JP2001116374A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2001116374A
JP2001116374A JP29791199A JP29791199A JP2001116374A JP 2001116374 A JP2001116374 A JP 2001116374A JP 29791199 A JP29791199 A JP 29791199A JP 29791199 A JP29791199 A JP 29791199A JP 2001116374 A JP2001116374 A JP 2001116374A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
cooling
acting
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29791199A
Other languages
Japanese (ja)
Inventor
Makoto Momozaki
信 百▲崎▼
Masaki Yamamoto
政樹 山本
Tatsuo Fujiwara
辰男 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP29791199A priority Critical patent/JP2001116374A/en
Publication of JP2001116374A publication Critical patent/JP2001116374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To start a freezing preventing operation after an indoor side heat exchanger is actually frosted. SOLUTION: In the refrigerator comprising a compressor 1, an outdoor side heat exchanger 3 operated as a condenser when cooled or operated as an evaporator when heated, a pressure reducing mechanism 4, and an indoor side heat exchanger 5 operated as an evaporator when cooled or operated as a condenser when heated, when a mean cooling integrated capability Qr when cooled is lowered, a control means (controller 17) for starting a freezing preventing operation for stopping an operation of the compressor 1 is attached, and when the exchanger 5 is frosted to lower the capability Qr, the freezing preventing operation for stopping the compressor 1 is started.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、冷凍装置に関
し、さらに詳しくは冷凍装置における冷房運転時の凍結
防止運転制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus, and more particularly, to an antifreeze operation control during a cooling operation in a refrigerating apparatus.

【0002】[0002]

【従来の技術】圧縮機、冷房運転時に凝縮器として作用
し且つ暖房運転時に蒸発器として作用する室外側熱交換
器、減圧機構、冷房運転時に蒸発器として作用し且つ暖
房運転時に凝縮器として作用する室内側熱交換器を備え
た冷凍装置はよく知られている。
2. Description of the Related Art A compressor, an outdoor heat exchanger acting as a condenser during a cooling operation and acting as an evaporator during a heating operation, a pressure reducing mechanism, acting as an evaporator during a cooling operation and acting as a condenser during a heating operation A refrigeration system having an indoor heat exchanger is well known.

【0003】この冷凍装置において、冷房運転時に室内
側熱交換器に着霜すると能力が低下するところから、凍
結防止運転を行う必要がある。
In this refrigerating apparatus, it is necessary to perform an antifreezing operation because the capacity is reduced when the indoor heat exchanger is frosted during the cooling operation.

【0004】従来の凍結防止運転は、室内側熱交換器の
温度が−5℃より低い状態が連続して1分以上継続する
か、室内側熱交換器の温度が−1℃より低い状態が積算
して40分以上となった場合に圧縮機の運転を停止する
ことにより開始されるようになっていた。
[0004] In the conventional anti-freezing operation, the state in which the temperature of the indoor heat exchanger is lower than -5 ° C continues for one minute or more, or the state in which the temperature of the indoor heat exchanger is lower than -1 ° C. When the accumulated time becomes 40 minutes or more, the operation is started by stopping the operation of the compressor.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記したよ
うに、室内側熱交換器の温度と時間により凍結防止運転
制御の確定を判断した場合、実際には室内側熱交換器に
着霜が生じていないにもかかわらず、凍結防止運転を開
始してしまうおそれがあった。
However, as described above, when the determination of the freeze prevention operation control is determined based on the temperature and time of the indoor heat exchanger, frost is actually formed on the indoor heat exchanger. However, there is a possibility that the anti-freezing operation may be started even though it is not performed.

【0006】本願発明は、上記の点に鑑みてなされたも
ので、室内側熱交換器に実際に着霜が生じてから凍結防
止運転を開始し得るようにすることを目的とするもので
ある。
The present invention has been made in view of the above points, and has as its object to enable the freezing prevention operation to be started after frost has actually formed on the indoor heat exchanger. .

【0007】[0007]

【課題を解決するための手段】請求項1の発明では、上
記課題を解決するための手段として、圧縮機1、冷房運
転時に凝縮器として作用し且つ暖房運転時に蒸発器とし
て作用する室外側熱交換器3、減圧機構4、冷房運転時
に蒸発器として作用し且つ暖房運転時に凝縮器として作
用する室内側熱交換器5を備えた冷凍装置において、冷
房運転時における平均冷房積分能力Qrが低下した場合
に前記圧縮機1の運転を停止する凍結防止運転を開始す
る制御手段を付設している。
According to the first aspect of the present invention, as a means for solving the above-mentioned problems, the compressor 1 has an outdoor heat source that functions as a condenser during a cooling operation and as an evaporator during a heating operation. In the refrigeration system including the exchanger 3, the pressure reducing mechanism 4, and the indoor heat exchanger 5 that functions as an evaporator during the cooling operation and also functions as the condenser during the heating operation, the average cooling integration capacity Qr during the cooling operation is reduced. In this case, a control means for starting an anti-freezing operation for stopping the operation of the compressor 1 is additionally provided.

【0008】上記のように構成したことにより、室内側
熱交換器5に着霜が生じて平均冷房積分能力Qrが低下
すると圧縮機1の運転を停止する凍結防止運転が開始さ
れることとなる。従って、室内側熱交換器5への実際の
着霜発生と凍結防止運転制御とが対応することとなり、
冷房運転比率が増加することとなる。
[0008] With the above-described configuration, when the indoor heat exchanger 5 is frosted and the average cooling integration capacity Qr is reduced, the anti-freezing operation for stopping the operation of the compressor 1 is started. . Therefore, the actual occurrence of frost on the indoor heat exchanger 5 corresponds to the anti-freezing operation control,
The cooling operation ratio will increase.

【0009】請求項2の発明におけるように、請求項1
記載の冷凍装置において、前記制御手段を、平均冷房積
分能力Qrの低下が所定時間継続した時点で動作するも
のとした場合、冷房能力の低下が室内側熱交換器5の着
霜以外の原因で突発的に生じたものを除外できることと
なり、より的確な凍結防止運転を行うことができる。
As in the invention of claim 2, claim 1
In the refrigeration apparatus described above, if the control means operates when the decrease in the average cooling integral capacity Qr continues for a predetermined time, the decrease in the cooling capacity is caused by a factor other than frost formation on the indoor heat exchanger 5. It is possible to exclude a suddenly generated one, and it is possible to perform more accurate antifreezing operation.

【0010】請求項3の発明におけるように、請求項1
および2のいずれか一項記載の冷凍装置において、前記
平均冷房積分能力Qrを、前記室外側熱交換器5の温度
Tgと室外空気温度Taとの差温に基づいて決定するよ
うにした場合、乾球温度だけて平均冷房積分能力Qrの
決定ができることとなり、演算処理が簡単となる。
[0010] As in the invention of claim 3, claim 1
In the refrigerating apparatus according to any one of (2) and (3), when the average cooling integration capacity Qr is determined based on a temperature difference between the temperature Tg of the outdoor heat exchanger 5 and the outdoor air temperature Ta, The average cooling integration capability Qr can be determined only by the dry-bulb temperature, and the calculation process is simplified.

【0011】[0011]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の好適な実施の形態について詳述する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】この冷凍装置は、図1に示すように、圧縮
機1、四路切換弁2、冷房運転時に凝縮器として作用し
且つ暖房運転時に蒸発器として作用する室外側熱交換器
3、減圧機構として作用する電子膨張弁4、冷房運転時
に蒸発器として作用し且つ暖房運転時に凝縮器として作
用する室内側熱交換器5を備えて構成されており、四路
切換弁2の切換作動により、冷媒を可逆流通させ得るよ
うになっている。符号6は前記室内側熱交換器3に付設
された過冷却熱交換器、7はレシーバ、8は冷媒流通切
換機構である。
As shown in FIG. 1, the refrigerating apparatus includes a compressor 1, a four-way switching valve 2, an outdoor heat exchanger 3 that functions as a condenser during a cooling operation and as an evaporator during a heating operation, An electronic expansion valve 4 acting as a mechanism, an indoor heat exchanger 5 acting as an evaporator during a cooling operation and acting as a condenser during a heating operation, and is configured by a switching operation of the four-way switching valve 2. The refrigerant can be reversibly circulated. Reference numeral 6 denotes a subcooling heat exchanger attached to the indoor side heat exchanger 3, reference numeral 7 denotes a receiver, and reference numeral 8 denotes a refrigerant flow switching mechanism.

【0013】前記冷媒流通切換機構8は、4個の逆止弁
9〜12からなっており、室外側熱交換器3あるいは室
内側熱交換器5からの冷媒が常時レシーバ7から電子膨
張弁4へ流れるように制御することとなっている。
The refrigerant flow switching mechanism 8 is composed of four check valves 9 to 12, and the refrigerant from the outdoor heat exchanger 3 or the indoor heat exchanger 5 is constantly transmitted from the receiver 7 to the electronic expansion valve 4. It is to be controlled to flow to

【0014】符号13は前記レシーバ7の気相部と電子
膨張弁4の下流側とを連通するバイパス路であり、該バ
イパス路13には、運転停止時に開作動される電磁開閉
弁14が介設されている。
Reference numeral 13 denotes a bypass which communicates the gas phase of the receiver 7 with the downstream side of the electronic expansion valve 4. The bypass 13 is provided with an electromagnetic valve 14 which is opened when the operation is stopped. Has been established.

【0015】前記圧縮機1、四路切換弁2、室外側熱交
換器3、電子膨張弁4、レシーバ7および冷媒流通切換
機構8は室外ユニットAを構成し、室内側熱交換器5は
室内ユニットBを構成している。
The compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the electronic expansion valve 4, the receiver 7, and the refrigerant flow switching mechanism 8 constitute an outdoor unit A, and the indoor heat exchanger 5 is an indoor unit. Unit B is configured.

【0016】符号15は外気温度Taを検出する外気温
センサー、16は室外側熱交換器3の室外熱交温度Tg
を検出する室外熱交センサーである。
Reference numeral 15 denotes an outside air temperature sensor for detecting an outside air temperature Ta, and reference numeral 16 denotes an outdoor heat exchange temperature Tg of the outdoor heat exchanger 3.
Outdoor heat exchange sensor that detects

【0017】符号17は制御手段として作用するコント
ローラであり、該コントローラ17には、前記外気温セ
ンサー15および室外熱交センサー16からの温度情報
(即ち、外気温度Taおよび室外熱交温度Tg)が入力
される。該コントローラ17においては、冷房積分能力
Qr等の演算処理が行われ、その結果に基づいて圧縮機
1に制御信号が出力されることとなっている。
Reference numeral 17 denotes a controller acting as control means. The controller 17 receives temperature information from the outside air temperature sensor 15 and the outdoor heat exchange sensor 16 (ie, the outside air temperature Ta and the outdoor heat exchange temperature Tg). Is entered. The controller 17 performs a calculation process such as the cooling integration capacity Qr, and outputs a control signal to the compressor 1 based on the calculation result.

【0018】ついで、図2のフローチャートを参照し
て、本実施の形態にかかる冷凍装置の冷房運転時におけ
る凍結防止運転制御について説明する。
Next, with reference to the flowchart of FIG. 2, a description will be given of the freezing prevention operation control during the cooling operation of the refrigeration apparatus according to the present embodiment.

【0019】冷房運転が開始されると、ステップSにお
いて外気温センサー15および室外熱交センサー16か
らの温度情報(即ち、外気温度Taおよび室外熱交温度
Tg)がコントローラ17に入力され、ステップS2に
おいて前記外気温度Taおよび室外熱交温度Tgに基づ
いて現在の平均冷房積分能力Qrの演算が次式によりな
される。
When the cooling operation is started, in step S, temperature information from the outside air temperature sensor 15 and the outdoor heat exchange sensor 16 (that is, the outside air temperature Ta and the outdoor heat exchange temperature Tg) is input to the controller 17, and step S2 is performed. In the above, based on the outside air temperature Ta and the outdoor heat exchange temperature Tg, the current average cooling integration capacity Qr is calculated by the following equation.

【0020】Qr=dQ/t=Σ(Tg−Ta)/(t
R+10×60) ここで、tR:冷房運転時間 そして、ステップS3において演算された現在の平均冷
房積分能力Qrと平均冷房積分能力の最大値Qrmax
との比較がなされ、ここでQr>Qrmaxと判定され
ると(換言すれば、平均冷房積分能力Qrが上がってい
ると判定されると)、ステップS4において現在の平均
冷房積分能力Qrが最大値Qrmaxに置き換えられ、
ステップS5において積分能力低下タイマTdがリセッ
トされてステップS1へリターンされる。
Qr = dQ / t = Σ (Tg−Ta) / (t
(R + 10 × 60) where, tR: cooling operation time and the current average cooling integral capacity Qr calculated in step S3 and the maximum value Qrmax of the average cooling integral capacity
When it is determined here that Qr> Qrmax (in other words, when it is determined that the average cooling integration capacity Qr is increased), the current average cooling integration capacity Qr is set to the maximum value in step S4. Replaced by Qrmax,
In step S5, the integration capability reduction timer Td is reset, and the process returns to step S1.

【0021】ステップS3においてQr≦Qrmaxと
判定された場合には、平均冷房積分能力Qrが低下して
きていることを示すので、ステップS6において積分能
力低下タイマTdのカウントが開始され、ステップS7
において積分能力低下タイマTdが100秒カウントア
ップしたと判定されると、ステップS8において圧縮機
1の運転が停止され、凍結防止運転が開始される。その
後ステップS9において平均冷房積分能力Qrおよび平
均冷房積分能力の最大値Qrmaxがリターンされ、ス
テップS5において積分能力低下タイマTdがリセット
されてステップS1へリターンされる。
If it is determined in step S3 that Qr.ltoreq.Qrmax, it indicates that the average cooling integral capacity Qr is decreasing. Therefore, in step S6, the count of the integral capacity decreasing timer Td is started, and step S7 is started.
When it is determined that the integration capability reduction timer Td has counted up for 100 seconds in step, the operation of the compressor 1 is stopped in step S8, and the antifreezing operation is started. Thereafter, in step S9, the average cooling integration capacity Qr and the maximum value Qrmax of the average cooling integration capacity are returned. In step S5, the integration capacity reduction timer Td is reset, and the processing returns to step S1.

【0022】上記制御は、図3のタイムチャートに示す
通りとなる。即ち、冷房運転時において平均冷房積分能
力Qrの低下が100秒継続した時点で圧縮機1の運転
を停止する凍結防止運転が開始されることとなってい
る。
The above control is as shown in the time chart of FIG. That is, during the cooling operation, when the average cooling integration capacity Qr continues to decrease for 100 seconds, the antifreezing operation for stopping the operation of the compressor 1 is started.

【0023】従って、室内側熱交換器5への実際の着霜
発生と凍結防止運転制御とが対応することとなり、冷房
運転比率が向上することとなる。しかも、冷房能力の低
下が室内側熱交換器5の着霜以外の原因で突発的に生じ
たものを除外できることとなり、より的確な凍結防止運
転を行うことができる。
Accordingly, the actual occurrence of frost on the indoor heat exchanger 5 and the anti-freezing operation control correspond, and the cooling operation ratio is improved. In addition, it is possible to exclude a sudden decrease in the cooling capacity caused by a cause other than the frosting of the indoor heat exchanger 5, and it is possible to perform more accurate antifreezing operation.

【0024】また平均冷房積分能力Qrを、前記室外側
熱交換器5の温度Tgと室外空気温度Taとの差温に基
づいて決定するようにしているため、乾球温度だけて平
均冷房積分能力Qrの決定ができることとなり、演算処
理が簡単となる。
Further, since the average cooling integration capacity Qr is determined based on the temperature difference between the temperature Tg of the outdoor heat exchanger 5 and the outdoor air temperature Ta, the average cooling integration capacity is determined only by the dry bulb temperature. Qr can be determined, and the arithmetic processing is simplified.

【0025】[0025]

【発明の効果】請求項1の発明によれば、圧縮機1、冷
房運転時に凝縮器として作用し且つ暖房運転時に蒸発器
として作用する室外側熱交換器3、減圧機構4、冷房運
転時に蒸発器として作用し且つ暖房運転時に凝縮器とし
て作用する室内側熱交換器5を備えた冷凍装置におい
て、冷房運転時における平均冷房積分能力Qrが低下し
た場合に前記圧縮機1の運転を停止する凍結防止運転を
開始する制御手段を付設して、室内側熱交換器5に着霜
が生じて平均冷房積分能力Qrが低下すると圧縮機1の
運転を停止する凍結防止運転が開始されるようにしたの
で、室内側熱交換器5への実際の着霜発生と凍結防止運
転制御とが対応することとなり、冷房運転比率が増加
し、冷房積分能力が向上するという効果がある。
According to the first aspect of the present invention, the compressor 1, the outdoor heat exchanger 3, which functions as a condenser during the cooling operation and functions as the evaporator during the heating operation, the pressure reducing mechanism 4, and evaporates during the cooling operation In the refrigerating apparatus provided with the indoor heat exchanger 5 acting as a condenser and acting as a condenser during the heating operation, when the average cooling integration capacity Qr during the cooling operation is reduced, the operation of the compressor 1 is stopped. A control means for starting the preventive operation is provided so that when the frost is formed on the indoor heat exchanger 5 and the average cooling integration capacity Qr is reduced, the freeze prevention operation for stopping the operation of the compressor 1 is started. Therefore, the actual occurrence of frost on the indoor-side heat exchanger 5 corresponds to the anti-freezing operation control, and the cooling operation ratio is increased, and the cooling integration capability is improved.

【0026】請求項2の発明におけるように、請求項1
記載の冷凍装置において、前記制御手段を、平均冷房積
分能力Qrの低下が所定時間継続した時点で動作するも
のとした場合、冷房能力の低下が室内側熱交換器5の着
霜以外の原因で突発的に生じたものを除外できることと
なり、より的確な凍結防止運転を行うことができる。
As in the invention of claim 2, claim 1
In the refrigeration apparatus described above, if the control means operates when the decrease in the average cooling integral capacity Qr continues for a predetermined time, the decrease in the cooling capacity is caused by a factor other than frost formation on the indoor heat exchanger 5. It is possible to exclude a suddenly generated one, and it is possible to perform more accurate antifreezing operation.

【0027】請求項3の発明におけるように、請求項1
および2のいずれか一項記載の冷凍装置において、前記
平均冷房積分能力Qrを、前記室外側熱交換器5の温度
Tgと室外空気温度Taとの差温に基づいて決定するよ
うにした場合、乾球温度だけて平均冷房積分能力Qrの
決定ができることとなり、演算処理が簡単となる。
As in the invention of claim 3, claim 1
In the refrigerating apparatus according to any one of (2) and (3), when the average cooling integration capacity Qr is determined based on a temperature difference between the temperature Tg of the outdoor heat exchanger 5 and the outdoor air temperature Ta, The average cooling integration capability Qr can be determined only by the dry-bulb temperature, and the calculation process is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施の形態にかかる冷凍装置の冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment of the present invention.

【図2】本願発明の実施の形態にかかる冷凍装置におけ
る凍結防止運転制御の内容を示すフローチャートであ
る。
FIG. 2 is a flowchart showing details of antifreeze operation control in the refrigeration apparatus according to the embodiment of the present invention.

【図3】本願発明の実施の形態にかかる冷凍装置におけ
る凍結防止運転制御の内容を示すタイムチャートであ
る。
FIG. 3 is a time chart showing contents of antifreeze operation control in the refrigeration apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は圧縮機、3は室外側熱交換器、4は減圧機構(電子
膨張弁)、5は室内側熱交換器、15は外気温センサ
ー、16は室外熱交センサー、17は制御手段(コント
ローラ)。
1 is a compressor, 3 is an outdoor heat exchanger, 4 is a pressure reducing mechanism (electronic expansion valve), 5 is an indoor heat exchanger, 15 is an outside air temperature sensor, 16 is an outdoor heat exchange sensor, and 17 is a control means (controller). ).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 辰男 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 Fターム(参考) 3L060 AA08 CC03 CC04 CC18 DD01 EE02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tatsuo Fujiwara 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries, Ltd. Sakai Seisakusho Kanaoka Plant F-term (reference) 3L060 AA08 CC03 CC04 CC18 DD01 EE02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)、冷房運転時に凝縮器とし
て作用し且つ暖房運転時に蒸発器として作用する室外側
熱交換器(3)、減圧機構(4)、冷房運転時に蒸発器
として作用し且つ暖房運転時に凝縮器として作用する室
内側熱交換器(5)を備えた冷凍装置であって、冷房運
転時における平均冷房積分能力(Qr)が低下した場合
に前記圧縮機(1)の運転を停止する凍結防止運転を開
始する制御手段を付設したことを特徴とする冷凍装置。
1. A compressor (1), an outdoor heat exchanger (3) acting as a condenser during a cooling operation and acting as an evaporator during a heating operation, a pressure reducing mechanism (4), acting as an evaporator during a cooling operation. And a refrigeration system having an indoor heat exchanger (5) acting as a condenser during a heating operation, wherein when the average cooling integration capacity (Qr) during the cooling operation decreases, the compressor (1) A refrigeration system, further comprising control means for starting an anti-freezing operation for stopping the operation.
【請求項2】 前記制御手段を、平均冷房積分能力(Q
r)の低下が所定時間継続した時点で動作するものとし
たことを特徴とする前記請求項1記載の冷凍装置。
2. The method according to claim 1, wherein the control means includes an average cooling integration capacity (Q
2. The refrigeration system according to claim 1, wherein the refrigeration apparatus operates when the reduction of r) continues for a predetermined time.
【請求項3】 前記平均冷房積分能力(Qr)を、前記
室外側熱交換器(5)の温度(Tg)と室外空気温度
(Ta)との差温に基づいて決定するようにしたことを
特徴とする前記請求項1および2のいずれか一項記載の
冷凍装置。
3. The method according to claim 1, wherein the average cooling integral capacity (Qr) is determined based on a temperature difference between a temperature (Tg) of the outdoor heat exchanger (5) and an outdoor air temperature (Ta). The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is characterized in that:
JP29791199A 1999-10-20 1999-10-20 Refrigerator Pending JP2001116374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29791199A JP2001116374A (en) 1999-10-20 1999-10-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29791199A JP2001116374A (en) 1999-10-20 1999-10-20 Refrigerator

Publications (1)

Publication Number Publication Date
JP2001116374A true JP2001116374A (en) 2001-04-27

Family

ID=17852698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29791199A Pending JP2001116374A (en) 1999-10-20 1999-10-20 Refrigerator

Country Status (1)

Country Link
JP (1) JP2001116374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509040A (en) * 2006-11-10 2010-03-25 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Cooling drying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509040A (en) * 2006-11-10 2010-03-25 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Cooling drying method
US9283517B2 (en) 2006-11-10 2016-03-15 Atlas Copco Airpower, Naamloze Vennootschap Method for cool drying

Similar Documents

Publication Publication Date Title
EP1826513B1 (en) Refrigerating air conditioner
US6405554B1 (en) Refrigerator
JP2003240391A (en) Air conditioner
JP3240811B2 (en) Dual cooling system
JP2003106615A (en) Air conditioner
KR0161217B1 (en) A controlling method of multi-airconditioner
JPH0498059A (en) Detecting device for freezing in evaporator of refrigerating plant
CN112212462B (en) Air conditioner and control method thereof
JPH05264113A (en) Operation control device of air conditioner
JP2001116374A (en) Refrigerator
JPH09318134A (en) Air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JP3343915B2 (en) Defrost control device
JPS6191438A (en) Method of controlling defrosting of heat pump type air conditioner
JP2541172B2 (en) Operation control device for air conditioner
JP2536337B2 (en) Operation control device for air conditioner
JPH0490453A (en) Freezer operation control device
JPH10288427A (en) Refrigerating device
JPH11183006A (en) Freezer
JP2002081713A (en) Control device of refrigerating device
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JP2664690B2 (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JP2006170505A (en) Air conditioner
JPH05288386A (en) Operation controller for outdoor fan in air conditioner