JP2001118604A - Non-aqueous electrolytic solution type secondary battery - Google Patents

Non-aqueous electrolytic solution type secondary battery

Info

Publication number
JP2001118604A
JP2001118604A JP29891499A JP29891499A JP2001118604A JP 2001118604 A JP2001118604 A JP 2001118604A JP 29891499 A JP29891499 A JP 29891499A JP 29891499 A JP29891499 A JP 29891499A JP 2001118604 A JP2001118604 A JP 2001118604A
Authority
JP
Japan
Prior art keywords
discharge load
secondary battery
battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29891499A
Other languages
Japanese (ja)
Other versions
JP3605668B2 (en
Inventor
Takeshi Kitami
剛 北見
Junko Nishiyama
淳子 西山
Takayuki Inoi
隆之 猪井
Koichi Zama
浩一 座間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29891499A priority Critical patent/JP3605668B2/en
Publication of JP2001118604A publication Critical patent/JP2001118604A/en
Application granted granted Critical
Publication of JP3605668B2 publication Critical patent/JP3605668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To aim at providing a non-aqueous electrolytic solution type secondary battery that can safely release the inner battery energy that has yet to be released. SOLUTION: This battery has an electro-conductive member that is succeedingly installed at one part of the inner wall of a core, and the load for an energy relief inside of such electro-conductive member is installed, and through a lead connected at such electro-conductive member, the electro- conductive member operates a safety mechanism that is connected at either a positive electrode or a negative electrode, and releases the energy stored at a battery element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液を用い
た二次電池に関するものであり、特に高電流密度の充放
電ができる非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a non-aqueous electrolyte, and more particularly to a non-aqueous electrolyte secondary battery capable of charging and discharging at a high current density.

【0002】[0002]

【従来の技術】一般に非水電解液二次電池は、リチウム
をドープ、脱ドープすることができる負極と遷移金属化
合物を含有する正極を用いたリチウムイオン二次電池に
代表される。また、非水電解液二次電池は、帯状の負極
側集電体に負極活物質を塗布した帯状負極と、帯状の正
極側集電体に正極活物質を塗布した帯状正極とをセパレ
ータを介して積層したものが外装材で被覆されている。
或いは前記帯状負極と帯状正極とを積層したものを、渦
巻状に巻回して円筒状のジェリーロールと称される電池
要素を作成した後に、電池缶内に収容して電池とするこ
とが行われている。特に、円筒状の電池要素を電池缶内
に収容した電池は、密閉性に優れると共に円筒状である
ために、積層体の部位によらず一様な電池反応を行うこ
とが可能であるという特徴を有している。また、大電流
を取り出す目的で使用される非水電解液二次電池におい
ても円筒状の電池が重要な位置を占めており、電気自動
車、電気補助自転車等の動力用の大型電池としても期待
されている。
2. Description of the Related Art In general, a non-aqueous electrolyte secondary battery is represented by a lithium ion secondary battery using a negative electrode capable of doping and undoping lithium and a positive electrode containing a transition metal compound. In addition, a nonaqueous electrolyte secondary battery has a band-shaped negative electrode in which a band-shaped negative electrode side current collector is coated with a negative electrode active material, and a band-shaped positive electrode in which a band-shaped positive electrode side current collector is coated with a positive electrode active material, via a separator. Are laminated with an exterior material.
Alternatively, a stack of the strip-shaped negative electrode and the strip-shaped positive electrode is spirally wound to form a battery element called a cylindrical jelly roll, and then housed in a battery can to form a battery. ing. In particular, a battery in which a cylindrical battery element is housed in a battery can has excellent sealing properties and is cylindrical, so that a uniform battery reaction can be performed irrespective of the portion of the laminate. have. In addition, cylindrical batteries occupy an important position in non-aqueous electrolyte secondary batteries used for the purpose of extracting a large current, and are also expected to be used as large-sized batteries for powering electric vehicles, electric assist bicycles, and the like. ing.

【0003】次に、従来の非水電解液二次電池につき、
図面を参照して説明する。図8は従来の非水電解液二次
電池を示す断面図である。図8に示す非水電解液二次電
池は円筒状である。係る非水電解液二次電池は、その電
池外装缶5内に、負極集電体に負極活物質を設けた帯状
の負極電極3と正極集電体に正極活物質を設けた帯状の
正極電極2とを有している。電池外装缶5内には負極電
極3及び正極電極2よりも幅が広いセパレータ1を介し
て積層になる態様で巻回したコア4、セパレータ1、負
極電極3及び正極電極2からなる電池要素が設けられて
いる。係る電池要素の両端面は、正極電極2或いは負極
電極3は突出せずにセパレータ1の端部で構成されてい
る。また、電池外装缶5を負極側とした非水電解液二次
電池の場合には、帯状の負極電極3に取り付けた短冊状
の入出力取り出しリード15aを溶接等の方法によって
電池外装缶5の内壁に接合している。入出力取り出しリ
ード15aは、電池内部の異常な圧力上昇時に内部の圧
力を開放する圧力開放弁と電流とを遮断する電流遮断機
構等を有している。更に、入出力取り出しリード15a
は正極側も兼ねており、キャップ20、ニッケルリング
21、ラプチャーディスク22、ウエルドプレート19
及びガスケット23からなるヘッダ部10に接続されて
いる。
[0003] Next, regarding a conventional non-aqueous electrolyte secondary battery,
This will be described with reference to the drawings. FIG. 8 is a sectional view showing a conventional non-aqueous electrolyte secondary battery. The non-aqueous electrolyte secondary battery shown in FIG. 8 is cylindrical. Such a non-aqueous electrolyte secondary battery has a band-shaped negative electrode 3 in which a negative electrode current collector is provided with a negative electrode active material and a band-shaped positive electrode in which a positive electrode current collector is provided with a positive electrode active material, in a battery outer can 5. And 2. A battery element including a core 4, a separator 1, a negative electrode 3, and a positive electrode 2, which is wound in a stacked manner with a separator 1 wider than the negative electrode 3 and the positive electrode 2 interposed therebetween, is provided in the battery outer can 5. Is provided. Both end surfaces of such a battery element are constituted by the ends of the separator 1 without the positive electrode 2 or the negative electrode 3 protruding. In the case of a non-aqueous electrolyte secondary battery in which the battery outer can 5 has the negative electrode side, the strip-shaped input / output lead 15a attached to the strip-shaped negative electrode 3 is connected to the battery outer can 5 by a method such as welding. Joined to the inner wall. The input / output lead 15a has a pressure release valve that releases internal pressure when an abnormal pressure rise inside the battery, a current cutoff mechanism that cuts off current, and the like. Further, the input / output extraction lead 15a
Also serves as a positive electrode side, a cap 20, a nickel ring 21, a rupture disk 22, a weld plate 19
And a gasket 23.

【0004】次に、図面を参照してヘッダ部の安全機構
を説明する。図9(a)は本発明及び従来の非水電解液
二次電池のヘッダ部の構成部材の一例を示す図である。
図9(b)は本発明及び従来の非水電解液二次電池の安
全機構を説明する断面図である。ヘッダ部10は、キャ
ップ20、ニッケルリング21、ラプチャーディスク2
2、ウエルドプレート19及びガスケット23で構成さ
れている。係る構成を組み立てた後は、ヘッダ組立側面
図(安全機構未動作時)30になる。
Next, a safety mechanism of the header section will be described with reference to the drawings. FIG. 9A is a diagram showing an example of a constituent member of a header portion of the present invention and a conventional non-aqueous electrolyte secondary battery.
FIG. 9B is a cross-sectional view illustrating a safety mechanism of the present invention and a conventional non-aqueous electrolyte secondary battery. The header portion 10 includes a cap 20, a nickel ring 21, a rupture disk 2,
2, a weld plate 19 and a gasket 23. After assembling such a configuration, a header assembly side view (when the safety mechanism is not operating) 30 is obtained.

【0005】ヘッダ組立側面図(安全機構動作時1)3
1は、過充電や異常な電池内部温度上昇により電池内部
のガス圧力が上昇される。その後、ヘッダ組立側面図3
1は、ラプチャーディスク22を反転させることによ
り、ラプチャーディスク22とウエルドプレート19と
の電気経路を遮断して電池外部へのエネルギーの入出力
を不可能にする。また、ヘッダ組立側面図(安全機構動
作時2)32は、ヘッダ組立側側面図(安全機構動作時
1)31で、安全機構が動作した後に発熱等により、反
応が進み、その結果として電池内部のガス圧力がさらに
上昇する。この場合のヘッダ組立側面図32において
は、反転したラプチャーディスク22の点線切り欠き部
分が破壊され、ガスが外部に開放され、電池の爆発等を
回避することができる。
[0005] Side view of header assembly (when safety mechanism operates 1) 3
In the case of 1, the gas pressure inside the battery is increased due to overcharging or abnormal temperature rise inside the battery. Then, header assembly side view 3
1 inverts the rupture disk 22 to cut off an electric path between the rupture disk 22 and the weld plate 19, thereby making it impossible to input and output energy to the outside of the battery. The header assembly side view (when the safety mechanism operates 2) 32 is a header assembly side view (when the safety mechanism is operating 1) 31. The reaction proceeds due to heat generation after the safety mechanism operates, and as a result, the inside of the battery is Gas pressure further rises. In the header assembly side view 32 in this case, the broken notch portion of the inverted rupture disk 22 is broken, gas is released to the outside, and explosion of the battery can be avoided.

【0006】[0006]

【発明が解決しようとする課題】しかし、以上説明した
従来の非水電解液二次電池にあっても次のような問題が
あった。図8及び図9を参照して説明すると、従来の非
水電解液二次電池は、電池内部のエネルギーを内部に閉
じ込め、外部に出力することが行えない状態を作る安全
機構である。一度その機構が動作すると電池要素と外部
端子である電池外装缶5及びキャップ20との接続を切
断する為、エネルギーを開放することができなかった。
そこで、開放出来なくなった電池内部のエネルギーを開
放させる為に、電池外装缶5の側壁に釘を刺す等の手段
により強制的に短絡させていた。この様な手段において
は、電池内部のエネルギーを開放することができる。し
かし、設備が大型になりコストが増大するばかりか、発
火、発煙及び爆発等の可能性もあり、大変危険な作業に
なるという問題があった。
However, the conventional non-aqueous electrolyte secondary battery described above has the following problems. Referring to FIG. 8 and FIG. 9, the conventional non-aqueous electrolyte secondary battery is a safety mechanism that locks the energy inside the battery and creates a state where it cannot be output to the outside. Once the mechanism operates, the connection between the battery element and the battery outer can 5 and the cap 20, which are external terminals, is cut off, so that energy cannot be released.
Therefore, in order to release the energy inside the battery that cannot be released, the side wall of the battery outer can 5 is forcibly short-circuited by a means such as piercing a nail. In such a means, the energy inside the battery can be released. However, there is a problem that not only the equipment becomes large and the cost increases, but also there is a possibility of ignition, smoking, explosion and the like, which is a very dangerous operation.

【0007】本発明は以上の従来技術における問題に鑑
みてなされたものであって、開放出来なくなった電池内
部のエネルギーを安全に開放することができる非水電解
液二次電池を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems in the prior art, and has as its object to provide a non-aqueous electrolyte secondary battery that can safely release the energy inside the battery that cannot be released. Aim.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本出
願第1の発明は、セパレータを介して積層された正極活
物質層及び負極活物質層を有する正極集電体及び負極集
電体が絶縁部材のコアを軸として巻回されてなる電池要
素を電池外装缶内部に有し、係る電池要素が正極のヘッ
ド部及び負極の電池外装缶底部に電気的に接続されてな
る非水電解液二次電池において、コアの内壁の一部に連
設された導電性部材を有し、係る導電性部材の内部にエ
ネルギー放出用の負荷を有すると共に係る導電性部材に
接続されたリードを介して、導電性部材が正極又は負極
に接続されてなる安全機構を有することを特徴とする非
水電解液二次電池である。
Means for Solving the Problems According to the first invention of the present application for solving the above-mentioned problems, a positive electrode current collector and a negative electrode current collector having a positive electrode active material layer and a negative electrode active material layer laminated via a separator are provided. A non-aqueous electrolytic solution having a battery element wound around a core of an insulating member as an axis inside a battery outer can, and the battery element being electrically connected to a positive electrode head and a negative electrode battery outer can bottom. In the secondary battery, a conductive member is provided continuously to a part of the inner wall of the core, and has a load for energy release inside the conductive member and via a lead connected to the conductive member. A nonaqueous electrolyte secondary battery having a safety mechanism in which a conductive member is connected to a positive electrode or a negative electrode.

【0009】したがって、本出願第1の発明の非水電解
液二次電池によれば、コアの内壁の一部に連設された導
電性部材を有し、係る導電性部材の内部にエネルギー放
出用の負荷を有すると共に係る導電性部材に接続された
リードを介して、導電性部材が正極又は負極に接続され
てなる安全機構を有することから、電池外装缶の外部側
壁をコア方向に押圧し、電池外装缶の外部側壁を塑性変
形させることでコア内部のエネルギー放出用の負荷と導
電性部材とを当接させ、電気的経路を形成させることが
できる。即ち、安全機構を動作させることによって、電
気経路を形成させることができる。その結果として、開
放出来なくなった電池内部のエネルギーを安全に開放す
ることができる。
Therefore, according to the non-aqueous electrolyte secondary battery of the first invention of the present application, a conductive member is provided continuously on a part of the inner wall of the core, and energy is discharged into the conductive member. Since there is a safety mechanism in which the conductive member is connected to the positive electrode or the negative electrode through the lead connected to the conductive member having a load for use, the outer side wall of the battery outer can is pressed in the core direction. By plastically deforming the outer side wall of the battery outer can, the load for discharging energy inside the core is brought into contact with the conductive member to form an electrical path. That is, an electric path can be formed by operating the safety mechanism. As a result, the energy inside the battery that cannot be released can be released safely.

【0010】また、本出願第2の発明は、前記エネルギ
ー放出用の負荷は、放電用負荷と、放電用負荷から正極
方向及び負極方向に延設される放電用負荷リードとから
なることを特徴とする。
Further, the second invention of the present application is characterized in that the load for discharging energy includes a discharging load and a discharging load lead extending from the discharging load in a positive electrode direction and a negative electrode direction. And

【0011】したがって、本出願第2の発明の非水電解
液二次電池によれば、前記エネルギー放出用の負荷は、
放電用負荷と、放電用負荷から正極方向及び負極方向に
延設される放電用負荷リードとからなるので、電池外装
缶の外部側壁をコア方向に押圧し、電池外装缶の外部側
壁を塑性変形させることでコア内部の絶縁体に保持され
た放電用負荷リードと導電性部材とを当接させ、電気経
路を形成させることができる。その結果として、開放出
来なくなった電池内部のエネルギーを安全に開放するこ
とができる。
Therefore, according to the non-aqueous electrolyte secondary battery of the second invention of the present application, the energy discharging load is:
Since it consists of a discharge load and a discharge load lead extending from the discharge load in the positive and negative directions, the outer side wall of the battery outer can is pressed toward the core, and the outer side wall of the battery outer can is plastically deformed. By doing so, the discharge load lead held by the insulator inside the core and the conductive member are brought into contact with each other to form an electric path. As a result, the energy inside the battery that cannot be released can be released safely.

【0012】また、本出願第3の発明は、正極方向及び
負極方向に延設される放電用負荷リードのうち、正極方
向及び負極方向の何れか一方に延設される放電用負荷リ
ードの延長方向の電極と接続する短絡端子を、前記放電
用負荷リードの延長方向に所定間隔を設けて延設させて
なることを特徴とする。
Further, the third invention of the present application is directed to an extension of the discharge load lead extending in one of the positive electrode direction and the negative electrode direction among the discharge load leads extending in the positive electrode direction and the negative electrode direction. And a short-circuit terminal connected to the electrode in a predetermined direction is provided at a predetermined interval in an extending direction of the discharge load lead.

【0013】したがって、本出願第3の発明の非水電解
液二次電池によれば、正極方向及び負極方向に延設され
る放電用負荷リードのうち、正極方向及び負極方向の何
れか一方に延設される放電用負荷リードの延長方向の電
極と接続する短絡端子を、前記放電用負荷リードの延長
方向に所定間隔を設けて延設させてなることから、短絡
端子が接続されている一方の電極を電池外装缶の外部か
ら他方の電極方向に押圧することで、前記他方の放電用
負荷リードと短絡端子とが当接されて電気経路を形成さ
せることができる。その結果として、開放出来なくなっ
た電池内部のエネルギーを安全に開放することができ
る。
Therefore, according to the nonaqueous electrolyte secondary battery of the third invention of the present application, of the discharge load leads extending in the positive electrode direction and the negative electrode direction, the discharge load leads extend in one of the positive electrode direction and the negative electrode direction. Since the short-circuit terminal connected to the electrode in the extension direction of the discharge load lead to be extended is provided at a predetermined interval in the extension direction of the discharge load lead, the short-circuit terminal is connected. By pressing the electrode from the outside of the battery outer can in the direction of the other electrode, the other discharge load lead and the short-circuit terminal are brought into contact with each other to form an electric path. As a result, the energy inside the battery that cannot be released can be released safely.

【0014】また、本出願第4の発明は、導電性部材の
内周縁に放電用負荷リードに当接する態様で絶縁性の放
電用負荷リードガイドを設けたことを特徴とする。
Further, the fourth invention of the present application is characterized in that an insulating discharge load lead guide is provided on the inner peripheral edge of the conductive member so as to be in contact with the discharge load lead.

【0015】したがって、本出願第4の発明の非水電解
液二次電池によれば、導電性部材の内周縁に放電用負荷
リードに当接する態様で絶縁性の放電用負荷リードガイ
ドを設けたことから、放電用負荷リードを所定の位置に
保持することができる。即ち、コア周縁部に形成された
導電性部材と放電用負荷リードとが接触することに起因
する短絡を防止することができる。
Therefore, according to the non-aqueous electrolyte secondary battery of the fourth invention of the present application, an insulating discharge load lead guide is provided on the inner peripheral edge of the conductive member so as to be in contact with the discharge load lead. Therefore, the discharge load lead can be held at a predetermined position. That is, it is possible to prevent a short circuit caused by contact between the conductive member formed on the core peripheral portion and the discharge load lead.

【0016】また、本出願第5の発明は、前記放電用負
荷リードガイドが位置する部位に対応させて電池外装缶
の外部側壁にマークを設けたことを特徴とする。
Further, the fifth invention of the present application is characterized in that a mark is provided on an outer side wall of the battery outer can in correspondence with a portion where the discharge load lead guide is located.

【0017】したがって、本出願第5の発明の非水電解
液二次電池によれば、前記放電用負荷リードガイドが位
置する部位に対応させて電池外装缶の外部側壁にマーク
を設けたことから、電池外装缶の外部側壁に設けられた
マーク以外の所定部位を押圧し、電池外装缶を塑性変形
させることでコア内部の絶縁体に保持されたエネルギー
放出用の負荷と導電性部材とを当接させ、電気的経路を
形成させる際の作業性を向上させることができる。
Therefore, according to the nonaqueous electrolyte secondary battery of the fifth invention of the present application, the mark is provided on the outer side wall of the battery outer can in accordance with the position where the discharge load lead guide is located. Then, a predetermined portion other than the mark provided on the outer side wall of the battery outer can is pressed, and the battery outer can is plastically deformed, so that the load for energy release held by the insulator inside the core and the conductive member are applied. Thus, the workability in forming the electric path can be improved.

【0018】また、本出願第6の発明は、導電性部材の
内部に設けられた放電用負荷リードと前記導電性部材の
内壁とが対向する部位に対応させて電池外装缶の外部側
壁にマークを設けたことを特徴とする。
Further, the sixth invention of the present application is directed to a mark on the outer side wall of the battery outer can corresponding to a portion where the discharge load lead provided inside the conductive member and the inner wall of the conductive member face each other. Is provided.

【0019】したがって、本出願第6の発明の非水電解
液二次電池によれば、導電性部材の内部に設けられた放
電用負荷リードと前記導電性部材の内壁とが対向する部
位に対応させて電池外装缶の外部側壁にマークを設けた
ことから、前記マークを押圧し、電池外装缶を塑性変形
させることでコア内部のエネルギー放出用の負荷と導電
性部材とを当接させ、電気的経路を形成させる際の押し
込み位置(潰し位置)を視覚的に確認することができ
る。従って、電気経路形成時の作業性を向上させること
ができる。
Therefore, according to the non-aqueous electrolyte secondary battery of the sixth invention of the present application, the discharge load lead provided inside the conductive member corresponds to the portion where the inner wall of the conductive member faces. Since the mark is provided on the outer side wall of the battery outer can, the mark is pressed, and the battery outer can is plastically deformed to bring the load for energy release inside the core into contact with the conductive member, and The pushing position (crushing position) at the time of forming the target path can be visually confirmed. Therefore, workability at the time of forming an electric path can be improved.

【0020】また、本出願第7の発明は、短絡端子が接
続された電極が位置する電池外装缶の所定部位にマーク
が設けられたことを特徴とする。
Further, the seventh invention of the present application is characterized in that a mark is provided at a predetermined portion of the battery outer can where the electrode to which the short-circuit terminal is connected is located.

【0021】したがって、本出願第7の発明の非水電解
液二次電池によれば、短絡端子が接続された電極が位置
する電池外装缶の所定部位にマークが設けられたことか
ら、前記マークを押圧し、電池外装缶を塑性変形させる
ことでコア内部のエネルギー放出用の負荷と短絡端子と
を当接させ、電気的経路を形成させる際の押し込み位置
(潰し位置)の位置を視覚的に把握することができる。
従って、電気経路形成時の作業性を向上させることがで
きる。
Therefore, according to the non-aqueous electrolyte secondary battery of the seventh aspect of the present invention, the mark is provided at a predetermined portion of the battery outer can where the electrode to which the short-circuit terminal is connected is located. And press the battery outer can plastically to bring the load for energy release inside the core into contact with the short-circuit terminal to visually determine the position of the pushed-in position (crushed position) when forming an electrical path. You can figure out.
Therefore, workability at the time of forming an electric path can be improved.

【0022】また、本出願第8の発明は、前記マークを
凸部としたことを特徴とする。
Further, the eighth invention of the present application is characterized in that the mark is a projection.

【0023】したがって、本出願第8の発明の非水電解
液二次電池によれば、前記マークを凸部としたことか
ら、前記凸部を押圧し、電池外装缶を塑性変形させるこ
とでコア内部のエネルギー放出用の負荷と導電性部材又
は短絡端子とを当接させ、電気的経路を形成させる際の
押し込み量を視覚的に確認することができる。従って、
電気経路形成時の作業性を向上させることができる。
Therefore, according to the nonaqueous electrolyte secondary battery of the eighth invention of the present application, since the mark is a convex portion, the core is formed by pressing the convex portion and plastically deforming the battery outer can. When the internal energy release load is brought into contact with the conductive member or the short-circuit terminal, it is possible to visually confirm the pushing amount when the electric path is formed. Therefore,
Workability at the time of forming an electric path can be improved.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施の形態の非水
電解液二次電池につき図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0025】(実施の形態1)図1は本発明の実施の形
態1の非水電解液二次電池の断面図である。
(Embodiment 1) FIG. 1 is a sectional view of a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.

【0026】図1に示すように本発明の実施の形態1の
非水電解液二次電池は、セパレータ1を介して積層され
た正極活物質層及び負極活物質層を有する正極集電体
(正極電極2)及び負極集電体(負極電極3)がコア4
を軸として巻回されてなる電池要素を電池外装缶5内部
に収容している。また、
As shown in FIG. 1, a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention has a positive electrode current collector (a positive electrode current collector having a positive electrode active material layer and a negative electrode active material layer The positive electrode 2) and the negative electrode current collector (negative electrode 3) are composed of the core 4
Is housed inside the battery outer can 5. Also,

【0027】また、本発明の実施の形態1の非水電解液
二次電池の安全機構の構成を説明する。コア4の内壁の
一部に、全内周に渡り電池外装缶5の缶底部8に接続さ
れるリードを有する導電性部材6(以下、短絡及び放熱
用電極7)が形成されている。短絡及び放熱用電極7は
負極となる缶底部8に接続される。放電用負荷9から正
極方向及び負極方向に延設されている放電用負荷リード
がコア4内部に設けられている。放電用負荷リードは正
極となるヘッダ部10と接続される放電用負荷リード1
1aと缶底部8の方向に延設される放電用負荷リード1
1bから構成されている。放電用負荷リードはコア4の
内面に設けられた絶縁性の放電用負荷リードガイド12
によって短絡及び放熱用電極7と放電用負荷リードとが
当接しないように保持されている。放電用負荷9及び放
電用負荷リードは、エネルギー放出用の負荷として設け
られている。
The configuration of the safety mechanism of the nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention will be described. On a part of the inner wall of the core 4, a conductive member 6 (hereinafter referred to as a short-circuit and heat radiation electrode 7) having leads connected to the bottom 8 of the battery outer can 5 is formed over the entire inner circumference. The short-circuit and heat-dissipating electrode 7 is connected to the can bottom 8 serving as a negative electrode. Discharge load leads extending from the discharge load 9 in the positive electrode direction and the negative electrode direction are provided inside the core 4. The discharge load lead 1 is a discharge load lead 1 connected to the header 10 serving as a positive electrode.
1a and discharge load lead 1 extending in the direction of can bottom 8
1b. The discharge load lead is an insulating discharge load lead guide 12 provided on the inner surface of the core 4.
Accordingly, the short-circuit and heat radiation electrode 7 and the discharge load lead are held so as not to come into contact with each other. The discharge load 9 and the discharge load lead are provided as loads for releasing energy.

【0028】電池要素の底部端面13には、絶縁リング
14が設けられており、負極集電体に取り付けられた少
なくとも一以上の入出力取り出しリード15aは、絶縁
リング14に設けた開口部16から缶底部8に接続され
る態様で延設されている。係る絶縁リング14は短絡及
び放熱用電極とかしめリング17aとにより機械的に嵌
着させた後、溶接により電池外装缶5の内壁に接合され
ている。また、電池要素の上部端面18には、絶縁リン
グ14が設けられており、正極集電体に取り付けられた
少なくとも一以上の入出力取り出しリード15bは、絶
縁リング14に設けた開口部16からヘッダ部10に接
続される態様で延設されている。係る絶縁リング14は
短絡及び放熱用電極7とかしめリング17bとにより機
械的に嵌着された後、溶接によりヘッダ部10のウエル
ドプレート19に接合されている。
An insulating ring 14 is provided on the bottom end face 13 of the battery element, and at least one or more input / output lead 15 a attached to the negative electrode current collector is connected to an opening 16 provided in the insulating ring 14. It extends so as to be connected to the can bottom 8. The insulating ring 14 is mechanically fitted with a short-circuit and heat radiation electrode and a caulking ring 17a, and then joined to the inner wall of the battery outer can 5 by welding. An insulating ring 14 is provided on the upper end surface 18 of the battery element, and at least one or more input / output lead 15 b attached to the positive electrode current collector is connected to a header 16 through an opening 16 provided in the insulating ring 14. It is extended so as to be connected to the unit 10. The insulating ring 14 is mechanically fitted with the short-circuit and heat radiation electrode 7 and the caulking ring 17b, and then joined to the weld plate 19 of the header 10 by welding.

【0029】ヘッダ部10は、キャップ20、ニッケル
リング21、ラプチャーディスク22、ウエルドプレー
ト19及びガスケット23から構成されている。ヘッダ
部10はガスケット23を介して電池外装缶5の上部を
電解液注液後に専用のかしめ機械を使用してかしめるこ
とにより非水電解液二次電池を封口している。ヘッダ部
10は、電流を遮断するディスコネクト機構及び電池内
部の異常による内部圧力上昇時に作動して、内部圧力を
開放するバースト機構が設けられている。また、過大な
電流を遮断する素子等が設けられても良い。ウエルドプ
レート19に接合される外部取り出し用溶接点24a及
び電池外装缶5の内壁に接合される外部取り出し用溶接
点24bは、抵抗溶接、超音波溶接又はレーザー溶接を
用いて接合されている。
The header section 10 comprises a cap 20, a nickel ring 21, a rupture disk 22, a weld plate 19, and a gasket 23. The header part 10 seals the nonaqueous electrolyte secondary battery by caulking the upper part of the battery outer can 5 via a gasket 23 using an exclusive caulking machine after injecting the electrolyte. The header section 10 is provided with a disconnect mechanism for interrupting the current and a burst mechanism which operates when the internal pressure rises due to an abnormality inside the battery and releases the internal pressure. Further, an element or the like for interrupting an excessive current may be provided. The external take-out welding point 24a joined to the weld plate 19 and the external take-out weld point 24b joined to the inner wall of the battery outer can 5 are joined using resistance welding, ultrasonic welding or laser welding.

【0030】電池外装缶5は外部側壁に放電用負荷リー
ドガイド12の位置を示すマーク(図示せず)及び/又
は潰し位置を示すマーク(図示せず)等が設けられてい
る。また、前記潰し位置を示すマークを凸部(図示せ
ず)とすることで規定量の押し込み量を視覚的に確認す
ることができる。その結果として、安全機構動作時の作
業性が向上される。また、凸部は押し込み量に対応する
の長さを有する。また、前記潰し位置は放電用負荷リー
ドガイド12が設けられていない短絡及び放熱用電極7
が位置する部位に対応する電池外装缶5の外部側面25
を指す。
The battery outer can 5 is provided with a mark (not shown) indicating the position of the discharge load lead guide 12 and / or a mark (not shown) indicating the crushed position on the outer side wall. In addition, by setting the mark indicating the crushed position as a convex portion (not shown), it is possible to visually confirm the specified amount of pushing. As a result, workability during operation of the safety mechanism is improved. Further, the projection has a length corresponding to the pushing amount. The crushed position is the short-circuit and heat radiation electrode 7 where the discharge load lead guide 12 is not provided.
Outer side surface 25 of battery outer can 5 corresponding to the portion where
Point to.

【0031】入出力取り出しリード15a及びかしめリ
ング17aには電池の正極材料として、電気的に安定で
ある材料を使用する。例えばアルミニウム等を使用する
ことが好ましい。入出力取り出しリード15b及びかし
めリング17bには非水電解液二次電池の負極材料とし
て、電気的に安定である材料を使用する。例えばニッケ
ル又は銅等を使用することが好ましい。絶縁リング1
4、コア4の内部及び放電用リードガイド12は、電解
質に腐食されにくい材料を使用する。例えば、ポリプロ
ピレン又はポリプロエチレン等を用いることが好まし
い。また、コア4については、巻き始めに接触する金属
箔と同等の金属材料を用いてもよい。短絡及び放熱用電
極7と放電用負極リードとは、耐電解液性、導電性及び
導熱性のある材料を使用する。例えば、銅、ニッケル又
はアルミ等を用いることが好ましい。また、これらの部
材に抵抗成分を持たせて、安全機構動作時に部材でエネ
ルギーを放出しても良い。更に、これらの部材は発生し
た熱を分散させる効果もある。更に加えて、放電用負荷
リードは放電用負荷径の中央部に配設・保持される。放
電用負荷9のサイズは、電池全高の1/5以内とし、電
池外装缶5内に少なくとも一以上設ける。また、放電用
負荷9の外周は、導熱性、絶縁性及び耐電解液性がある
材料でコーティングしたものを使用する。例えば、ハー
メチック抵抗をガラス又はセラミック等の絶縁材料で封
止したものを使用することが好ましい。
For the input / output lead 15a and the caulking ring 17a, an electrically stable material is used as the positive electrode material of the battery. For example, it is preferable to use aluminum or the like. For the input / output lead 15b and the caulking ring 17b, a material that is electrically stable is used as a negative electrode material of the nonaqueous electrolyte secondary battery. For example, it is preferable to use nickel or copper. Insulation ring 1
4. The inside of the core 4 and the discharge lead guide 12 are made of a material which is hardly corroded by the electrolyte. For example, it is preferable to use polypropylene, polypropylene, or the like. Further, for the core 4, a metal material equivalent to the metal foil that comes into contact at the beginning of winding may be used. The short-circuit and heat radiation electrode 7 and the discharge negative electrode lead are made of a material having resistance to electrolyte, conductivity and heat conductivity. For example, it is preferable to use copper, nickel, aluminum, or the like. In addition, these members may be provided with a resistance component so that the members emit energy when the safety mechanism operates. Further, these members have an effect of dispersing generated heat. In addition, the discharge load lead is disposed and held at the center of the discharge load diameter. The size of the discharge load 9 is set within 1/5 of the total height of the battery, and at least one or more is provided in the battery outer can 5. The outer periphery of the discharge load 9 is coated with a material having heat conductivity, insulation and electrolyte resistance. For example, it is preferable to use a hermetic resistor sealed with an insulating material such as glass or ceramic.

【0032】本発明の実施の形態1の非水電解質二次電
池の発電要素について、図面を参照して更に詳細に説明
する。図2は本発明の実施の形態1の非水電解液二次電
池の発電要素の一例を示す構成模式図である。正極集電
体の両面に塗布部及び未塗布部が重なり合うように正極
活物質層を間欠塗布している。係る正極活物質層の未塗
布部に入出力取り出しリード15bを接合した正極電極
2と負極集電体との両面に塗布部及び未塗布部が重なり
合うように負極活物質を間欠塗布している。係る負極活
物質の未塗布部に入出力取り出しリード15aを接合し
た負極電極3を、負極電極3及び正極電極2よりも幅が
広いセパレータ1を介して積層になるようにコア4を軸
に巻回させて発電要素を得ている。また、正極電極2に
対して、負極電極3の幅は広く設けて、正極活物質層の
対向電極となる負極活物質層に正極活物質からドープさ
れる物質が負極活物質層以外に析出しないようにされて
いる。
The power generating element of the nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention will be described in more detail with reference to the drawings. FIG. 2 is a schematic configuration diagram illustrating an example of a power generation element of the nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention. The positive electrode active material layer is intermittently applied to both sides of the positive electrode current collector such that the applied portion and the uncoated portion overlap. The negative electrode active material is intermittently applied to both surfaces of the positive electrode 2 and the negative electrode current collector, where the input / output lead 15b is joined to the uncoated portion of the positive electrode active material layer, such that the coated portion and the uncoated portion overlap. The negative electrode 3 in which the input / output lead 15a is joined to the non-coated portion of the negative electrode active material is wound around the core 4 so as to be stacked via the separator 1 wider than the negative electrode 3 and the positive electrode 2. The power generation element is obtained by turning it. Further, the width of the negative electrode 3 is set wider than that of the positive electrode 2 so that the material doped from the positive electrode active material in the negative electrode active material layer serving as the counter electrode of the positive electrode active material layer does not precipitate other than in the negative electrode active material layer. It has been like that.

【0033】また、ヘッダ部10の構成、作用及び効果
は従来のヘッダ部と同一である。しかし、係るヘッダ部
を有する従来の非水電解液二次電池における課題は、本
願発明の構成とすることで解決される。従って、ヘッダ
部10の安全機構作動時においても、安全に電池内部の
エネルギーを開放することができる。
The configuration, operation and effect of the header section 10 are the same as those of the conventional header section. However, the problem in the conventional non-aqueous electrolyte secondary battery having such a header portion is solved by adopting the configuration of the present invention. Therefore, even when the safety mechanism of the header section 10 operates, the energy inside the battery can be released safely.

【0034】次に図3(a)及び図3(b)を参照して
本発明の実施の形態1の非水電解液二次電池の構成を説
明する。図3(a)は図1に示した本発明の実施の形態
1の非水電解液二次電池のA−A’断面図である。図3
(b)は図1に示した本発明の実施の形態1の非水電解
液二次電池のB−B’断面図である。
Next, the configuration of the non-aqueous electrolyte secondary battery according to Embodiment 1 of the present invention will be described with reference to FIGS. 3 (a) and 3 (b). FIG. 3A is a cross-sectional view of the non-aqueous electrolyte secondary battery according to the first embodiment of the present invention shown in FIG. FIG.
FIG. 2B is a cross-sectional view of the non-aqueous electrolyte secondary battery according to Embodiment 1 of the present invention shown in FIG. 1 taken along line BB ′.

【0035】図3(a)に示した非水電解液二次電池
は、内側から放電用負荷9、短絡及び放熱用電極7、コ
ア4、セパレータ1、負極電極3、正極電極2及び電池
外装缶5で構成されている。放電用負荷9は、短絡及び
放熱用電極7に電気的に短絡しないように放電用負荷9
の外周部で接触している。係る構成により、放電用負荷
9で発生した熱を電池外装缶5の内壁を通して外部に放
熱する。図3(b)に示した非水電解液二次電池は、内
側から、放電用負荷リード11b、放電用負荷リードガ
イド12、短絡及び放熱用電極7、コア4、セパレータ
1、負極電極3、正極電極2及び電池外装缶5で構成さ
れている。係る構成とすることで、放電用負荷で発生し
た熱を電池外装缶5の内壁を通して外部に放熱する。ま
た、放電用負荷リード11bは、放電用負荷リードガイ
ド12により短絡及び放熱用電極7と絶縁される。
The non-aqueous electrolyte secondary battery shown in FIG. 3 (a) has a discharge load 9, a short-circuit and heat radiation electrode 7, a core 4, a separator 1, a negative electrode 3, a positive electrode 2, and a battery exterior from the inside. It is composed of a can 5. The discharge load 9 is connected to the discharge load 9 so that the short-circuit and the heat radiation electrode 7 are not electrically short-circuited.
Are in contact at the outer peripheral portion. With this configuration, heat generated in the discharge load 9 is radiated to the outside through the inner wall of the battery outer can 5. The non-aqueous electrolyte secondary battery shown in FIG. 3B has a discharge load lead 11b, a discharge load lead guide 12, a short-circuit and heat radiation electrode 7, a core 4, a separator 1, a negative electrode 3, It comprises a positive electrode 2 and a battery outer can 5. With this configuration, heat generated by the discharge load is radiated to the outside through the inner wall of the battery outer can 5. The discharge load lead 11b is short-circuited and insulated from the heat radiation electrode 7 by the discharge load lead guide 12.

【0036】次に本発明の実施の形態1の非水電解液二
次電池の安全機構動作時を図面を参照して説明する。図
4(a)は、本発明の実施の形態1の安全機構非動作時
の非水電解液二次電池を示す模式図である。図4(b)
は、本発明の実施の形態1の安全機構動作時の非水電解
液二次電池を示す模式図である。図4(c)は、本発明
の実施の形態1の安全機構動作時の非水電解液二次電池
における電池外装缶5の変形動作を示す模式図である。
Next, the operation of the safety mechanism of the nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 4A is a schematic diagram showing the non-aqueous electrolyte secondary battery when the safety mechanism is not operated according to the first embodiment of the present invention. FIG. 4 (b)
FIG. 3 is a schematic diagram showing the nonaqueous electrolyte secondary battery during operation of the safety mechanism according to Embodiment 1 of the present invention. FIG. 4C is a schematic diagram showing a deformation operation of the battery outer can 5 in the nonaqueous electrolyte secondary battery during the operation of the safety mechanism according to the first embodiment of the present invention.

【0037】図4(a)を参照して、本発明の実施の形
態1の安全機構非動作時の非水電解液二次電池を説明す
る。図4(a)に示すように、コア4内には、放電用負
荷9と放電用負荷リード11bと放電用負荷リードガイ
ド12と短絡及び放熱用電極7とが収容されている。安
全機構が動作していない状態では、放電用負荷リード1
1bは、放電用負荷リードガイド12により、短絡及び
放熱用電極7と電気的に絶縁されている。また、放電用
負荷9は電池外装缶5の変形の影響を受けにくいコア4
の端部に設けられる。更に、放電用リードガイド12の
円周は、短絡及び放熱用電極7に接触固定されている。
前記円周の径は、5mm以内である。放熱用リードガイ
ド12の配置間隔は、電池高さの1/2以内として、放
電用負荷リード11bが短絡及び放熱用電極7に接触し
ない態様で設けられる。
Referring to FIG. 4A, a non-aqueous electrolyte secondary battery when the safety mechanism is not operated according to the first embodiment of the present invention will be described. As shown in FIG. 4A, the discharge load 9, the discharge load lead 11 b, the discharge load lead guide 12, and the short-circuit and heat radiation electrode 7 are accommodated in the core 4. When the safety mechanism is not operating, discharge load lead 1
1b is electrically insulated from the short-circuit and heat radiation electrode 7 by the discharge load lead guide 12. Further, the discharge load 9 is a core 4 that is not easily affected by the deformation of the battery outer can 5.
Is provided at the end. Further, the circumference of the discharge lead guide 12 is fixed to the electrode 7 for short-circuit and heat radiation.
The diameter of the circumference is within 5 mm. The arrangement interval of the heat radiation lead guides 12 is set to be within 1/2 of the battery height so that the discharge load leads 11b are not short-circuited and do not contact the heat radiation electrodes 7.

【0038】次に本発明の実施の形態1の安全機構動作
時の非水電解質二次電池を図4(b)及び図4(c)を
参照して説明する。本発明の実施の形態1の非水電解液
二次電池の安全機構が動作した状態では、図4(c)に
示すように、強制的に電池外装缶5の外部側壁25を変
形させる。即ち、外部側壁25を変形させることによ
り、図4(b)に示すように、コア4と短絡及び放熱用
電極7とが同時に変形される。その結果として放電用負
荷リード11bと短絡及び放熱用電極7とを電気的に短
絡させることにより、電池要素と放電用負荷リード11
bとに電気経路が形成されてエネルギーを放電用負荷に
出力させることができる。
Next, a non-aqueous electrolyte secondary battery during operation of the safety mechanism according to the first embodiment of the present invention will be described with reference to FIGS. 4 (b) and 4 (c). When the safety mechanism of the non-aqueous electrolyte secondary battery according to Embodiment 1 of the present invention operates, the outer side wall 25 of the battery outer can 5 is forcibly deformed as shown in FIG. That is, by deforming the outer side wall 25, the core 4 and the short-circuit and heat radiation electrode 7 are simultaneously deformed as shown in FIG. 4B. As a result, by electrically short-circuiting the discharge load lead 11b and the short-circuit / radiation electrode 7, the battery element and the discharge load lead 11 are short-circuited.
b, an electric path is formed, and energy can be output to the discharge load.

【0039】また、安全機構動作について図4(b)及
び図4(c)を参照して更に詳細に説明する。本発明の
実施の形態1の非水電解液二次電池に温度センサ28を
取り付けた後、先端部に丸棒の付いた安全機構作動治具
26を安全機構作動応力方向27(コア4方向)に押圧
する。係る押圧動作により電池要素と放電用負荷リード
11bとが電気的に短絡すると共に、電気経路が形成さ
れて放電用負荷への放電を開始する。放熱開始後は温度
センサ28により温度が上昇することをモニタして確認
する。安全機構を作動させるための押し込み量は、圧壊
試験と同様な状態を避けるため、電池直径の1/8以内
とする。また、安全機構は放電するための手段であるた
め、下記にて説明する放電用負荷9の放電時の温度設定
条件を満たせば、短絡及び放熱用電極7と放電用負荷リ
ード11bとの接続面等が抵抗であっても良いため、放
電を行う為の接触面積は特に規定しない。
The operation of the safety mechanism will be described in more detail with reference to FIGS. 4 (b) and 4 (c). After attaching the temperature sensor 28 to the non-aqueous electrolyte secondary battery of Embodiment 1 of the present invention, the safety mechanism operating jig 26 having a round bar at the tip is moved to the safety mechanism operating stress direction 27 (in the direction of the core 4). Press The pressing operation causes the battery element and the discharge load lead 11b to be electrically short-circuited, and an electric path is formed to start discharging to the discharge load. After the heat radiation is started, the temperature sensor 28 monitors and confirms that the temperature has risen. The pushing amount for activating the safety mechanism should be within 1/8 of the battery diameter in order to avoid the same state as in the crush test. Further, since the safety mechanism is a means for discharging, if a temperature setting condition at the time of discharging of the discharging load 9 described below is satisfied, a connection surface between the short-circuit and heat radiation electrode 7 and the discharging load lead 11b is provided. The contact area for performing the discharge is not particularly defined because the resistance may be a resistance.

【0040】放電用負荷9の設定条件は、電解液の系及
び使用最大温度で異なる。放電用負荷9は、放電用負荷
9を最大の値に設定する場合は、電解液が気化しないよ
うに電池の最大使用温度と沸点の温度差とによって決定
してもよい。但し、一般的には十分な安全マージンを見
ることが好ましく、電力20W程度の抵抗を使用して、
放電時の最大設定電力が10W以下になるように設定す
る。例えば、容量10Ah、使用最大温度が60℃、電
解液の系がPC:EC:EMCのLiイオン二次電池に
対して放電用負荷9を設定する場合は以下のようにな
る。電解液の系がPC:EC;EMCを用いた場合、混
合溶媒においても沸点が低い物質から気化していくた
め、先ず3種類の沸点及び引火点を調査する。この系で
は、EMCが最も沸点及び引火点が低い。具体的には、
沸点が108℃、引火点が23℃である。最大使用温度
から沸点までのマージンは48℃であり、0.1C(1
A)で放電する場合、電池最大電圧が4.2Vである。
この時の最大電力は4.2Wであり、長時間電流を流し
続けた場合においても、△Tで4℃程度の発熱であるた
め安全である。また、短絡時のスパークの危険性につい
ては、スパークの発生は、電圧が高い時に発生する。従
って、本発明の実施の形態1に示すLiイオン二次電池
に代表される非水電解液二次電池の安全機構動作時にお
いては、単セル当たりの電圧が、最大4.2V程度であ
り、スパークの発生はない。
The setting conditions of the discharge load 9 differ depending on the system of the electrolytic solution and the maximum operating temperature. When the discharge load 9 is set to the maximum value, the discharge load 9 may be determined based on the maximum operating temperature of the battery and the temperature difference between the boiling points so that the electrolyte does not vaporize. However, in general, it is preferable to see a sufficient safety margin.
The maximum set power at the time of discharging is set to be 10 W or less. For example, when the discharge load 9 is set for a Li-ion secondary battery having a capacity of 10 Ah, a maximum use temperature of 60 ° C., and an electrolyte system of PC: EC: EMC, the following is performed. When using PC: EC; EMC as the electrolyte system, three types of boiling points and flash points are first investigated because even a mixed solvent vaporizes from a substance having a low boiling point. In this system, EMC has the lowest boiling point and flash point. In particular,
The boiling point is 108 ° C and the flash point is 23 ° C. The margin from the maximum operating temperature to the boiling point is 48 ° C. and 0.1 C (1
When discharging in A), the battery maximum voltage is 4.2V.
The maximum power at this time is 4.2 W, and it is safe even if the current continues to flow for a long time because it generates heat of about 4 ° C. at ΔT. Regarding the danger of sparking at the time of short-circuiting, sparking occurs when the voltage is high. Therefore, during the safety mechanism operation of the non-aqueous electrolyte secondary battery represented by the Li-ion secondary battery shown in Embodiment 1 of the present invention, the voltage per single cell is about 4.2 V at the maximum, There is no spark.

【0041】また、放電用負荷リードガイドが設けられ
ていない場合は、放電負荷を導電部材の内径に嵌着又は
接着させることで放電負荷及び放電負荷リードを保持す
ることもできる。また、電池外装缶が塑性変形された結
果、放電用負荷リードと電池要素との間に電気経路が形
成される構造であれば、放電用負荷リードは正極及び負
極に接続されていなくともよい。
When the discharge load lead guide is not provided, the discharge load and the discharge load lead can be held by fitting or adhering the discharge load to the inner diameter of the conductive member. In addition, as long as an electric path is formed between the discharge load lead and the battery element as a result of plastic deformation of the battery outer can, the discharge load lead does not need to be connected to the positive electrode and the negative electrode.

【0042】次に本発明の実施の形態1の非水電解質二
次電池の製造方法につき下記にて説明する。 (1)コア内に短絡及び放熱用電極を挿入してコア内壁
と接合させる。 (2)帯状の正極電極及び帯状の負極電極の一部の正極
活物質及び負極活物質を取り除く。若しくは、間欠塗布
を行い、正極箔及び負極箔が露出する部分を設ける。次
に正極箔及び負極箔が露出する部分に入出力取り出しリ
ードを接合してコアを軸にセパレータを介して積層させ
た積層体を巻回させ、電池要素を作成する。 (3)電池要素の端面に正極側及び負極側に絶縁リング
を取り付けて、両絶縁リングの開口部から正極及び負極
の入出力取り出しリードを突出させ、突出させた入出力
取り出しリードとかしめリングで機械的に接合させる。 (4)電池外装缶内に電池要素を収納させた後、かしめ
リングで機械的に接合させた入出力取り出しリードと、
短絡及び放熱用電極のリードとを缶底部に接合させて導
電経路を形成させる。前記缶底部との接合は、接合面積
を大に設定することが望ましい。また、接合は抵抗溶
接、超音波溶接又はレーザー溶接を用いて行う。 (5)放電用負荷の放電用負荷リード及び短絡端子に、
放電用負荷リードガイドを一定間隔に固定させてコア内
に設置させる。 (6)入出力取り出しリードのヘッダ側とコア内とから
突出する態様で設けられた放電用負荷リードをかしめリ
ングで機械的に接合させ、電池外装缶の上部をグルービ
ング(溝加工)し、電池の内壁に段差部を形成させる。 (7)前記放電用負荷リードをヘッダ部に接合させる。
ヘッダ部との接合は、接合面積を大に設定することが望
ましい。また、接合は抵抗接合、超音波接合又はレーザ
ー接合等を用いて行う。 (8)電解液を注入した後、ヘッダ部をガスケットを介
して電池外装缶とかしめ加工して電池を封止させる。
Next, a method for manufacturing the nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention will be described below. (1) An electrode for short-circuit and heat dissipation is inserted into the core and joined to the inner wall of the core. (2) A part of the positive electrode active material and the negative electrode active material of the band-shaped positive electrode and the band-shaped negative electrode is removed. Alternatively, intermittent coating is performed to provide a portion where the positive electrode foil and the negative electrode foil are exposed. Next, an input / output extraction lead is joined to a portion where the positive electrode foil and the negative electrode foil are exposed, and a laminated body laminated around a core via a separator is wound around the core to form a battery element. (3) An insulating ring is attached to the end face of the battery element on the positive electrode side and the negative electrode side, and the input / output extraction leads of the positive electrode and the negative electrode are protruded from the openings of both insulating rings. Join mechanically. (4) An input / output extraction lead mechanically joined by a caulking ring after the battery element is housed in the battery outer can,
The conductive path is formed by joining the short-circuit and heat radiation electrode leads to the bottom of the can. It is desirable to set a large bonding area for bonding to the can bottom. The joining is performed using resistance welding, ultrasonic welding, or laser welding. (5) For the discharge load lead and short-circuit terminal of the discharge load,
The discharge load lead guide is fixed at a fixed interval and installed in the core. (6) Discharge load leads provided in a manner to protrude from the header side of the input / output extraction lead and the inside of the core are mechanically joined by a caulking ring, and the upper part of the battery outer can is grooved (grooved), and A step is formed on the inner wall. (7) The discharge load lead is joined to the header.
It is desirable to set a large joint area for joining with the header portion. The bonding is performed by using resistance bonding, ultrasonic bonding, laser bonding, or the like. (8) After injecting the electrolytic solution, the header is caulked with a battery outer can via a gasket to seal the battery.

【0043】以上で説明した本発明の実施の形態1の非
水電解質二次電池の製造方法は、電池外装缶を負極にす
る例であるが、アルミニウム等を電池外装缶とした場合
は電池外装缶が正極であっても良い。この場合は正極と
負極とが逆になる。また、放電用負荷リードガイドを設
けない場合は、放電負荷を導電部材の内径に嵌着又は接
着させることで放電負荷及び放電負荷リードを保持する
こともできる。また、電池外装缶が塑性変形された結
果、放電用負荷リードと電池要素との間に電気経路が形
成される構造であれば、放電用負荷リードは正極及び負
極に接続されていなくともよい。
The method of manufacturing a nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention described above is an example in which the battery outer can is used as the negative electrode. The can may be a positive electrode. In this case, the positive electrode and the negative electrode are reversed. When the discharge load lead guide is not provided, the discharge load and the discharge load lead can be held by fitting or adhering the discharge load to the inner diameter of the conductive member. In addition, as long as an electric path is formed between the discharge load lead and the battery element as a result of plastic deformation of the battery outer can, the discharge load lead does not need to be connected to the positive electrode and the negative electrode.

【0044】(実施の形態2)次に本発明の実施の形態
2の非水電解液二次電池につき、図面を参照して説明す
る。図5は本発明の実施の形態2の非水電解液二次電池
の断面図である。図5に示すように本発明の実施の形態
2の非水電解液二次電池は、正極電極2と負極電極3と
をセパレータ1を介して積層させ、コア4を軸として巻
回させて電池要素を形成させている。コア4内には、短
絡及び放熱用電極7と短絡端子29と放電用負荷リード
ガイド12と放電用負荷9とを設けて安全機構を形成さ
せている。
Embodiment 2 Next, a non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 5 is a sectional view of a non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention. As shown in FIG. 5, the nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention has a structure in which a positive electrode 2 and a negative electrode 3 are laminated with a separator 1 interposed therebetween, and wound around a core 4 as an axis. Elements are formed. In the core 4, a short-circuit and heat radiation electrode 7, a short-circuit terminal 29, a discharge load lead guide 12, and a discharge load 9 are provided to form a safety mechanism.

【0045】発電要素のコア4内の内壁には、一部に全
内周に渡り短絡及び放熱用電極7が設けられている。係
る短絡及び放熱用電極7の内部には放電用負荷9が設け
られている。また短絡お呼び放熱用電極7の内面には放
電用負荷リードガイド12が設けられている。更に、係
る放熱用負荷リードガイド12により放電用負荷リード
及び短絡端子29が短絡及び放熱用電極7の内部に保持
されている。更に加えて、放電用負荷リードは短絡及び
放熱用電極と絶縁されている。また、発電要素の底部端
面13には、絶縁リング14が設けられてる。更に、負
極集電体に取り付けられた少なくとも一以上の入出力取
り出しリード15aは、絶縁リング14に設けられた開
口部16から缶底部8に接続される態様で延設されてい
る。更に加えて、入出力取り出しリード15aは、短絡
及び放熱用電極7とかしめリング17aにより機械的に
嵌着された後、溶接を用いて電池外装缶5の内壁に接合
されている。また、発電要素の上部端面18には、絶縁
リング14が設けられている。更に、正極集電体の端部
に取り付けられた少なくとも一以上の入出力取り出しリ
ード15bは、絶縁リング14に設けられた開口部16
から延設されている。更に加えて、入出力取り出しリー
ド15bは、短絡及び放熱用電極7とかしめリング17
bとにより機械的に嵌着された後、溶接を用いてヘッダ
部10のウエルドプレート19に接合されている。
On the inner wall inside the core 4 of the power generating element, a short-circuit and heat radiation electrode 7 is provided partially over the entire inner circumference. A discharge load 9 is provided inside the short-circuit and heat radiation electrode 7. A discharge load lead guide 12 is provided on the inner surface of the short-circuiting / radiating electrode 7. Further, the discharge load lead and the short-circuit terminal 29 are held inside the short-circuit and heat radiation electrode 7 by the heat radiation load lead guide 12. In addition, the discharge load lead is insulated from the short-circuit and heat radiation electrodes. An insulating ring 14 is provided on the bottom end face 13 of the power generating element. Further, at least one or more input / output extraction leads 15 a attached to the negative electrode current collector extend from an opening 16 provided in the insulating ring 14 so as to be connected to the can bottom 8. In addition, the input / output extraction lead 15a is mechanically fitted by the short-circuit and heat radiation electrode 7 and the caulking ring 17a, and then joined to the inner wall of the battery outer can 5 by welding. The insulating ring 14 is provided on the upper end face 18 of the power generating element. Further, at least one or more input / output lead 15 b attached to the end of the positive electrode current collector is connected to an opening 16 provided in the insulating ring 14.
It is extended from. In addition, the input / output lead 15b is connected to the short-circuit and heat radiation electrode 7 and the caulking ring 17.
b, and are joined to the weld plate 19 of the header portion 10 by welding.

【0046】また、キャップ20、ニッケルリング2
1、ラプチャーディスク22、ウエルドプレート19及
びガスケット23からなるヘッダ部10はガスケット2
3を介して電池外装缶5の上部を電解液を注液後に専用
のかしめ機械を使用してかしめることにより電池を封口
している。前記ウエルドプレート19に接合される外部
取り出し用溶接点24a及び電池外装缶5の内壁に接合
される外部取り出し用溶接点24bは抵抗溶接、超音波
溶接又はレーザー溶接を用いて接合される。ヘッダ部1
0には、電池内部の以上による内部圧力上昇時に作動し
て、電流を遮断するディスコネクト機構及び内部圧力を
開放するバースト機構が設けられている。また、ヘッダ
部10には過大な電流を遮断する素子等が設けられても
良い。
The cap 20, the nickel ring 2
1, a rupture disc 22, a weld plate 19 and a gasket 23,
The battery is sealed by caulking the upper portion of the battery outer can 5 via the electrolyte solution 3 using an exclusive caulking machine after injecting the electrolytic solution. The external take-out welding point 24a joined to the weld plate 19 and the external take-out weld point 24b joined to the inner wall of the battery outer can 5 are joined using resistance welding, ultrasonic welding or laser welding. Header part 1
At 0, there is provided a disconnect mechanism that operates when the internal pressure rises due to the above inside of the battery to cut off the current and a burst mechanism that releases the internal pressure. Further, the header section 10 may be provided with an element or the like for interrupting an excessive current.

【0047】電池外装缶5は、外部側壁25に放電用負
荷リードガイドの位置を示すマーク(図示せず)及び/
又は潰し位置を示すマーク(図示せず)を設けることで
安全機構動作を容易に行うことができる。また、前記潰
し位置を示すマークを凸部(図示せず)とすることで規
定量の押し込みを視覚的に確認することができる。ま
た、前記潰し位置は放電用負荷リードガイド12が設け
られていない短絡及び放熱用電極7が位置する部位に対
応する電池外装缶5の外部側面25を指す。更に、本発
明の実施の形態2の非水電解液二次電池においては、短
絡端子29と接続された電極が位置する電池外装缶5の
外部を指す。更に加えて、以上で説明した潰し位置のう
ち、前記凸部は少なくとも一の潰し位置に設けられる。
その結果として、安全機構動作時の作業性が向上され
る。また、凸部は押し込み量に対応するの長さを有す
る。
The battery outer can 5 has a mark (not shown) indicating the position of the discharge load lead guide on the outer side wall 25 and / or
Alternatively, by providing a mark (not shown) indicating the crushed position, the safety mechanism operation can be easily performed. Further, by setting the mark indicating the crushed position as a convex portion (not shown), it is possible to visually confirm the pressing of a specified amount. The crushed position refers to the outer side surface 25 of the battery outer can 5 corresponding to the portion where the short-circuit and heat radiation electrode 7 where the discharge load lead guide 12 is not provided is located. Further, in the non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention, it refers to the outside of the battery outer can 5 where the electrode connected to the short-circuit terminal 29 is located. In addition, among the crushing positions described above, the protrusion is provided at at least one crushing position.
As a result, workability during operation of the safety mechanism is improved. Further, the projection has a length corresponding to the pushing amount.

【0048】入出力取り出しリード15b及びかしめリ
ング17bは、正極電極2材料として、電気的に安定で
ある材料を使用する。例えば、アルミニウム等を使用す
ることが好ましい。また、入出力取り出しリード15a
及びかしめリング17bは、負極電極3材料として、電
気的に安定である材料を使用する。例えば、ニッケル又
は銅等を使用することが好ましい。短絡及び放熱用電極
7と放電用負荷リードとは、耐電解液性、導電性及び導
熱性のある材料を使用する。例えば、銅、ニッケル又は
アルミニウム等を使用することが好ましい。また、これ
らの部材に抵抗成分を持たせて、安全機構動作時に部材
でエネルギーを放出させても良い。更に、これらの部材
は、発生した熱を分散させる効果もある。更に加えて、
放電用負荷リードは、放電用負荷径の中央部に接続され
る。放電用負荷9のサイズは電池全高の1/5以内と
し、電池外装缶5に一以上設け、導熱性、耐熱性及び耐
電解液性を有する材料でコーティングしたものを使用す
る。例えば、ハーメチック抵抗をガラス又はセラミック
等の絶縁材料で封止したものを使用することが好まし
い。
The input / output lead 15b and the caulking ring 17b use an electrically stable material as the material of the positive electrode 2. For example, it is preferable to use aluminum or the like. Also, the input / output extraction lead 15a
The caulking ring 17b uses an electrically stable material as the negative electrode 3 material. For example, it is preferable to use nickel or copper. The short-circuit and heat radiation electrode 7 and the discharge load lead are made of a material having resistance to electrolyte, conductivity and heat conductivity. For example, it is preferable to use copper, nickel, aluminum, or the like. In addition, these members may have a resistance component so that the members can release energy when the safety mechanism operates. Further, these members have an effect of dispersing the generated heat. In addition,
The discharge load lead is connected to the center of the discharge load diameter. The size of the discharge load 9 is within 1/5 of the total height of the battery, one or more of which are provided on the battery outer can 5 and coated with a material having heat conductivity, heat resistance and electrolyte resistance. For example, it is preferable to use a hermetic resistor sealed with an insulating material such as glass or ceramic.

【0049】次に図6(a)及び図6(b)を参照して
本発明の実施の形態2の非水電解液二次電池の構成を説
明する。図6(a)は図5に示した本発明の実施の形態
2の非水電解液二次電池のA−A’断面図である。図6
(b)は図5に示した本発明の実施の形態2の非水電解
液二次電池のB−B’断面図である。
Next, the configuration of the nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention will be described with reference to FIGS. 6 (a) and 6 (b). FIG. 6A is a cross-sectional view of the non-aqueous electrolyte secondary battery according to the second embodiment of the present invention shown in FIG. FIG.
6B is a cross-sectional view of the non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention shown in FIG. 5 taken along line BB ′.

【0050】図6(a)に示した非水電解液二次電池
は、内側から放電用負荷、短絡及び放熱用電極、コア
4、セパレータ1、負極電極3、正極電極2及び電池外
装缶5で構成されている。放電用負荷9は、短絡及び放
熱用電極7に電気的に短絡しないように放電用負荷9の
外周部で接触している。係る構成により、放電用負荷9
で発生した熱を電池外装缶5の内壁を通して外部に放熱
する。図6(b)に示した非水電解液二次電池は、内側
から、短絡端子29、放電用負荷リードガイド12、短
絡及び放熱用電極7、コア4、セパレータ1、負極電極
3、正極電極2及び電池外装缶5で構成されている。放
電用負荷9は、短絡及び放熱用電極7に電気的に短絡し
ないように放電用負荷9の外周部で接触している。係る
構成とすることで、放電用負荷で発生した熱を電池外装
缶5の内壁を通して外部に放熱する。また、短絡端子
は、放電用負荷リードガイドにより、短絡及び放熱用電
極と絶縁されている。
The non-aqueous electrolyte secondary battery shown in FIG. 6A has a discharge load, a short-circuit and heat dissipation electrode, a core 4, a separator 1, a negative electrode 3, a positive electrode 2, and a battery can 5 from the inside. It is composed of The discharge load 9 is in contact with the outer peripheral portion of the discharge load 9 so as not to short-circuit and electrically short-circuit the electrode 7 for heat radiation. With such a configuration, the discharge load 9
Is released to the outside through the inner wall of the battery outer can 5. The non-aqueous electrolyte secondary battery shown in FIG. 6B has a short-circuit terminal 29, a discharge load lead guide 12, a short-circuit and heat radiation electrode 7, a core 4, a separator 1, a negative electrode 3, and a positive electrode from the inside. 2 and a battery outer can 5. The discharge load 9 is in contact with the outer peripheral portion of the discharge load 9 so as not to short-circuit and electrically short-circuit the electrode 7 for heat radiation. With this configuration, heat generated by the discharge load is radiated to the outside through the inner wall of the battery outer can 5. The short-circuit terminal is insulated from the short-circuit and heat-dissipating electrodes by the discharge load lead guide.

【0051】次に、本発明の実施の形態2の非水電解液
二次電池の安全機構につき図面を参照して説明する。図
7(a)は、本発明の実施の形態2の非水電解液二次電
池の安全機構非動作時を示す模式図である。図7(b)
は、本発明の実施の形態2の非水電解液二次電池の安全
機構動作時を示す模式図である。図7(c)は、本発明
の実施の形態2の非水電解液二次電池の安全機構動作時
における電池外装缶5の変形動作を示す模式図である。
Next, a safety mechanism of the nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 7A is a schematic diagram illustrating the non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention when the safety mechanism is not operating. FIG. 7 (b)
FIG. 7 is a schematic diagram showing a non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention when a safety mechanism is operating. FIG. 7 (c) is a schematic diagram illustrating a deformation operation of the battery outer can 5 during the safety mechanism operation of the nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention.

【0052】図7(a)を参照して説明すると、コア4
内には、放電用負荷9と放電用負荷リード11bと放電
用負荷リードガイド12と短絡及び放熱用電極7と短絡
端子29が収納されている。安全機構が動作していない
状態では、放電用負荷リード11bは、放電用負荷リー
ドガイド12により短絡及び放熱用電極7と絶縁され
る。また、短絡端子12は短絡及び放熱用電極7と電気
的に接触接続しており、放電用負荷リード11bとは絶
縁される。
Referring to FIG. 7A, the core 4
Inside, the discharge load 9, the discharge load lead 11b, the discharge load lead guide 12, the short-circuit and heat radiation electrode 7, and the short-circuit terminal 29 are accommodated. When the safety mechanism is not operating, the discharge load lead 11 b is insulated from the short-circuit and heat radiation electrode 7 by the discharge load lead guide 12. The short-circuit terminal 12 is electrically connected to the short-circuit and heat-dissipating electrode 7, and is insulated from the discharge load lead 11b.

【0053】また、図7(c)に示すように、安全機構
が動作していない状態では、強制的に電池外装缶5の缶
底部8を変形させる。図7(b)に示すように、短絡端
子29が短絡及び放熱用電極7内に電気的に接触接続さ
れた状態で放電用負荷リード11b側に移動して、電気
的に短絡させる。その結果として、電気経路とを形成さ
せてエネルギーを放電用負荷に出力する。
Further, as shown in FIG. 7C, when the safety mechanism is not operating, the can bottom 8 of the battery outer can 5 is forcibly deformed. As shown in FIG. 7B, the short-circuit terminal 29 is moved to the discharge load lead 11b side in a state where the short-circuit terminal 29 is electrically connected to the inside of the short-circuit and heat-dissipating electrode 7, and is electrically short-circuited. As a result, an electric path is formed and energy is output to the discharge load.

【0054】安全機構の作動については、電池に温度セ
ンサ28を取り付けた後、先端部に丸棒の付いた安全機
構作動用治具26により、安全機構作動応力27の方向
に電池外装缶5の缶底部8を電池外装缶5の缶底部8が
コア4に接触する程度潰す。それにより放電用負荷9へ
の放電を開始する。放熱開始後は温度センサ28より温
度が上昇することをモニタして確認する。
Regarding the operation of the safety mechanism, after attaching the temperature sensor 28 to the battery, the battery outer can 5 is moved in the direction of the safety mechanism operating stress 27 by the safety mechanism operating jig 26 having a round bar at the tip. The can bottom 8 is crushed so that the bottom 8 of the battery outer can 5 contacts the core 4. Thus, the discharge to the discharge load 9 is started. After the start of heat radiation, the temperature sensor 28 monitors and confirms that the temperature has risen.

【0055】また、缶底部8に押し込み用の凸部等を設
け、係る凸部を押し込むようにしても視覚的に押し込み
量が確認できる。この時の短絡及び放熱用電極7と短絡
端子29との間隔は、短絡端子29の缶底部8側の凸
部、即ち電池外装缶5の缶底部8の底部端部13と缶底
部8とで形成される隙間と同程度にすることが望まし
い。安全装置を作動させるための押し込み量は、圧壊試
験と同様な状態を避けるため、缶底部がコア4に接触す
る位置までとする。
Further, when a convex portion or the like for pushing is provided on the can bottom portion 8 and the convex portion is pushed in, the pushing amount can be visually confirmed. At this time, the distance between the short-circuit and heat radiation electrode 7 and the short-circuit terminal 29 is determined by the convex portion of the short-circuit terminal 29 on the can bottom portion 8 side, that is, the bottom end 13 of the can bottom portion 8 of the battery outer can 5 and the can bottom portion 8. It is desirable that the gap is substantially the same as the gap to be formed. The pushing amount for activating the safety device is limited to a position where the bottom of the can contacts the core 4 in order to avoid the same state as in the crush test.

【0056】また、放電用負荷リードが設けられていな
い場合は、放電負荷を導電部材の内径に嵌着又は接着さ
せることで放電負荷及び放電負荷リードを保持すること
もできる。更に、短絡端子の一部を導電部材の内径に嵌
着させることで、短絡端子を保持することもできる。ま
た、電池外装缶が塑性変形された結果、放電用負荷リー
ドと電池要素との間に電気経路が形成される構造であれ
ば、放電用負荷リードは正極及び負極に接続されていな
くともよい。
When the discharge load lead is not provided, the discharge load and the discharge load lead can be held by fitting or adhering the discharge load to the inner diameter of the conductive member. Further, the short-circuit terminal can be held by fitting a part of the short-circuit terminal to the inner diameter of the conductive member. In addition, as long as an electric path is formed between the discharge load lead and the battery element as a result of plastic deformation of the battery outer can, the discharge load lead does not need to be connected to the positive electrode and the negative electrode.

【0057】次に本発明の実施の形態2の非水電解質二
次電池の製造方法につき下記にて説明する。 (1)コア内に短絡及び放熱用電極を挿入してコア内壁
と接合させる。 (2)帯状の正極電極及び帯状の負極電極の一部の正極
活物質及び負極活物質を取り除く。若しくは、間欠塗布
を行い、正極箔及び負極箔が露出する部分を設ける。次
に正極箔及び負極箔が露出する部分に入出力取り出しリ
ードを接合してコアを軸にセパレータを介して積層させ
た積層体を巻回させ、電池要素を作成する。 (3)電池要素の端面に正極側及び負極側に絶縁リング
を取り付けて、両絶縁リングの開口部から正極及び負極
の入出力取り出しリードを突出させ、突出させた入出力
取り出しリードとかしめリングで機械的に接合させる。 (4)電池外装缶内に電池要素を収納させた後、かしめ
リングで機械的に接合させた入出力取り出しリードと、
短絡及び放熱用電極のリードとを缶底部に接合させて導
電経路を形成させる。前記缶底部との接合は、接合面積
を大に設定することが望ましい。また、接合は抵抗溶
接、超音波溶接又はレーザー溶接を用いて行う。 (5)放電用負荷の放電用負荷リード及び短絡端子に、
放電用負荷リードガイドを一定間隔に固定させてコア内
に設置させる。 (6)入出力取り出しリードのヘッダ側とコア内とから
突出する態様で設けられた放電用負荷リードをかしめリ
ングで機械的に接合させ、電池外装缶の上部をグルービ
ング(溝加工)し、電池の内壁に段差部を形成させる。 (7)前記放電用負荷リードをヘッダ部に接合させる。
ヘッダ部との接合は、接合面積を大に設定することが望
ましい。また、接合は抵抗接合、超音波接合又はレーザ
ー接合等を用いて行う。 (8)電解液を注入した後、ヘッダ部をガスケットを介
して電池外装缶とかしめ加工して電池を封止させる。
Next, a method of manufacturing the nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention will be described below. (1) An electrode for short-circuit and heat dissipation is inserted into the core and joined to the inner wall of the core. (2) A part of the positive electrode active material and the negative electrode active material of the band-shaped positive electrode and the band-shaped negative electrode is removed. Alternatively, intermittent coating is performed to provide a portion where the positive electrode foil and the negative electrode foil are exposed. Next, an input / output extraction lead is joined to a portion where the positive electrode foil and the negative electrode foil are exposed, and a laminated body laminated around a core via a separator is wound around the core to form a battery element. (3) An insulating ring is attached to the end face of the battery element on the positive electrode side and the negative electrode side, and the input / output extraction leads of the positive electrode and the negative electrode are protruded from the openings of both insulating rings. Join mechanically. (4) An input / output extraction lead mechanically joined by a caulking ring after the battery element is housed in the battery outer can,
The conductive path is formed by joining the short-circuit and heat radiation electrode leads to the bottom of the can. It is desirable to set a large bonding area for bonding to the can bottom. The joining is performed using resistance welding, ultrasonic welding, or laser welding. (5) For the discharge load lead and short-circuit terminal of the discharge load,
The discharge load lead guide is fixed at a fixed interval and installed in the core. (6) Discharge load leads provided in such a manner as to protrude from the header side of the input / output extraction lead and the inside of the core are mechanically joined by a caulking ring, and the upper part of the battery outer can is grooved (grooved) to form a battery. A step is formed on the inner wall. (7) The discharge load lead is joined to the header.
It is desirable to set a large joint area for joining with the header portion. The bonding is performed by using resistance bonding, ultrasonic bonding, laser bonding, or the like. (8) After injecting the electrolytic solution, the header is caulked with a battery outer can via a gasket to seal the battery.

【0058】以上で説明した本発明の実施の形態2の非
水電解質二次電池は、電池外装缶を負極にする例である
が、アルミニウム等を電池外装缶とした場合は電池外装
缶が正極であっても良い。この場合は正極と負極とが逆
になる。また、放電用負荷リードを設けない場合は、放
電負荷を導電部材の内径に嵌着又は接着させることで放
電負荷及び放電負荷リードを保持することもできる。更
に、短絡端子の一部を導電部材の内径に嵌着させること
で、短絡端子を保持することもできる。また、電池外装
缶が塑性変形された結果、放電用負荷リードと電池要素
との間に電気経路が形成される構造であれば、放電用負
荷リードは正極及び負極に接続されていなくともよい。
The non-aqueous electrolyte secondary battery according to the second embodiment of the present invention described above is an example in which the battery outer can is used as the negative electrode. It may be. In this case, the positive electrode and the negative electrode are reversed. When the discharge load lead is not provided, the discharge load and the discharge load lead can be held by fitting or adhering the discharge load to the inner diameter of the conductive member. Further, the short-circuit terminal can be held by fitting a part of the short-circuit terminal to the inner diameter of the conductive member. In addition, as long as an electric path is formed between the discharge load lead and the battery element as a result of plastic deformation of the battery outer can, the discharge load lead does not need to be connected to the positive electrode and the negative electrode.

【0059】[0059]

【発明の効果】電池外装缶5内にエネルギー放出用の負
荷を設けた電池において、電池要素と外部取り出し溶接
点24a及び/又は外部取り出し溶接点24bが振動等
によって切断した場合や回路等の不具合で、ヘッダ部の
安全機構が作動した場合に、電池外装缶5を強制的に変
形させることで電池外装缶5内部に設けたエネルギー放
出用の負荷に電池要素が短絡して安全にエネルギーを放
出させることができる。その結果として、電池を安全な
状態にすることができる。また、大規模な設備を必要と
しないため、コストを低減させる利点がある。
In a battery provided with a load for energy release in the battery outer can 5, when the battery element and the welding spot 24a and / or the welding spot 24b are cut off due to vibration or the like, there is a problem in the circuit or the like. Then, when the safety mechanism of the header section is activated, the battery element is forcibly deformed, so that the battery element is short-circuited to the energy release load provided inside the battery outer can 5 and the energy is safely released. Can be done. As a result, the battery can be in a safe state. Further, since large-scale equipment is not required, there is an advantage of reducing costs.

【0060】[0060]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1の非水電解液二次電池
の断面図
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to Embodiment 1 of the present invention.

【図2】 本発明の実施の形態1の非水電解液二次電池
の電池要素を示す模式図
FIG. 2 is a schematic diagram showing battery elements of the non-aqueous electrolyte secondary battery according to Embodiment 1 of the present invention.

【図3】(a) 本発明の実施の形態1の非水電解液二
次電池のA―A’断面図 (b) 本発明の実施の形態1の非水電解液二次電池の
B―B’断面図
3A is a cross-sectional view of the non-aqueous electrolyte secondary battery according to the first embodiment of the present invention, taken along line AA ′. FIG. 3B is a cross-sectional view of the non-aqueous electrolyte secondary battery according to the first embodiment of the present invention. B 'sectional view

【図4】(a) 本発明の実施の形態1の安全機構非動
作時の非水電解液二次電池を示す模式図 (b) 本発明の実施の形態1の安全機構動作時の非水電
解液二次電池を示す模式図 (c) 本発明の実施の形態1の安全機構動作時の非水電
解液二次電池における電池外装缶の変形動作を示す模式
FIG. 4 (a) is a schematic view showing a non-aqueous electrolyte secondary battery when the safety mechanism is not operating according to the first embodiment of the present invention. (B) Non-aqueous water when the safety mechanism is operating according to the first embodiment of the present invention. Schematic diagram showing the electrolyte secondary battery (c) Schematic diagram showing the deformation operation of the battery outer can in the nonaqueous electrolyte secondary battery during the operation of the safety mechanism according to the first embodiment of the present invention.

【図5】 本発明の実施の形態2の非水電解液二次電池
を示す断面図
FIG. 5 is a sectional view showing a nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention.

【図6】(a) 本発明の実施の形態2の図5に示した
非水電解液二次電池のA−A’断面図 (b) 本発明の実施の形態2の図5に示した非水電解液
二次電池のB−B’断面図
6 (a) is a cross-sectional view of the non-aqueous electrolyte secondary battery taken along the line AA ′ shown in FIG. 5 of the second embodiment of the present invention. (B) FIG. BB 'sectional view of the non-aqueous electrolyte secondary battery

【図7】(a) 本発明の実施の形態2の非水電解液二
次電池の安全機構非動作時を示す模式図 (b) 本発明の実施の形態2の非水電解液二次電池の安
全機構動作時を示す模式図 (c) 本発明の実施の形態2の非水電解液二次電池の
安全機構動作時における電池外装缶の変形動作を示す模
式図
FIG. 7 (a) is a schematic diagram showing a non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention when the safety mechanism is not operating; and (b) a non-aqueous electrolyte secondary battery according to Embodiment 2 of the present invention. (C) A schematic view showing the deformation operation of the battery outer can during the operation of the safety mechanism of the nonaqueous electrolyte secondary battery according to Embodiment 2 of the present invention.

【図8】 従来の非水電解液二次電池を示す断面図FIG. 8 is a sectional view showing a conventional non-aqueous electrolyte secondary battery.

【図9】(a) 本発明及び従来の非水電解液二次電池
のヘッダ部の構成部材の一例を示す図 (b) 本発明及び従来の非水電解液二次電池の安全機構
を説明する断面図
FIG. 9 (a) is a view showing an example of a constituent member of a header portion of the present invention and a conventional non-aqueous electrolyte secondary battery. (B) A safety mechanism of the present invention and a conventional non-aqueous electrolyte secondary battery are described. Cross section

【符号の説明】[Explanation of symbols]

1 セパレータ 2 正極電極 3 負極電極 4 コア 5 電池外装缶 6 導電性部材 7 短絡お呼び放熱用電極 8 缶底部 9 放電用負荷 10 ヘッダ部 11a 放電用負荷リード 11b 放電用負荷リード 12 放電用負荷リードガイド 13 底部端面 14 絶縁リング 15a 入出力取り出しリード 15b 入出力取り出しリード 16 開口部 17a かしめリング 17b かしめリング 18 上部端面 19 ウエルドプレート 20 キャップ 21 ニッケルリング 22 ラプチャーディスク 23 ガスケット 24a 外部取り出し溶接点 24b 外部取り出し溶接点 25 外部側壁 26 安全機構作動治具 27 安全機構作動応力方向 28 温度センサ 29 短絡端子 30 ヘッダ組立側面図 31 ヘッダ組立側面図 32 ヘッダ組立側面図 DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode 3 Negative electrode 4 Core 5 Battery outer can 6 Conductive member 7 Short circuit call heat dissipation electrode 8 Can bottom 9 Discharge load 10 Header 11a Discharge load lead 11b Discharge load lead 12 Discharge load lead guide 13 Bottom end surface 14 Insulation ring 15a Input / output extraction lead 15b Input / output extraction lead 16 Opening 17a Caulking ring 17b Caulking ring 18 Top end surface 19 Weld plate 20 Cap 21 Nickel ring 22 Rupture disk 23 Gasket 24a External extraction welding point 24b External extraction welding Point 25 External side wall 26 Safety mechanism operation jig 27 Safety mechanism operation stress direction 28 Temperature sensor 29 Short-circuit terminal 30 Header assembly side view 31 Header assembly side view 32 Header assembly side view

フロントページの続き (72)発明者 猪井 隆之 東京都港区芝5丁目7番1号 日本電気株 式会社内 (72)発明者 座間 浩一 東京都港区芝5丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H029 AJ02 AJ12 AM01 BJ02 BJ04 BJ14 BJ27 CJ07 CJ16 DJ02 DJ04 DJ05 Continued on the front page (72) Inventor Takayuki Inoi 5-7-1 Shiba, Minato-ku, Tokyo Inside the NEC Corporation (72) Inventor Koichi Zama 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation In-house F-term (reference) 5H029 AJ02 AJ12 AM01 BJ02 BJ04 BJ14 BJ27 CJ07 CJ16 DJ02 DJ04 DJ05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】セパレータを介して積層された正極活物質
層及び負極活物質層を有する正極集電体及び負極集電体
がコアを軸として巻回されてなる電池要素を電池外装缶
内部に有し、係る電池要素が正極及び負極に電気的に接
続されてなる非水電解液二次電池において、コアの内壁
の一部に連設された導電性部材を有し、係る導電性部材
の内部にエネルギー放出用の負荷を設けると共に係る導
電性部材に接続されたリードを介して、導電性部材が正
極及び負極の何れか一方に接続されてなる安全機構を有
することを特徴とする非水電解液二次電池。
1. A battery element comprising a positive electrode current collector and a negative electrode current collector having a positive electrode active material layer and a negative electrode active material layer laminated with a separator interposed therebetween, wound around a core in a battery outer can. In a non-aqueous electrolyte secondary battery in which such a battery element is electrically connected to a positive electrode and a negative electrode, the battery element has a conductive member connected to a part of the inner wall of the core, A non-aqueous device having a safety mechanism in which a load for discharging energy is provided inside and a conductive member is connected to one of a positive electrode and a negative electrode via a lead connected to the conductive member. Electrolyte secondary battery.
【請求項2】前記エネルギー放出用の負荷は、放電用負
荷と、放電用負荷から正極方向及び負極方向に延設され
る放電用負荷リードとからなることを特徴とする請求項
1に記載の非水電解液二次電池。
2. The power supply according to claim 1, wherein the load for discharging energy comprises a discharge load and a discharge load lead extending from the discharge load in a positive electrode direction and a negative electrode direction. Non-aqueous electrolyte secondary battery.
【請求項3】正極方向及び負極方向に延設される放電用
負荷リードのうち、正極方向及び負極方向の何れか一方
に延設される放電用負荷リードの延長方向の電極と接続
する短絡端子を、前記放電用負荷リードの延長方向に所
定間隔を設けて延設させてなることを特徴とする請求項
1又は請求項2に記載の非水電解液二次電池。
3. A short-circuit terminal connected to an extension electrode of a discharge load lead extending in one of a positive electrode direction and a negative electrode direction among discharge load leads extending in a positive electrode direction and a negative electrode direction. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the non-aqueous electrolyte secondary battery is extended with a predetermined interval provided in a direction in which the discharge load lead extends.
【請求項4】導電性部材の内周縁に放電用負荷リードに
当接する態様で絶縁性の放電用負荷リードガイドを設け
たことを特徴とする請求項1〜請求項3の何れか一に記
載の非水電解液二次電池。
4. An insulative discharge load lead guide is provided on the inner peripheral edge of the conductive member so as to contact the discharge load lead. Non-aqueous electrolyte secondary battery.
【請求項5】前記放電用負荷リードガイドが位置する部
位に対応させて電池外装缶の外部側壁にマークが設けら
れたことを特徴とする請求項4に記載の非水電解液二次
電池。
5. The non-aqueous electrolyte secondary battery according to claim 4, wherein a mark is provided on an outer side wall of the battery outer can in correspondence with a position where the discharge load lead guide is located.
【請求項6】導電性部材の内部に設けられた放電用負荷
リードと前記導電性部材の内壁とが対向する部位に対応
した電池外装缶の外部側壁にマークが設けられたことを
特徴とする請求項1〜請求項5に記載の非水電解液二次
電池。
6. A mark is provided on an outer side wall of a battery outer can corresponding to a portion where a discharge load lead provided inside a conductive member and an inner wall of the conductive member face each other. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項7】短絡端子が接続された電極が位置する電池
外装缶の所定部位にマークが設けられたことを特徴とす
る請求項3に記載の非水電解液二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 3, wherein a mark is provided at a predetermined portion of the battery outer can where the electrode to which the short-circuit terminal is connected is located.
【請求項8】前記マークを凸部としたことを特徴とする
請求項6又は請求項7に記載の非水電解質二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 6, wherein the mark is a projection.
JP29891499A 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3605668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29891499A JP3605668B2 (en) 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29891499A JP3605668B2 (en) 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001118604A true JP2001118604A (en) 2001-04-27
JP3605668B2 JP3605668B2 (en) 2004-12-22

Family

ID=17865818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29891499A Expired - Lifetime JP3605668B2 (en) 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3605668B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2009301893A (en) * 2008-06-13 2009-12-24 Ntt Docomo Inc Battery testing device and battery testing method
JP2011113895A (en) * 2009-11-30 2011-06-09 Hitachi Ltd Lithium ion secondary battery
JP2020053635A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053633A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053634A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2009301893A (en) * 2008-06-13 2009-12-24 Ntt Docomo Inc Battery testing device and battery testing method
JP2011113895A (en) * 2009-11-30 2011-06-09 Hitachi Ltd Lithium ion secondary battery
JP2020053635A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053633A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053634A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP7055982B2 (en) 2018-09-28 2022-04-19 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices
JP7055981B2 (en) 2018-09-28 2022-04-19 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices
JP7055983B2 (en) 2018-09-28 2022-04-19 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices

Also Published As

Publication number Publication date
JP3605668B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
EP2587567B1 (en) Rechargeable battery
JP5475590B2 (en) Secondary battery
JP5517974B2 (en) Secondary battery
JP5275298B2 (en) Secondary battery
US9099732B2 (en) Rechargeable battery having a fuse with an insulating blocking member
US8187743B2 (en) Cylindrical type secondary battery with upper and lower battery assemblies and fabrication method thereof
EP1932196B1 (en) Secondary battery having an improved safety
JP4558671B2 (en) Secondary battery
US20090029242A1 (en) Battery pack
JPH05251076A (en) Organic electrolyte battery
JP2004319463A (en) Secondary battery
KR101146465B1 (en) Pouch type secondary battery and the fabrication method thereof
JP2005332820A (en) Secondary battery with electrode assembly
US20210013474A1 (en) Secondary battery
JP2004362956A (en) Secondary battery
JP2020107464A (en) Secondary battery and battery pack
US11362395B2 (en) End cover assembly, secondary battery, battery pack and electric device
JP2004014395A (en) Battery
KR20180090100A (en) Short circuiting Structure for Lithium Secondary Battery Having Excellent Stability against Overcharge and Pouch Type Lithium Secondary Battery Comprising the Same
JP4490209B2 (en) Secondary battery with electrode tap located on short side of can
JP3605668B2 (en) Non-aqueous electrolyte secondary battery
JPH11233149A (en) Nonaqueous electrolyte battery
CN105938891B (en) Rechargeable battery having connection member
JP4169470B2 (en) Sealed battery
KR100490547B1 (en) Lithium secondary battery having a protective mean

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3605668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term