
高周波を作用し局所的に高周波加熱することによって、
機能的結合面の原子拡散を促し機能的結合面の全面に渡
って安定した機能的結合を生じさせる。或は、機能的結
合面の反対側の基板面を薄片化する場合、イオン照射に
よるイオン衝撃によって基板面を局所的に薄片化しなが
ら、同時にイオン衝撃によって生ずる熱で機能的結合面
の原子拡散を促し、機能的結合面の全面に渡って安定し
た機能的結合を生じさせる。
However, when the solid planes come into contact with each other near room temperature, the solid planes are microscopically made up of countless irregularities, so that the projections inevitably come into contact with each other, making it difficult to make contact over the entire surface. Therefore, by applying high frequency from outside to the functional coupling surface and locally heating it,
It promotes the diffusion of atoms in the functional bonding surface to generate stable functional bonding over the entire surface of the functional bonding surface. Alternatively, when thinning the substrate surface opposite to the functional bonding surface, the substrate surface is locally thinned by ion bombardment due to ion irradiation, and at the same time, the atomic diffusion of the functional bonding surface is reduced by heat generated by ion bombardment. Promotes and produces a stable functional connection over the entire functional connection surface.

【0013】尚、高周波加熱時或はイオン照射時に於い
ても、機能的結合面に光照射(例えばレーザ光)しなが
ら機能的結合面の界面からの反射光を映像としてモニタ
ーテレビで観察することも可能である。
In addition, even during high frequency heating or ion irradiation, the light reflected from the interface of the functional coupling surface is observed as an image on a monitor television while irradiating the functional coupling surface with light (eg, laser light). Is also possible.

【0014】上記の高周波加熱及びイオン照射によって
生ずる熱は局所的であるので基板全体への影響は極めて
少ない。従って、熱膨張係数の異なる基板同士に於いて
も、基板を変形させずに機能的結合個所を基板全体に渡
って複数個設け、例えば、電気的結合個所のみを導通さ
せることができる。
The heat generated by the high-frequency heating and the ion irradiation described above is local, so that the influence on the entire substrate is extremely small. Therefore, even between substrates having different coefficients of thermal expansion, a plurality of functional coupling portions can be provided over the entire substrate without deforming the substrates, and, for example, only the electrical coupling portions can be made conductive.

【0015】ところで、例えば、平面状の電気的結合面
の存在する基板を薄片化することによって、剛性を減少
させた薄片化基板は、大気圧による押圧力によって減圧
雰囲気中の密閉空間側に押し込まれ、密閉空間に存在す
る他方の基板の凸状の電気的結合面に密着するが、同時
に凸状の電気的結合面以外の周囲に絶縁膜を予め成膜
し、電気的絶縁を確保する必要がある。
By the way, for example, a thinned substrate whose rigidity is reduced by thinning a substrate having a planar electric coupling surface is pushed into a closed space side in a reduced-pressure atmosphere by a pressing force due to atmospheric pressure. In addition, it is necessary to secure an electrical insulation by forming an insulating film on the periphery other than the convex electric coupling surface at the same time, in close contact with the convex electric coupling surface of the other substrate existing in the closed space. There is.

【0016】上記において、より具体的には以下のよう
にできる。密閉空間を形成する工程では、予め塑性変形
代を考慮して作製した接合部材から成る接合部同士を、
両基板の両側から圧縮応力を印加することによって塑性
変形過程で機械的に接合させるため、機能的結合面同士
は互いに限りなく近接する。しかし、限りなく近接した
場合に於いても、接触しない様に塑性変形代を予め考慮
して接合部を形成しておく必要がある。そして、限りな
く近接した機能的結合面同士の密着は、上記の様に一方
の基板を薄片化することによって、すなわち基板の剛性
を減少させることによって、大気圧による押圧力で可能
になる。この際、薄片化を限りなく行った場合(例え
ば、1μm程度)、すなわち薄片化して行った基板が限
りなく薄くなり剛性を失った場合、機能的結合面同士の
密着(直接接合)力は強くなり、結果として、機能的結
合面同士はより密着性を増すことになる。
In the above, more specifically, it can be performed as follows. In the step of forming a closed space, the joints made of the joint members made in consideration of the plastic deformation allowance in advance,
By applying a compressive stress from both sides of both substrates and mechanically joining them in the process of plastic deformation, the functional coupling surfaces are as close as possible to each other. However, even in the case of extremely close proximity, it is necessary to form a joint in consideration of the plastic deformation allowance so as not to make contact. In addition, close contact between the functional coupling surfaces which are infinitely close to each other can be achieved by the pressing force of the atmospheric pressure by thinning one of the substrates as described above, that is, by reducing the rigidity of the substrate. At this time, when the thinning is performed indefinitely (for example, about 1 μm), that is, when the thinned substrate is infinitely thin and loses rigidity, the adhesion (direct bonding) force between the functional coupling surfaces is strong. As a result, the functional bonding surfaces are more closely adhered to each other.

【0017】また、上記基板は典型的には半導体基板で
ある。この場合、半導体基板はSi、Ge、GaAs、
GaN、InP、SiC、AlN及びこれらの半導体基
板上に成長した化合物半導体の何れかである。
The substrate is typically a semiconductor substrate. In this case, the semiconductor substrate is Si, Ge, GaAs,
One of GaN, InP, SiC, AlN and compound semiconductors grown on these semiconductor substrates.

【0018】また、前記機能的結合は、典型的には、結
合面で接触抵抗を実質的に伴わない電気的結合、結合面
で光を実質的に損失無く伝搬する光学的結合などであ
る。これにより、同種或は異種半導体基板同士の結合に
於いて、微小面積での電気的結合を得たり、光放出素子
を形成した基板との光学的結合を行う場合に於いても、
接合力を与えるための接合部材から成る接合部の結合と
上記機能的機能(電気的結合、光学的結合)を同時に果
たすことができる。
The functional coupling is typically an electrical coupling substantially free of contact resistance at the coupling surface, an optical coupling that propagates light substantially without loss at the coupling surface, or the like. Thereby, in the connection between the same or different semiconductor substrates, in the case of obtaining an electrical connection in a very small area or performing an optical connection with the substrate on which the light emitting device is formed,
It is possible to simultaneously perform the above-mentioned functional functions (electrical connection, optical connection) and the connection of the connection portion made of the connection member for providing the connection force.

【0019】以上の接合工程は温室(25℃程度)で行
うのが好適である。
The above-mentioned joining step is preferably performed in a greenhouse (about 25 ° C.).

【0020】更に、前記第1の基板と第2基板の少なく
とも一方の接合部に電気的絶縁膜を形成すれば、接合部
で絶縁が確実に行われて、電気的結合面を有する素子構
造の機能が向上できる。この絶縁膜は典型的にはSi酸
化膜、Si窒化膜、或はAl酸化膜である。第1と第2
の基板の少なくとも一方の機能的結合面以外の個所に電
気的絶縁膜を形成してもよい。
Further, if an electrical insulating film is formed on at least one of the first substrate and the second substrate, an insulation is reliably performed at the junction, and an element structure having an electrical coupling surface is provided. Function can be improved. This insulating film is typically a Si oxide film, a Si nitride film, or an Al oxide film. First and second
An electrical insulating film may be formed on a portion other than at least one functional coupling surface of the substrate.

【0021】前記接合部の接合部材は、例えば電気的絶
縁膜上に凹凸状に形成された接着子で構成されうる。こ
の場合、前記第1と第2の基板の相対向する接合部は少
なくとも一方の基板に於いては凹凸状の接着子から成
り、一方の凸状の接着子を、相対向する他方の平面状の
接合部に押し付けることにより、第1と第2の基板間の
機械的接合を実現すれば、基板間の機械的接合と同時に
機能的結合の存在する空間を密閉空間として形成でき
る。
[0021] The joining member of the joining portion may be composed of, for example, an adhesive formed in an uneven shape on an electrical insulating film. In this case, the opposing joint portions of the first and second substrates are formed of an uneven adhesive in at least one of the substrates, and one convex adhesive is connected to the other opposing planar surface. If a mechanical joint between the first and second substrates is realized by pressing the joint between the first and second substrates, a space in which a functional joint exists simultaneously with the mechanical joint between the substrates can be formed as a closed space.

【0022】更に、典型的には、上記第1と第2の基板
の少なくとも一方の機能的結合面を微小な凸状にでき
る。
Furthermore, typically, at least one of the first and second substrates may have a slightly convex functional coupling surface.

【0023】また、典型的には、上記接合部材は塑性変
形能を有する材料から成るものである。この場合、塑性
変形能を有する材料は例えば金属材料から成るものであ
る。この金属材料は、典型的にはAl、Au、In、S
n、Cu、Zn、Ni又はPbである。或は、これらの
合金である。
Also, typically, the joining member is made of a material having plastic deformation ability. In this case, the material having plastic deformability is, for example, a metal material. This metal material is typically Al, Au, In, S
n, Cu, Zn, Ni or Pb. Or these alloys.

【0024】また、上記密閉空間を真空(減圧空間を含
む)にしたり、雰囲気ガスを置換した減圧状態にすれ
ば、機能的結合を長く良好に保つのに効果的である。こ
の雰囲気ガスは、好適には水素ガス、アルゴンガス、窒
素ガス或はこれらの混合ガス等の還元ガス或は不活性ガ
スである。
Further, if the closed space is evacuated (including a decompressed space) or is set in a decompressed state in which an atmospheric gas is replaced, it is effective to keep the functional connection long and good. The atmosphere gas is preferably a reducing gas or an inert gas such as a hydrogen gas, an argon gas, a nitrogen gas or a mixed gas thereof.

【0025】また、同一基板上に複数の機能的結合面と
複数の接合部を形成することにより、多くの素子構造を
同一基板上に一度に形成できる。そして、さらに上記密
閉空間内に機能的結合を有する光放出素子を、光放出素
子の光放出の波長と同等の長さの距離の範囲内に複数個
作成可能である。これにより、これらの複数の光放出素
子から各個別に放出する光を干渉光として取り出すこと
が可能になる。尚、この場合、必要に応じて素子完成後
に、各密閉空間毎の素子に切り離すことも可能である。
Further, by forming a plurality of functional coupling surfaces and a plurality of joints on the same substrate, many element structures can be formed on the same substrate at one time. Further, a plurality of light emitting elements having a functional connection in the closed space can be formed within a range of a length equal to the wavelength of light emission of the light emitting element. This makes it possible to extract light emitted individually from the plurality of light emitting elements as interference light. In this case, if necessary, after completion of the device, it is also possible to separate the device into each closed space.

【0026】[0026]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】(第1の実施例)図1、図2、図3、図
4、図5、図6、図7は本発明の第1実施例の特徴を最
も良く表す図である。これらの図に於いて、1は接合す
るための基板、2は同じく接合するための他の基板、3
は基板2の平坦面、4は基板1の平面から成る結合面、
5は基板2に作製した凸状部上の結合面、7は基板1上
の結合面4以外の部分に成膜した絶縁膜、8は基板2の
平坦面3上に成膜した絶縁膜、10は絶縁膜7上に成膜
した金属材料から成る中間層(中間層は、例えば、40
Å程度のCr/Auから成る)、11は絶縁層8上に成
膜した金属材料から成る基板2側の接合部、12は中間
層10上に形成した凸状の金属材料からなる基板1側の
接合部(例えば、図2に示すような同心円状に形成され
る)、13は基板1に形成した薄片基板(例えば、図3
に示すような円形状に形成され、図5に示すような断面
形状を有する)、14は基板1と基板2との接合によっ
て出来た密閉空間(図5参照)である。
(First Embodiment) FIGS. 1, 2, 3, 4, 5, 6, and 7 show the best features of the first embodiment of the present invention. In these figures, 1 is a substrate for bonding, 2 is another substrate for bonding, 3
Is a flat surface of the substrate 2, 4 is a bonding surface composed of the plane of the substrate 1,
5 is a bonding surface on the convex portion formed on the substrate 2, 7 is an insulating film formed on the substrate 1 other than the bonding surface 4, 8 is an insulating film formed on the flat surface 3 of the substrate 2, Reference numeral 10 denotes an intermediate layer made of a metal material formed on the insulating film 7 (the intermediate layer is, for example, 40
11 is a bonding portion on the substrate 2 side made of a metal material formed on the insulating layer 8, and 12 is a substrate 1 side made of a convex metal material formed on the intermediate layer 10. (For example, formed concentrically as shown in FIG. 2), 13 is a thin substrate formed on the substrate 1 (for example, FIG.
, And has a cross-sectional shape as shown in FIG. 5), and 14 is an enclosed space (see FIG. 5) formed by joining the substrate 1 and the substrate 2 together.

【0028】更に、図5、図6において、15は基板1
と基板2とを接合するための印加荷重、16は基板1に
非接触でかつ近傍に位置して基板1の結合面4、すなわ
ち薄片基板13以外の箇所を覆っており、導電性金属材
料からなる高周波を庶蔽するための庶蔽板、17は基板
1と基板2との結合界面を加熱する為の高周波発生器、
18は基板1と基板2との結合界面を照射するための照
射光、19は基板1と基板2との結合面から反射した照
射光を像(結合面の結合状態により変化する)として取
り込むための赤外線カメラ、20は赤外線カメラ19で
受像した映像を見るためのモニターテレビである。
Further, in FIG. 5 and FIG.
The applied load 16 for joining the substrate 1 and the substrate 2 is in non-contact with and close to the substrate 1 and covers the bonding surface 4 of the substrate 1, that is, a portion other than the thin substrate 13. A high-frequency generator for heating a bonding interface between the substrate 1 and the substrate 2;
Reference numeral 18 denotes irradiation light for irradiating a bonding interface between the substrate 1 and the substrate 2, and reference numeral 19 denotes irradiation light reflected from a bonding surface between the substrate 1 and the substrate 2 as an image (changes depending on a bonding state of the bonding surface). Reference numeral 20 denotes a monitor television for viewing an image received by the infrared camera 19.

【0029】上記構造に於いて、一方の接合用基板1に
半導体基板を用い、レジストマスクを用いたフォトレジ
スト工程により、結合面4以外の基板面に絶縁膜7を成
膜し、さらに絶縁膜7の上に金属膜からなる中間層10
を成膜する。そして、さらに中間層10の上に塑性変形
能を有する金属材料から成る凸状の接合部12を形成す
る。
In the above structure, a semiconductor substrate is used as one of the bonding substrates 1, and an insulating film 7 is formed on a substrate surface other than the bonding surface 4 by a photoresist process using a resist mask. 7, an intermediate layer 10 made of a metal film
Is formed. Then, a convex bonding portion 12 made of a metal material having a plastic deformability is formed on the intermediate layer 10.

【0030】次に、他方の接合用基板2に半導体基板を
用い、レジストマスクを利用したフォトリソプロセスを
用いて、まず、電気的結合面5の周囲を凹状にエッチン
グする。結果として、複数の凸状の電気的結合面5を形
成し、続いて、上記と同様な手法で電気的結合部5以外
の平坦面3上に絶縁膜8を成膜する。さらに絶縁膜8上
に塑性変形可能な金属材料から成る接合部11を成膜す
る。これを上から見た様子が図4に示されている。
Next, a semiconductor substrate is used as the other bonding substrate 2, and the periphery of the electrical coupling surface 5 is first etched in a concave shape by using a photolithography process using a resist mask. As a result, a plurality of convex electric coupling surfaces 5 are formed, and subsequently, an insulating film 8 is formed on the flat surface 3 other than the electric coupling portions 5 by the same method as described above. Further, a bonding portion 11 made of a plastically deformable metal material is formed on the insulating film 8. FIG. 4 shows this as viewed from above.

【0031】その後、基板1及び基板2上のそれぞれの
電気的結合面4及び5、及び接合部同士11及び12を
図1に見る様に相対向させ、図5に見る様な矢印Pの方
向に基板1及び基板2に対して互いに印加荷重15を印
加する。この際、印加荷重15の印加によって、図5に
見るように、接合部12の凸状の接着子は接合部11の
平坦面に押し付けられ、塑性変形過程を経ながら接合部
11の平坦面に接合する。この接合によって、基板1及
び基板2は強固な機械的接合強度を得る。
Thereafter, the electrical coupling surfaces 4 and 5 on the substrate 1 and the substrate 2 and the joints 11 and 12 are opposed to each other as shown in FIG. 1, and the direction of the arrow P as shown in FIG. , An applied load 15 is applied to the substrate 1 and the substrate 2. At this time, by application of the applied load 15, as shown in FIG. 5, the convex adhesive of the joint 12 is pressed against the flat surface of the joint 11, and undergoes a plastic deformation process. Join. By this bonding, the substrate 1 and the substrate 2 obtain strong mechanical bonding strength.

【0032】上記の機械的接合過程中、同時に基板1の
結合面4と基板2の結合面5が互いに密着するか、或は
極めて近接した状態になる。そして、上記の機械的接合
過程中に、同時に密閉空間14を形成することになる。
この密閉空間14は、上記の機械的接合過程を減圧雰囲
気中で行うことにより、減圧雰囲気にできる。
During the above-described mechanical bonding process, the bonding surface 4 of the substrate 1 and the bonding surface 5 of the substrate 2 are simultaneously in close contact with each other or in a state of being extremely close to each other. Then, during the above-mentioned mechanical joining process, the closed space 14 is formed at the same time.
The closed space 14 can be made into a reduced pressure atmosphere by performing the above-described mechanical bonding process in a reduced pressure atmosphere.

【0033】この場合、密閉空間14は減圧雰囲気であ
るため、基板1の結合面4は基板2の結合面5に大気圧
で押し付けられる。そして、その後、基板1にフォトレ
ジスト工程を用いて図5に見るような薄片部分13を形
成して行ったとき、図7に見るように薄片基板部13の
剛性の低下から、結合面4は、基板2上の絶縁膜8の方
に大気圧によって押し込まれる。
In this case, since the closed space 14 is in a reduced-pressure atmosphere, the bonding surface 4 of the substrate 1 is pressed against the bonding surface 5 of the substrate 2 at atmospheric pressure. Then, when the thin section 13 as shown in FIG. 5 is formed on the substrate 1 by using a photoresist process, the bonding surface 4 is formed due to a decrease in the rigidity of the thin section 13 as shown in FIG. Is pushed toward the insulating film 8 on the substrate 2 by the atmospheric pressure.

【0034】従って、基板2の凸状の結合面5が複数個
存在したとしても、図7に見る様に基板2上に絶縁膜8
を配することによって、結合面4及び結合面5以外の電
気的結合を避けて必要箇所のみの電気的結合を確立する
ことが可能になる。
Therefore, even if there are a plurality of convex bonding surfaces 5 of the substrate 2, as shown in FIG.
By arranging, it is possible to avoid the electric coupling other than the coupling surface 4 and the coupling surface 5 and to establish the electric coupling only at a necessary portion.

【0035】尚、上記の機械的接合過程を不活性ガスで
置換した減圧雰囲気中で行うことにより、密閉空間14
を不活性ガス雰囲気にすることも可能となる。或は、こ
れと同様な手法によって、密閉空間14を還元ガス雰囲
気にすることもできる。
By performing the above-mentioned mechanical joining process in a reduced-pressure atmosphere replaced with an inert gas, the sealed space 14 is removed.
In an inert gas atmosphere. Alternatively, the closed space 14 can be made into a reducing gas atmosphere by a similar method.

【0036】次の段階に於いて、接合表面層のみを高周
波により加熱する。すなわち、図6に見るように高周波
加熱器17を基板1の上方に設置し、そして高周波加熱
器17と基板1との間に高周波を遮蔽するための遮蔽板
16を置く。しかし、遮蔽板16は薄片基板部13の個
所のみ、図6に見る様に穴が空いてるため、上記高周波
はこの穴を通過して薄片基板部13に作用する。この様
に、薄片基板部13の表面は高周波によって加熱され、
そして、表面の近傍に位置している結合面4及び結合面
5の結合界面も同様に加熱される。この際、基板1の薄
片基板部13以外の領域は、遮蔽板16によって高周波
が遮られているので、加熱されない。
In the next step, only the bonding surface layer is heated by high frequency. That is, as shown in FIG. 6, the high-frequency heater 17 is installed above the substrate 1, and a shielding plate 16 for shielding high-frequency is placed between the high-frequency heater 17 and the substrate 1. However, since the shielding plate 16 has a hole only at the portion of the thin substrate portion 13 as shown in FIG. 6, the high frequency passes through the hole and acts on the thin substrate portion 13. In this way, the surface of the flake substrate portion 13 is heated by high frequency,
Then, the bonding interface between the bonding surface 4 and the bonding surface 5 located near the surface is similarly heated. At this time, the region other than the thin substrate portion 13 of the substrate 1 is not heated because the high frequency is blocked by the shielding plate 16.

【0037】薄片基板部13の領域のみが、すなわち結
合界面のみが局所的に加熱されるときには、同時に赤外
線カメラ19で撮った上記結合界面の様子をモニターテ
レビ20で観察するのがよい。この観察において、結合
が十分でないと分かった結合界面の個所に、局所的にレ
ーザ光18を照射し、この個所をレーザ光18の吸収熱
を利用して局所加熱する。
When only the region of the lamella substrate portion 13, that is, only the bonding interface is locally heated, it is preferable that the state of the bonding interface photographed by the infrared camera 19 is simultaneously observed on the monitor television 20. In this observation, the laser light 18 is locally applied to a portion of the bonding interface where it is found that the bonding is not sufficient, and this portion is locally heated using the heat of absorption of the laser light 18.

【0038】測定による測定値に於いて結合界面での電
気的結合が意図する値になるまで、上記の手法を続け
る。この手法により、結合面4及び結合面5の結合界面
での電気的結合面積は、上記した機械的接合時の密着に
比較して、さらに拡大し、より安定した特性を得ること
ができる。
The above method is continued until the electrical connection at the bonding interface reaches the intended value in the measured value. According to this method, the electrical coupling area at the coupling interface between the coupling surface 4 and the coupling surface 5 is further enlarged as compared with the close contact at the time of the mechanical coupling, and more stable characteristics can be obtained.

【0039】本実施例に於いて、基板1にp−InPを
用い、基板2にn−InP(レーザ構造を有する。図示
無し)を用い、基板1と基板2の表面に予め成膜してあ
る(図示無し)p−InPの電気的結合、すなわち、I
nP同士のp−p接合を行った。この種の固体間接合
で、レーザ構造を確立できる。しかし、MBE等の成膜
法で成膜した活性層に狭窄電流(しきい値を下げるた
め)を注入する為に必要とされる微小面での電気的結合
は、容易に実現できないこともある。また、発振レーザ
光の波長以下の距離の近傍に、図6に見るような別個の
複数の微小面での電気的結合を容易に実現できないこと
もあるので、これを実現する為に本発明の方法を用いる
と良い。
In this embodiment, p-InP is used for the substrate 1 and n-InP (having a laser structure; not shown) is used for the substrate 2, and a film is formed on the surfaces of the substrate 1 and the substrate 2 in advance. Some (not shown) electrical coupling of p-InP, ie, I
A pp junction between nPs was performed. With this type of solid-state bonding, a laser structure can be established. However, electrical coupling on a minute surface required for injecting a constriction current (to lower a threshold) into an active layer formed by a film forming method such as MBE may not be easily realized. . In addition, in the vicinity of a distance equal to or shorter than the wavelength of the oscillating laser light, electrical coupling on a plurality of separate micro surfaces as shown in FIG. 6 may not be easily realized. It is good to use a method.

【0040】基板1及び基板2については、InP以外
の材料、例えばSi、Ge、GaAs、GaN、Si
C、AlN同士、或はこれらの材料の異種材料同士の組
み合わせによる接合(電気的結合)を行うことも可能で
ある。
The substrates 1 and 2 are made of a material other than InP, for example, Si, Ge, GaAs, GaN, Si
It is also possible to perform joining (electrical coupling) by combining C and AlN or by combining different materials of these materials.

【0041】また、本実施例では上記接合部材をメッキ
手法を用いて成膜したが、他の方法たとえば真空蒸着を
用いても形成できる。
In the present embodiment, the bonding member is formed by plating, but may be formed by another method, for example, vacuum evaporation.

【0042】更に、本実施例において、接合部材として
Auを用いたが、このほかにも塑性変形能を有する材料
であればよい。例えば、Al、Sn、In、Cu、Z
n、Pb等、或はこれらの合金であっても同様に使用可
能である。
Further, in this embodiment, Au is used as the joining member, but other materials having plastic deformability may be used. For example, Al, Sn, In, Cu, Z
n, Pb, etc., or their alloys can be used similarly.

【0043】更に、本実施例で、絶縁膜としてSi酸化
膜を用いたが、ほかにAl酸化膜、Si窒化膜を用いる
ことも可能である。
Further, in this embodiment, the Si oxide film is used as the insulating film. However, an Al oxide film or a Si nitride film can be used instead.

【0044】更に、本実施例において、高周波の遮蔽板
として、銅板を用いたが、導電性基板であればよい。こ
のほかにも例えばAl、Sn、Znなどでも良く、これ
らは可塑性に富み使用しやすい。
Further, in this embodiment, a copper plate is used as the high frequency shielding plate, but any conductive substrate may be used. In addition, for example, Al, Sn, Zn and the like may be used, and these are rich in plasticity and easy to use.

【0045】更に、本実施例において、照射光としてA
rレーザーを用いたが、例えばYAGレーザー、炭酸ガ
スレーザー、ヘリウムネオンレーザ、エキシマレーザー
などであっても同様に使用可能である。
Further, in the present embodiment, A
Although an r laser was used, for example, a YAG laser, a carbon dioxide laser, a helium neon laser, an excimer laser, or the like can also be used.

【0046】これらの置き換えは第2実施例でも同様の
ことが言える。
The same can be said for the replacement in the second embodiment.

【0047】本手法により、レーザー構造(活性層、I
nGaAsP)に上記微小領域での電気的結合を実現し
て電極を配し、両基板間に電圧を印加したところ、発光
を観察した。
According to this method, the laser structure (active layer, I
An electrode was arranged on the nGaAsP) to realize the electrical coupling in the minute region, and a voltage was applied between the two substrates. As a result, light emission was observed.

【0048】更に、薄片基板部13にミラーを形成し
(図示無し)、上記同様に両基板間に電圧を印加したと
ころ、より偏光した発光を観察した。
Further, a mirror was formed on the thin substrate portion 13 (not shown), and a voltage was applied between the two substrates in the same manner as described above.

【0049】尚、基板2にGaAs構造(活性層を含
む。図示無し)を設けた場合にも、本発明を適用可能で
ある。さらに、本実施例では基板2にレーザー構造を有
する基板を用いたが、基板1にレーザー構造を有する基
板を用いた場合にも、本発明は適用可能である。
The present invention is also applicable to a case where a GaAs structure (including an active layer, not shown) is provided on the substrate 2. Further, in this embodiment, a substrate having a laser structure is used as the substrate 2, but the present invention can be applied to a case where a substrate having a laser structure is used as the substrate 1.

【0050】(実施例2)図2、図3、図8、図9、図
10、図11、図12は本発明の第2実施例の特徴を表
す図である。同図において、第1実施例で説明した符号
と同じ符号のものは同一機能の部分であることを表す。
これらの図で、5は基板2に作製した第1実施例のもの
とは異なる凸状からなる結合面、6は凸状の結合面5の
周囲近傍のテラス、8は基板2の平坦面3上に及びテラ
ス6上にそれぞれ成膜した絶縁膜、9は絶縁膜8上に成
膜した金属材料から成る中間層、21は薄片化基板13
をさらに薄片化するための照射イオン、22はイオン
銃、23はミラーである。
(Embodiment 2) FIGS. 2, 3, 8, 9, 10, 11, and 12 show the features of the second embodiment of the present invention. In the same figure, the same reference numerals as those described in the first embodiment denote parts having the same function.
In these figures, 5 is a convex bonding surface different from that of the first embodiment fabricated on the substrate 2, 6 is a terrace near the periphery of the convex bonding surface 5, and 8 is a flat surface 3 of the substrate 2. An insulating film formed on the insulating film 8 on the terrace 6; an intermediate layer 9 made of a metal material formed on the insulating film 8;
Is an irradiation ion for further thinning, 22 is an ion gun, and 23 is a mirror.

【0051】上記構造において、第1実施例と同様に、
一方の接合用基板1に半導体基板を用い、レジストマス
クを用いたフォトレジスト工程により、結合面4以外の
基板面に絶縁膜7を成膜し、さらに絶縁膜7の上に金属
膜からなる中間層10を成膜し、そしてさらに中間層1
0の上に塑性変形能を有する金属材料から成る凸状の接
合部12を形成する。
In the above structure, similar to the first embodiment,
A semiconductor substrate is used as one of the bonding substrates 1, and an insulating film 7 is formed on a substrate surface other than the bonding surface 4 by a photoresist process using a resist mask, and an intermediate metal film is formed on the insulating film 7. Layer 10 is deposited and further intermediate layer 1
A convex joint portion 12 made of a metal material having plastic deformability is formed on zero.

【0052】次に、他方の接合用基板2に半導体基板を
用い、フォトレジストプロセスを用いて先ず電気的結合
面5の周囲を凹状にエッチングし、結合面5の周囲近傍
の平坦個所をテラス6とする。さらにフォトレジストプ
ロセスを用いて、テラス6の外周囲を凹状にエッチング
する。
Next, using a semiconductor substrate as the other bonding substrate 2, first, the periphery of the electrical coupling surface 5 is etched into a concave shape using a photoresist process, and a flat portion near the periphery of the coupling surface 5 is terraced 6. And Further, the outer periphery of the terrace 6 is etched in a concave shape by using a photoresist process.

【0053】上記プロセスによって、結果として、凸状
の電気的結合面5及びテラス6を形成したことになる。
尚、フォトレジストプロセスを用いて、図8、図9に見
るように結合面5及びテラス6をそれぞれ複数個ずつ、
同一密閉空間14に形成する。
As a result of the above-described process, a convex electric coupling surface 5 and a terrace 6 are formed.
In addition, as shown in FIG. 8 and FIG. 9, a plurality of bonding surfaces 5 and terraces 6 are respectively formed using a photoresist process.
It is formed in the same closed space 14.

【0054】この後、フォトリソプロセス、成膜プロセ
ス及びリフトオフプロセスを通して、基板2に電気的絶
縁膜8を結合面5以外の領域に成膜し、さらに、上記と
同様なプロセスを通して、中間層9及び接合部11の成
膜を行った。
Thereafter, an electric insulating film 8 is formed on the substrate 2 in a region other than the bonding surface 5 through a photolithography process, a film forming process, and a lift-off process, and further through the same process as described above. The bonding part 11 was formed into a film.

【0055】尚、上記絶縁膜8の成膜に際し、テラス6
上の絶縁膜8を結合面5と同等な高さに、或は結合面5
より低く成膜することが好ましい。
When the insulating film 8 is formed, the terrace 6
The upper insulating film 8 is set at the same height as the bonding surface 5 or
It is preferable to form a lower film.

【0056】次に、図10に見るように基板1の結合面
4及び基板2の結合面5が互いに相対向するようにアラ
イメントし、アライメント後、減圧雰囲気中で印加荷重
15を両基板1、2間に作用させる。
Next, as shown in FIG. 10, alignment is performed so that the bonding surface 4 of the substrate 1 and the bonding surface 5 of the substrate 2 are opposed to each other. Act between the two.

【0057】これにより、基板1の接合部12と基板2
の接合部11は印加荷重15の印加によって塑性変形過
程中に接合する。接合によって、図10に見るように、
基板1、基板2、接合部11及び接合部12で囲まれた
空間領域は密閉空間14になり、同時に基板1の結合面
4と基板2の複数の凸状の接合部5は互いに密着状態或
は近傍状態に至る。
Thus, the bonding portion 12 of the substrate 1 and the substrate 2
Are joined during the plastic deformation process by application of an applied load 15. By joining, as seen in FIG.
A space region surrounded by the substrate 1, the substrate 2, the bonding portion 11 and the bonding portion 12 becomes a closed space 14, and at the same time, the bonding surface 4 of the substrate 1 and the plurality of convex bonding portions 5 of the substrate 2 are in a state of being in close contact with each other. Leads to the near state.

【0058】上記の接合したサンプルを減圧雰囲気中か
ら大気中に取り出し、この後、図10に見るように基板
1の結合面4の反対面の領域を除去し、薄片基板13を
形成する。この薄片化工程で剛性を減少した薄片基板部
13は、大気圧によって密閉空間14側へ押し込まれ
る。この押し込みによって結合面4と結合面5はより強
固に互いに密着し、電気的結合を得る。この段階で基板
1及び基板2の電気的結合状態はI(電流)−V(電
圧)線図から確認できる。
The bonded sample is taken out of the reduced-pressure atmosphere into the air. Thereafter, as shown in FIG. 10, the region of the substrate 1 opposite to the bonding surface 4 is removed to form a thin substrate 13. The lamella substrate portion 13 whose rigidity has been reduced in the lamella-forming step is pushed into the closed space 14 by the atmospheric pressure. By this pushing, the bonding surface 4 and the bonding surface 5 are more firmly adhered to each other, and an electrical connection is obtained. At this stage, the electrical coupling state between the substrate 1 and the substrate 2 can be confirmed from an I (current) -V (voltage) diagram.

【0059】次に、電気的結合面積を高めるために、図
10に見るように接合サンプルの基板1の薄片基板部1
3をイオン銃22を用いてイオンスパッタリングによっ
てさらに一層薄片化し、同時にイオン照射による発生熱
で局所加熱した。そして、薄片化工程によって更に薄片
化した薄片基板13の電気的結合領域を、照射光18を
用いて照射し、結合面4と結合面5との結合界面からの
反射光を赤外線カメラ19で取り込み、モニターテレビ
20で映像として観察した。このときの電気的結合領域
の状況を図11に示す。ここでも、電気的結合状態をI
(電流)−V(電圧)線図で確認できる。
Next, in order to increase the electrical coupling area, as shown in FIG.
Sample No. 3 was further thinned by ion sputtering using an ion gun 22, and was simultaneously locally heated with heat generated by ion irradiation. Then, the electrical coupling region of the thin substrate 13 further thinned by the thinning step is irradiated with the irradiation light 18, and the reflected light from the bonding interface between the bonding surface 4 and the bonding surface 5 is captured by the infrared camera 19. And observed on the monitor TV 20 as an image. FIG. 11 shows the state of the electrical coupling region at this time. Again, the electrical coupling state is I
It can be confirmed by a (current) -V (voltage) diagram.

【0060】上記一連の工程を繰返し行う。すなわち薄
片化基板13の薄片化と照射光18の照射を、より安定
した特性を得るまで続ける。安定した特性を得た後、図
12に見るように接合サンプルの薄片基板13上にミラ
ー23を成膜する。
The above series of steps is repeated. That is, the thinning of the sliced substrate 13 and the irradiation of the irradiation light 18 are continued until more stable characteristics are obtained. After obtaining stable characteristics, a mirror 23 is formed on the thin substrate 13 of the bonded sample as shown in FIG.

【0061】本実施例においては、InP基板2上に成
膜した活性層を含むエピタキシャル層(図示無し)に発
光層を作成し、凸状の先端面を電気的な結合面5とし、
一方の電極としてGaAs基板1の平坦個所を電気的な
結合面4としたものがある。基板1及び基板2を上記の
ようにお互いに接合し、電気的結合を確認した後、図1
2に見るように基板1上に導電性半導体ミラーを成膜し
た。本実施例において、レーザ構造(活性層はInGa
AsP、ミラーは10対のGaAs/AlAs)に電極
(図示無し)を取り付け、これら電極間に電圧を印加し
たところ、発光を観察した。
In this embodiment, a light-emitting layer is formed on an epitaxial layer (not shown) including an active layer formed on the InP substrate 2, and a convex tip surface is used as an electrical coupling surface 5.
As one of the electrodes, there is one in which a flat portion of the GaAs substrate 1 is used as an electric coupling surface 4. After bonding the substrate 1 and the substrate 2 to each other as described above and confirming the electrical coupling, FIG.
As shown in FIG. 2, a conductive semiconductor mirror was formed on the substrate 1. In this embodiment, the laser structure (the active layer is InGa
When electrodes (not shown) were attached to 10 pairs of GaAs / AlAs for AsP and mirrors, and a voltage was applied between these electrodes, light emission was observed.

【0062】尚、本実施例において、接合体を形成後、
ミラーを成膜したが、導電性半導体ミラー電極からなる
エピタキシャル層(図示無し)の先端を電気的な結合面
4としてもよい。
In this embodiment, after forming the joined body,
Although the mirror is formed, the tip of an epitaxial layer (not shown) made of a conductive semiconductor mirror electrode may be used as the electrical coupling surface 4.

【0063】本実施例において、照射イオンをArイオ
ンを用いたが、例えばKrイオンなどであっても同様に
使用可能である。
In this embodiment, Ar ions are used as the irradiation ions. However, for example, Kr ions or the like can also be used.

【0064】[0064]

【発明の効果】以上説明したように、本発明によれば、
機能的結合を生ずる機能的な結合面と接合力を与えるた
めの接合層からなる接合領域とをそれぞれ有する同種或
は異種材料の第1と第2の基板を形成し、第1と第2の
基板上の機能的結合面同士及び接合層同士をそれぞれ相
対向させて接合層を介して減圧雰囲気中で荷重印加によ
り機械的に接合すると共に、機能的結合面同士を密着、
或は近傍させる。この接合によって減圧雰囲気から成る
密閉空間が形成され、密閉空間の中に機能的結合が存在
することになる。この後、少なくとも一方の基板の機能
的結合面に対して反対側の基板面を薄片化し、剛性を減
少させる。この薄片化により、機能的結合面同士は大気
圧によって、より密着性を増し、同時に、イオン照射に
よる更なる薄片化及び加熱による機能的結合面の改善及
び高周波加熱による機能的結合面の更なる改善をより行
いやすくなる。そして、機能的結合面でのイオン照射に
よる発生熱、および高周波加熱によって、結合界面での
空隙を無くするような方向に原子拡散(界面拡散)を生
ずるので、より強固により安定した機能的結合を実現で
きる。
As described above, according to the present invention,
Forming first and second substrates of the same or different materials, each having a functional bonding surface for providing a functional bond and a bonding region comprising a bonding layer for providing bonding force; The functional bonding surfaces on the substrate are made to face each other and the bonding layers are opposed to each other, and mechanically bonded by applying a load in a reduced-pressure atmosphere via the bonding layers, and the functional bonding surfaces are in close contact with each other,
Or make it near. This joining forms a closed space consisting of a reduced-pressure atmosphere, and a functional connection exists in the closed space. Thereafter, the surface of the substrate opposite to the functional connection surface of at least one substrate is thinned to reduce rigidity. Due to the thinning, the functional bonding surfaces are more closely adhered to each other by the atmospheric pressure, and at the same time, further thinning by ion irradiation and improvement of the functional bonding surface by heating and further improvement of the functional bonding surface by high frequency heating. It will be easier to make improvements. Then, due to the heat generated by ion irradiation on the functional bonding surface and the high-frequency heating, atom diffusion (interface diffusion) occurs in a direction that eliminates voids at the bonding interface, so that a stronger and more stable functional bond can be achieved. realizable.

【0065】更に、イオン照射によって、より薄片化
し、より剛性を減少させた状態で、局所加熱しながら機
能的結合部の特性を観察しつつ、最も良好な安定した特
性を生じた時点で、イオン照射或は高周波加熱を停止す
ることによって、微小領域での機能的結合を可能にする
手法である。
Furthermore, while observing the characteristics of the functional joint while locally heating in a state where the thinning and the rigidity are reduced by ion irradiation, when the best stable characteristics are generated, This is a method that enables functional coupling in a minute area by stopping irradiation or high-frequency heating.

【0066】以上より次の如き効果が得られる。 1、室温下で微小領域での機能的結合が可能であり、か
つ基板同士の接合強度を十分得られる。 2、減圧雰囲気中で、機能的結合面同士の周囲の機械的
な接合によって機能的結合面を減圧密閉空間内に封じ込
め、この後、基板の薄片化により、大気圧力で機能的結
合面の密着を実現するので、この結合面での過度な応力
集中を避けることが可能である。 3、同一減圧密閉空間の中に、光の波長内程度の距離に
複数の電気的結合面などを形成可能である。
From the above, the following effects can be obtained. 1. Functional bonding can be performed in a minute area at room temperature, and sufficient bonding strength between substrates can be obtained. 2. In a decompressed atmosphere, the functional joint surface is sealed in the depressurized closed space by mechanical joining around the functional joint surfaces, and then the substrate is thinned, and the functional joint surface is brought into close contact with the atmospheric pressure. Therefore, it is possible to avoid excessive stress concentration at the joint surface. 3. A plurality of electrical coupling surfaces can be formed within the same decompressed closed space at a distance within the wavelength of light.

【0067】4、機能的結合面同士を密着した後、機能
的結合面を高周波加熱によって、或はイオン照射による
薄片化過程での熱発生によって原子の表面拡散及び界面
拡散を促すことにより、さらに機能的結合をより安定さ
せられる。電気炉のように全体を加熱するような加熱源
を必要としないので、基板間の熱膨張係数の違いに関係
なく、微小領域での機能的結合を可能にすることができ
る。 5、機能的結合面を含む密閉空間内を減圧雰囲気、不活
性ガス置換による減圧雰囲気、或は還元ガス置換による
減圧雰囲気にすることも可能であり、これにより素子特
性を良好に保持できる。
4. After the functional bonding surfaces are brought into close contact with each other, the functional bonding surfaces are heated by high-frequency heating, or heat is generated in the thinning process by ion irradiation to promote the surface diffusion and interface diffusion of atoms. Functional binding can be made more stable. Since a heating source for heating the whole like an electric furnace is not required, functional coupling in a minute area can be realized regardless of a difference in thermal expansion coefficient between substrates. 5. The inside of the sealed space including the functional connection surface can be set to a reduced pressure atmosphere, a reduced pressure atmosphere by the replacement of inert gas, or a reduced pressure atmosphere by the replacement of the reducing gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る荷重印加前の両基
板の断面を説明する図である。
FIG. 1 is a diagram illustrating a cross section of both substrates before a load is applied according to a first example of the present invention.

【図2】図1及び図8のA矢視図である。FIG. 2 is a view on arrow A in FIGS. 1 and 8;

【図3】図5及び図10のB矢視図である。FIG. 3 is a view as seen from the arrow B in FIGS. 5 and 10;

【図4】図1のC矢視図である。FIG. 4 is a view taken in the direction of the arrow C in FIG. 1;

【図5】本発明の第1の実施例に係る荷重印加時の密着
接合における両基板の断面を説明する図である。
FIG. 5 is a diagram illustrating a cross section of both substrates in close contact bonding when a load is applied according to the first embodiment of the present invention.

【図6】本発明の第1の実施例に係る高周波加熱による
電気的結合改善処理における両基板の断面を説明する図
である。
FIG. 6 is a diagram illustrating a cross section of both substrates in an electrical coupling improvement process by high-frequency heating according to the first embodiment of the present invention.

【図7】図6のD部の核大図である。FIG. 7 is a core diagram of a portion D in FIG. 6;

【図8】本発明の第2の実施例に係る荷重印加前の両基
板の断面を説明する図である。
FIG. 8 is a diagram illustrating a cross section of both substrates before a load is applied according to a second embodiment of the present invention.

【図9】図8のE矢視図である。FIG. 9 is a view as seen from an arrow E in FIG. 8;

【図10】本発明の第2の実施例に係るイオン照射及び
光照射による電気的結合改善処理における断面図であ
る。
FIG. 10 is a cross-sectional view in an electrical coupling improvement process by ion irradiation and light irradiation according to a second embodiment of the present invention.

【図11】図10のF部の拡大図である。FIG. 11 is an enlarged view of a portion F in FIG. 10;

【図12】本発明の第2の実施例に係るレーザ構造の断
面を説明する図である。
FIG. 12 is a diagram illustrating a cross section of a laser structure according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2 基板 3 平坦面 4、5 結合面 6 テラス 7、8 絶縁膜 9、10 中間層 11、12 接合部 13 薄片基板 14 密閉空間 15 印加荷重 16 遮蔽板 17 高周波発生器 18 照射光 19 赤外線カメラ 20 モニターテレビ 21 照射イオン 22 イオン銃 23 ミラー DESCRIPTION OF SYMBOLS 1, 2 Substrate 3 Flat surface 4, 5 Coupling surface 6 Terrace 7, 8 Insulating film 9, 10 Intermediate layer 11, 12 Joint part 13 Thin substrate 14 Sealed space 15 Applied load 16 Shielding plate 17 High frequency generator 18 Irradiation light 19 Infrared Camera 20 Monitor TV 21 Irradiated ions 22 Ion gun 23 Mirror

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】夫々、機能的結合を生ずる機能的結合面と
接合力を与える接合部を有し、機能的結合面の周囲に接
合部を設けた同種或は異種材料から成る第1と第2の基
板を形成し、 第1と第2の基板の機能的結合面同士及び接合部同士を
それぞれ相対向させて、接合部の接合部材を介して第1
と第2の基板を減圧雰囲気中で機械的に接合すると共
に、機能的結合面同士を近接させつつ、機能的結合面を
含む空間を減圧雰囲気から成る密閉空間に形成し、 密閉空間を形成後、少なくとも一方の基板の密閉空間に
近接する部分を薄片化し、薄片化によって可撓化した基
板の部分を大気圧によって密閉空間側へ押し込んで機能
的結合面の機能的結合を果たし、 さらに、機能的結合を果している個所に、更なる薄片化
を行うと同時に局所加熱を行うイオン照射と局所的に高
周波加熱を行う高周波電界印加との少なくとも一方を行
なうことを特徴とする微小領域接合を行なう基板結合
法。
A first and a second material of the same or different kind, each having a functional coupling surface for producing a functional coupling and a joint for providing a joining force, and having a joint around the functional coupling surface. The second substrate is formed, and the functional bonding surfaces of the first and second substrates and the bonding portions are opposed to each other.
And the second substrate are mechanically joined in a reduced-pressure atmosphere, and while the functional coupling surfaces are brought close to each other, a space including the functional coupling surface is formed in a closed space composed of the reduced-pressure atmosphere. Thinning a portion of at least one of the substrates in the vicinity of the sealed space, and pressing a portion of the substrate, which has been made flexible by the thinning, into the sealed space side by atmospheric pressure to achieve a functional connection of a functional connection surface; A substrate for bonding a small area, characterized by performing at least one of ion irradiation for performing local heating and applying high frequency electric field for locally performing high frequency heating while performing further thinning at a location where a mechanical coupling is achieved. Join method.
【請求項2】1つの密閉空間中に複数の機能的結合の箇
所を有する様に第1と第2の基板が形成されていること
を特徴とする請求項1記載の基板接合法。
2. The substrate bonding method according to claim 1, wherein the first and second substrates are formed so as to have a plurality of functionally connected portions in one closed space.
【請求項3】第1と第2の基板の接合により、光放出素
子を構成し、複数の機能的結合の箇所を光放出素子から
放出する光の波長と同等か或は波長以下の距離内に形成
する様に第1と第2の基板が形成されていることを特徴
とする請求項2記載の基板接合法。
3. A light-emitting device is formed by joining the first and second substrates, and a plurality of functionally coupled portions are within a distance equal to or less than the wavelength of light emitted from the light-emitting device. 3. The method according to claim 2, wherein the first and second substrates are formed so as to form a substrate.
【請求項4】第1と第2の基板の接合により密閉空間が
1つ或は複数形成される様に第1と第2の基板が形成さ
れていることを特徴とする請求項1、2または3記載の
基板接合法。
4. The first and second substrates are formed so that one or more sealed spaces are formed by joining the first and second substrates. Or the substrate bonding method according to 3.
【請求項5】機能的結合を果している個所のみにイオン
照射を可能とするために、マスクとしての遮蔽板を用い
ることを特徴とする請求項1乃至4の何れかに記載の基
板接合法。
5. The substrate bonding method according to claim 1, wherein a shielding plate is used as a mask so as to enable ion irradiation only at a portion where a functional connection is achieved.
【請求項6】機能的結合を果している個所のみを高周波
加熱するために、高周波電界を遮蔽するための導電体か
ら成る遮蔽板を機能的結合を果している個所以外に用い
ることを特徴とする請求項1乃至5の何れかに記載の基
板接合法。
6. A high-frequency heating of only a portion having a functional connection, a shielding plate made of a conductor for shielding a high-frequency electric field is used at a portion other than the portion having a functional connection. Item 6. The substrate bonding method according to any one of Items 1 to 5.
【請求項7】前記基板は半導体基板であることを特徴と
する請求項1乃至6の何れかに記載の基板結合法。
7. The method according to claim 1, wherein the substrate is a semiconductor substrate.
【請求項8】半導体基板はSi、Ge、GaAs、Ga
N、InP、SiC、AlN及びこれらの半導体基板上
に成膜した化合物半導体の何れかであることを特徴とす
る請求項7記載の基板結合法。
8. The semiconductor substrate is made of Si, Ge, GaAs, Ga.
The substrate bonding method according to claim 7, wherein the substrate is any one of N, InP, SiC, AlN, and a compound semiconductor formed on these semiconductor substrates.
【請求項9】第1と第2の基板の少なくとも一方中に、
半導体レーザの活性層になり得る薄膜層を有することを
特徴とする請求項1乃至8の何れかに記載の基板結合
法。
9. The method according to claim 1, wherein at least one of the first and second substrates includes:
9. The method according to claim 1, further comprising a thin film layer that can be an active layer of the semiconductor laser.
【請求項10】第1と第2の基板の少なくとも一方の機
能的結合面以外の個所に電気的絶縁膜を形成することを
特徴とする請求項1乃至9の何れかに記載の基板結合
法。
10. The substrate bonding method according to claim 1, wherein an electrical insulating film is formed at a portion other than at least one of the functional bonding surfaces of the first and second substrates. .
【請求項11】第1と第2の基板の少なくとも一方の機
能的結合面を凸状部状の平面にすることを特徴とする請
求項1乃至10の何れかに記載の基板結合法。
11. The substrate bonding method according to claim 1, wherein at least one of the first and second substrates has a functional connection surface formed as a convex-shaped flat surface.
【請求項12】接合部の接合部材は塑性変形能を有する
材料から成ることを特徴とする請求項1乃至11の何れ
かに記載の基板結合法。
12. The method according to claim 1, wherein the joining member of the joining portion is made of a material having a plastic deformation ability.
【請求項13】接合部の接合部材は金属から成ることを
特徴とする請求項12記載の基板結合法。
13. The method according to claim 12, wherein the joining member of the joining portion is made of metal.
【請求項14】前記減圧雰囲気は不活性ガス、還元ガス
或はこれらの混合ガスであることを特徴とする請求項1
乃至13の何れかにに記載の基板接合法。
14. The reduced pressure atmosphere is an inert gas, a reducing gas, or a mixed gas thereof.
14. The substrate bonding method according to any one of items 13 to 13.
【請求項15】前記減圧雰囲気はアルゴンガス、窒素ガ
ス、水素ガス或はこれらの混合ガスであることを特徴と
する請求項14記載の基板接合法。
15. The method according to claim 14, wherein the reduced pressure atmosphere is an argon gas, a nitrogen gas, a hydrogen gas, or a mixed gas thereof.
【請求項16】夫々、機能的結合を生ずる機能的結合面
と接合力を与える接合部を有し、機能的結合面の周囲に
接合部を設けた同種或は異種材料から成る第1と第2の
基板の機能的結合面同士及び接合部同士をそれぞれ相対
向させて、接合部の接合部材を介して第1と第2の基板
を減圧雰囲気中で機械的に接合すると共に、機能的結合
面同士を近接させつつ、機能的結合面を含む空間を減圧
雰囲気から成る密閉空間に形成した後、少なくとも一方
の基板の密閉空間に近接する部分を薄片化し、薄片化に
よって可撓化した基板の部分を大気圧によって密閉空間
側へ押し込んで機能的結合面の機能的結合を果たし、さ
らに、機能的結合を果している個所に、更なる薄片化を
行うと同時に局所加熱を行うイオン照射と局所的に高周
波加熱を行う高周波電界印加との少なくとも一方を行な
って構成されたことを特徴とする微小領域接合部を含む
基板結合構造体。
16. A first and a second material of the same or different kind, each having a functional connection surface for producing a functional connection and a joint for providing a bonding force and having a joint around the functional connection surface. The first and second substrates are mechanically joined in a reduced-pressure atmosphere via the joining member of the joining portion, with the functional coupling surfaces of the second substrate facing each other and the joining portions facing each other, and the functional joining is performed. After forming the space including the functional coupling surface in a closed space made of a reduced-pressure atmosphere while bringing the surfaces close to each other, the portion of at least one of the substrates that is close to the closed space is sliced, and the flexible substrate is thinned. The part is pushed into the closed space side by atmospheric pressure to achieve the functional connection of the functional connection surface, and furthermore, at the place where the functional connection is achieved, further thinning and local heating are performed simultaneously with ion irradiation and local irradiation High-frequency heating to high frequency Substrate binding structure containing minute domains junction, characterized in that it is constructed by performing at least one of the electric field application.
【請求項17】1つの密閉空間中に複数の機能的結合の
箇所を有する様に第1と第2の基板が形成されているこ
とを特徴とする請求項16記載の基板結合構造体。
17. The substrate coupling structure according to claim 16, wherein the first and second substrates are formed so as to have a plurality of functional coupling points in one closed space.
【請求項18】第1と第2の基板の接合により、光放出
素子を構成し、複数の機能的結合の箇所を光放出素子か
ら放出する光の波長と同等か或は波長以下の距離内に形
成する様に第1と第2の基板が形成されていることを特
徴とする請求項17記載の基板結合構造体。
18. A light emitting device is formed by joining the first and second substrates, and a plurality of functionally coupled portions are located within a distance equal to or less than the wavelength of light emitted from the light emitting device. 18. The substrate coupling structure according to claim 17, wherein the first and second substrates are formed so as to form a substrate.
【請求項19】第1と第2の基板の接合により密閉空間
が1つ或は複数形成される様に第1と第2の基板が形成
されていることを特徴とする請求項16、17または1
8記載の基板接合構造体。
19. The first and second substrates are formed so that one or more sealed spaces are formed by joining the first and second substrates. Or 1
9. The substrate bonding structure according to 8.
【請求項20】前記基板は半導体基板であることを特徴
とする請求項16乃至19の何れかに記載の基板結合構
造体。
20. The substrate coupling structure according to claim 16, wherein said substrate is a semiconductor substrate.
【請求項21】半導体基板はSi、Ge、GaAs、G
aN、InP、SiC、AlN及びこれらの半導体基板
上に成膜した化合物半導体の何れかであることを特徴と
する請求項20記載の基板結合構造体。
21. A semiconductor substrate comprising Si, Ge, GaAs, G
21. The substrate bonding structure according to claim 20, wherein the substrate bonding structure is any one of aN, InP, SiC, AlN, and a compound semiconductor formed on the semiconductor substrate.
【請求項22】第1と第2の基板の少なくとも一方中
に、半導体レーザの活性層になり得る薄膜層を有するこ
とを特徴とする請求項16乃至21の何れかに記載の基
板結合構造体。
22. The substrate-coupling structure according to claim 16, wherein a thin film layer that can be an active layer of a semiconductor laser is provided in at least one of the first and second substrates. .
【請求項23】第1と第2の基板の少なくとも一方の機
能的結合面以外の個所に電気的絶縁膜が形成されている
ことを特徴とする請求項16乃至22の何れかに記載の
基板結合構造体。
23. The substrate according to claim 16, wherein an electrical insulating film is formed at a portion other than at least one of the functional coupling surfaces of the first and second substrates. Combined structure.
【請求項24】第1と第2の基板の少なくとも一方の機
能的結合面を凸状部状の平面にすることを特徴とする請
求項16乃至23の何れかに記載の基板結合構造体。
24. The substrate coupling structure according to claim 16, wherein a functional coupling surface of at least one of the first and second substrates is a convex-shaped flat surface.
【請求項25】接合部の接合部材は塑性変形能を有する
材料から成ることを特徴とする請求項16乃至24の何
れかに記載の基板結合構造体。
25. The substrate-coupling structure according to claim 16, wherein the bonding member at the bonding portion is made of a material having plastic deformation ability.
【請求項26】接合部の接合部材は金属から成ることを
特徴とする請求項25記載の基板結合構造体。
26. The substrate coupling structure according to claim 25, wherein the joining member of the joining portion is made of metal.
【請求項27】前記減圧雰囲気は不活性ガス、還元ガス
或はこれらの混合ガスであることを特徴とする請求項1
6乃至26の何れかにに記載の基板接合構造体。
27. The reduced pressure atmosphere is an inert gas, a reducing gas or a mixed gas thereof.
27. The substrate bonding structure according to any one of 6 to 26.
【請求項28】前記減圧雰囲気はアルゴンガス、窒素ガ
ス、水素ガス或はこれらの混合ガスであることを特徴と
する請求項27記載の基板接合構造体。
28. The substrate bonding structure according to claim 27, wherein the reduced pressure atmosphere is an argon gas, a nitrogen gas, a hydrogen gas, or a mixed gas thereof.
JP29392099A 1999-10-15 1999-10-15 Substrate-connecting method for joining minute region and substrate-connecting structure Pending JP2001119092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29392099A JP2001119092A (en) 1999-10-15 1999-10-15 Substrate-connecting method for joining minute region and substrate-connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29392099A JP2001119092A (en) 1999-10-15 1999-10-15 Substrate-connecting method for joining minute region and substrate-connecting structure

Publications (1)

Publication Number Publication Date
JP2001119092A true JP2001119092A (en) 2001-04-27

Family

ID=17800881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29392099A Pending JP2001119092A (en) 1999-10-15 1999-10-15 Substrate-connecting method for joining minute region and substrate-connecting structure

Country Status (1)

Country Link
JP (1) JP2001119092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549299A (en) * 2016-10-24 2017-03-29 中国科学院半导体研究所 A kind of subcarrier encapsulating structure for directly modulation chip of laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549299A (en) * 2016-10-24 2017-03-29 中国科学院半导体研究所 A kind of subcarrier encapsulating structure for directly modulation chip of laser
CN106549299B (en) * 2016-10-24 2019-03-01 中国科学院半导体研究所 It is a kind of for directly modulating the subcarrier encapsulating structure of chip of laser

Similar Documents

Publication Publication Date Title
US6316332B1 (en) Method for joining wafers at a low temperature and low stress
JP2000100679A (en) Substrate-to-substrate microregion solid-phase junction method with thinner piece and element structure
US6465327B1 (en) Method for producing a thin membrane and resulting structure with membrane
US8630326B2 (en) Method and system of heterogeneous substrate bonding for photonic integration
CN101295753B (en) Low temperature Au-In-Au bonding method for III-V family compounds
US20020094668A1 (en) Thin layer structure made up of conductive and insulative zones
US20030068431A1 (en) Electrode sandwich separation
JP2012004599A (en) Method for directly bonding two substrates for use in electronics, optics, or optoelectronics
US7658772B2 (en) Process for making electrode pairs
Akatsu et al. Wafer bonding of different III–V compound semiconductors by atomic hydrogen surface cleaning
JPH104222A (en) Oxide superconducting element and manufacture thereof
JPH02188980A (en) Manufacture of light-emitting element
US20020048900A1 (en) Method for joining wafers at a low temperature and low stress
JP2001119092A (en) Substrate-connecting method for joining minute region and substrate-connecting structure
Pasquariello et al. Evaluation of InP-to-silicon heterobonding
JPH11186120A (en) Close bonding between substrates made of same or different materials
FR2643192A1 (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE INCLUDING A REFRACTORY METAL ELECTRODE ON A SEMI-INSULATING SUBSTRATE
JP2000101188A (en) Method of bonding together substrates using light irradiation and element structure for this method
JPH11266005A (en) Substrate junction method using positive pressure impression and element structure thereof
JP2021060479A (en) Coupling for optical modulator, optical modulator, and manufacturing method of coupling for optical modulator
JP4515766B2 (en) Saturable absorber and method for manufacturing saturable absorber
FR2742592A1 (en) Long wavelength semiconductor laser device
JP4902150B2 (en) Membrane transfer method
KR920005450B1 (en) Fluxless bonding of microelectronic chips
Rantamäki et al. Multi-watt semiconductor disk laser by low temperature wafer bonding