JP2001115286A - Ozonizer - Google Patents

Ozonizer

Info

Publication number
JP2001115286A
JP2001115286A JP29822699A JP29822699A JP2001115286A JP 2001115286 A JP2001115286 A JP 2001115286A JP 29822699 A JP29822699 A JP 29822699A JP 29822699 A JP29822699 A JP 29822699A JP 2001115286 A JP2001115286 A JP 2001115286A
Authority
JP
Japan
Prior art keywords
water
anode electrode
ozonizer
cylindrical shaft
shaft body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29822699A
Other languages
Japanese (ja)
Other versions
JP3073990B1 (en
Inventor
Hiroichi Shioda
博一 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11298226A priority Critical patent/JP3073990B1/en
Application granted granted Critical
Publication of JP3073990B1 publication Critical patent/JP3073990B1/en
Publication of JP2001115286A publication Critical patent/JP2001115286A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozonizer with which ozonized water suppressed with the inclusion of undissolved ozone may be obtained. SOLUTION: An ozonizer element is formed by winding an anode electrode made of a platinum wire-netting, an ion exchange membrane (13) and a cathode electrode made of a wire-netting around a columnar shaft body so as to come into pressurized contact with each other and winding this anode electrode intermittently at prescribed intervals in the axial direction of the columnar shaft body or insulating the anode electrode and the cathode electrode from each other intermittently at prescribed intervals in the axial direction. This ozonizer element is housed in a cylindrical flow passage in which the water flows in such a manner that the central axis thereof faces the flow direction of the water. DC voltage is impressed between the anode electrode and the cathode electrode, by which discharge parts and non-discharge parts are eventually alternately located in the flow direction of the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はオゾナイザーに関す
るもので、さらに詳しくは、水を電気分解してオゾンが
溶存した水(以下、オゾン水という。)を得るオゾン水
用のオゾナイザーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozonizer, and more particularly, to an ozonizer for obtaining ozone-dissolved water (hereinafter referred to as ozone water) by electrolyzing water.

【0002】従来、オゾン水を得る方法としては放電法
と電解法とが知られており、放電法は無声放電電界中に
酸素ガス(空気を原料とすることもある。)を通過させ
て、高濃度のオゾンガスを作り、このオゾンガスと水と
を接触させてオゾンを水に溶解するようになしている。
しかし、この方法は設備が大型で、しかも高濃度のオゾ
ンガスを一旦発生させてから水中に溶解させるので、オ
ゾンガス漏洩の危険性があり、さらに水中に未溶解の気
相のオゾンが残存して、このオゾンが空気中に放出させ
ることもあるので、オゾン臭いという問題点を有すると
共に、オゾン水を利用する場所の空気をオゾンで汚染す
るという問題点を有している。
Conventionally, as a method for obtaining ozone water, a discharge method and an electrolysis method are known. In the discharge method, oxygen gas (air may be used as a raw material) is passed through a silent discharge electric field. High-concentration ozone gas is produced, and the ozone gas is brought into contact with water to dissolve ozone in water.
However, this method has a large facility, and since high-concentration ozone gas is generated once and then dissolved in water, there is a risk of ozone gas leakage, and undissolved gas phase ozone remains in water, Since this ozone may be released into the air, it has a problem of smell of ozone and a problem of contaminating air in a place where ozone water is used with ozone.

【0003】また、電解式のオゾナイザーは、水を電気
分解して陽極電極側に発生する酸素中にオゾンが混入す
るので、このオゾンを電解中の水に直接溶解させるよう
になしたものである。なお、従来この電解式オゾナイザ
ーで、電気分解用の両電極間に薄いイオン交換膜を介在
させ、電気分解を効率化するとオゾン濃度が高くなり、
陽極電極には触媒機能を有した白金を使用するとオゾン
の発生効率が高まることも知られている。
In an electrolytic ozonizer, ozone is mixed into oxygen generated on the anode electrode side by electrolyzing water, and this ozone is directly dissolved in water during electrolysis. . Conventionally, with this electrolytic ozonizer, a thin ion exchange membrane is interposed between both electrodes for electrolysis, and when the electrolysis is made more efficient, the ozone concentration increases,
It is also known that the use of platinum having a catalytic function for the anode electrode increases the ozone generation efficiency.

【0004】さらに、上記電気分解用の両電極を金網状
とすると、より効率的な電気分解が生ずることも知られ
ており、従来は、平板状のイオン交換膜の両面に金網製
の白金電極を重ねて、陽極電極側を水が電極とイオン交
換膜の露出面との双方に接しして流過するようになした
方式のオゾナイザーが最も効率的なオゾナイザーと言わ
れている。
It is also known that more efficient electrolysis occurs when both electrodes for electrolysis are formed in a wire mesh. Conventionally, platinum electrodes made of wire mesh are provided on both sides of a flat ion exchange membrane. An ozonizer of a system in which water flows over the anode electrode side by contacting both the electrode and the exposed surface of the ion exchange membrane is said to be the most efficient ozonizer.

【0005】上記電解式のオゾナイザーは、発生したオ
ゾンが直ちに水に溶解されるので、オゾンガス漏洩の危
険性は少なく、装置も小型化されるという利点を有する
も、平板形状で、30cm以上の比較的広い面積のイ
オン交換膜が必要とされ、なお大型となる問題点と、電
極をイオン交換膜に平均的に圧接保持しないと、均一な
オゾン発生効率が得られないので、制作上高い寸法精度
が要求されるものであった。すなわち、従来の平板式の
電解式オゾナイザーはイオン交換膜に電極を均一に圧接
するために、精密な機械加工や塑性変形する特殊な電極
材または集電板を必要とする問題点を有していた。
[0005] ozonizer of the electrolytic Since generated ozone is immediately dissolved in water, the risk of ozone leakage is small, also has the advantage that the apparatus is also compact, with a flat plate shape, 30 cm 2 or more A relatively large area is required for the ion exchange membrane, which is still large, and uniform ozone generation efficiency cannot be obtained unless the electrodes are pressed and held on the ion exchange membrane on average. Accuracy was required. That is, the conventional flat electrolytic ozonizer has a problem that requires precise machining or a special electrode material or a current collecting plate that undergoes plastic deformation in order to uniformly press the electrode against the ion exchange membrane. Was.

【0006】さらに、この電解式のオゾナイザーを使用
しても、微小な気泡状のオゾンがオゾン水中に懸濁・残
存し、得られた直後のオゾン水はオゾン臭があり、クリ
ーンルームや診察室等の密閉空間での使用に疑問が生ず
る問題点を有している。
Further, even if this electrolytic ozonizer is used, minute air bubbles in the form of ozone are suspended and remain in the ozone water, and the ozone water immediately after being obtained has an ozone smell. There is a problem that the use in a closed space is questionable.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は上記
問題点に鑑み、オゾン発生効率が高く、小型で製造が容
易で、さらにはオゾン水中に懸濁する微小オゾン気泡ま
でをもオゾン水中に効果的に溶解できるオゾナイザーを
提供することを課題としたものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention has a high ozone generation efficiency, is compact and easy to manufacture, and can even remove minute ozone bubbles suspended in ozone water. An object of the present invention is to provide an ozonizer that can be effectively dissolved.

【0008】[0008]

【課題を解決するための手段】上記課題を達成するた
め、本発明は、円柱状軸体11に白金製金網で構成した
陽極電極12を、該陽極電極12の外側にイオン交換膜
13を、さらにこのイオン交換膜13の外側に金網製の
陰極電極14を、夫々が圧接するように巻き付けると共
に、該陽極電極12を円柱状軸体11の軸方向に所定間
隔で間欠的に巻き付けるか、前記陽極電極12と陰極電
極14との間を円柱状軸体11の軸方向に所定間隔で間
欠的に絶縁してオゾナイザーエレメント10を構成し、
上記オゾナイザーエレメント10を水が流過する筒状流
路20内に、その円柱状軸体11の中心軸が水の流過方
向を向くようにして収納し、該陽極電極12と陰極電極
14との間に直流電圧を印加して、水の流過方向に放電
部と非放電部とが交互に位置するようになした技術的手
段を講じたものである。
In order to achieve the above object, the present invention provides a cylindrical shaft body 11 having an anode electrode 12 made of a platinum mesh, an ion exchange membrane 13 outside the anode electrode 12, Further, a wire mesh cathode electrode 14 is wound around the outside of the ion exchange membrane 13 so as to be pressed against each other, and the anode electrode 12 is wound intermittently at a predetermined interval in the axial direction of the cylindrical shaft body 11, or The ozonizer element 10 is configured by intermittently insulating the anode electrode 12 and the cathode electrode 14 at predetermined intervals in the axial direction of the cylindrical shaft body 11,
The above-mentioned ozonizer element 10 is housed in a cylindrical flow path 20 through which water flows so that the central axis of the cylindrical shaft body 11 is oriented in the flow direction of water. In this case, a technical measure is taken in which a direct-current voltage is applied during this time so that the discharge parts and the non-discharge parts are alternately located in the flow direction of water.

【0009】それ故、本発明オゾナイザーは、筒状流路
20内を流過する水がオゾナイザーエレメント10部位
で電気分解されて、水素と酸素とオゾンとが発生し、オ
ゾンは水に溶け易いので、直ちに水中に溶解してオゾン
水が得られる作用を呈するのは従来の平面型の電解式オ
ゾナイザーと同じである。
Therefore, in the ozonizer of the present invention, water flowing through the cylindrical flow path 20 is electrolyzed at the portion of the ozonizer element 10 to generate hydrogen, oxygen and ozone, and ozone is easily dissolved in water. The effect of immediately dissolving in water to obtain ozone water is the same as that of a conventional flat electrolytic ozonizer.

【0010】また、本発明はオゾナイザーエレメント1
0が従来の平面形状でなく、円柱状となっているので、
コンパクト化できる作用を呈し、円柱状のオゾナイザー
エレメント10は、陽極電極12,イオン交換膜13,
陰極電極14を順次巻き付けるのみで(必要に応じて締
着バンド等で締着する。なお、実施例としてはテフロン
糸を最外周面に巻き付けて締着固定する。)容易に相互
を圧接して固定できる作用を呈するものである。
The present invention also relates to an ozonizer element 1
Since 0 is not a conventional plane shape but a cylindrical shape,
The columnar ozonizer element 10 has a function of being compact, and has an anode electrode 12, an ion exchange membrane 13,
The cathode electrodes 14 are simply wound sequentially (fastened with a fastening band or the like if necessary. In the embodiment, a Teflon thread is wound around the outermost peripheral surface and fastened and fixed). It has a function that can be fixed.

【0011】また、本発明は水の流過方向に放電部と非
放電部とが交互に位置するようになしてあるので、オゾ
ンの発生部と溶解部とが交互に複数組み合わされるため
溶解効率が向上する作用を呈するものである。
Further, in the present invention, the discharge portion and the non-discharge portion are alternately located in the flow direction of water, so that a plurality of ozone generation portions and dissolution portions are alternately combined, so that the dissolution efficiency is improved. Has the effect of improving.

【0012】つぎに、請求項2の発明は、軸方向に大径
部11aと小径部11bとが交互に位置する円柱状軸体
11の大径部11a,11a,11a・・・の表面に該
円柱状軸体11の長手方向一端側から他端側に向かう螺
旋状の細い凹溝11cを設け、該円柱状軸体11の大径
部11aに陽極電極12を巻き付け、該陽極電極12,
12,12・・・の外側にイオン交換膜13を、さらに
このイオン交換膜13の外側に金網製の陰極電極14
を、夫々が圧接するようにオゾナイザーエレメント10
を構成し、上記オゾナイザーエレメント10を水が流過
する筒状流路20内に、その円柱状軸体11の中心軸が
水の流過方向を向くようにして収納し、該陽極電極12
と陰極電極14との間に直流電圧を印加して、水の流過
方向に放電部と非放電部とが交互に位置するようになし
た技術的手段を講じたものである。
The second aspect of the present invention is directed to a method for forming a large-diameter portion 11a and a small-diameter portion 11b in the axial direction on the surfaces of the large-diameter portions 11a, 11a, 11a,. A thin spiral groove 11c extending from one end side to the other end side in the longitudinal direction of the cylindrical shaft body 11 is provided, and an anode electrode 12 is wound around a large diameter portion 11a of the cylindrical shaft body 11, and the anode electrode 12,
, An ion-exchange membrane 13 outside the ion-exchange membrane 13 and a cathode electrode 14 made of wire mesh
And the ozonizer elements 10 so that they are pressed against each other.
And the above-mentioned ozonizer element 10 is housed in a cylindrical flow path 20 through which water flows so that the center axis of the cylindrical shaft body 11 is oriented in the flow direction of water.
A technical measure is taken in which a DC voltage is applied between the negative electrode and the cathode electrode 14 so that discharge portions and non-discharge portions are alternately positioned in the flow direction of water.

【0013】それ故、本発明は、前記「請求項1」の作
用に加え、円柱状軸体11の大径部11a,11a,1
1a・・・の表面に螺旋状の細い凹溝11cを設けたの
で、原料の水が複雑な流れとなって、発生したオゾンを
オゾン発生場所から直ちに他の場所に移動させ、オゾン
発生効率を高める作用を呈する。
Therefore, the present invention provides a large-diameter portion 11a, 11a, 1
The spiral water groove 11c is provided on the surface of 1a..., So that the water of the raw material becomes a complicated flow, and the generated ozone is immediately moved from the ozone generation location to another location, thereby improving the ozone generation efficiency. It has the effect of increasing.

【0014】また、本発明は、円柱状軸体11とイオン
交換膜13との間に形成される原料水の流過流路が、小
径部11bで拡径されこの流路断面積の変化で複雑な渦
流が生じてオゾン気泡を効果的に溶解する作用を呈する
ものである。
Further, according to the present invention, the flow path of the raw water formed between the cylindrical shaft body 11 and the ion exchange membrane 13 is enlarged at the small diameter portion 11b to change the cross sectional area of the flow path. A complex vortex is generated to effectively dissolve ozone bubbles.

【0015】次に、請求項3の発明は、軸方向に大径部
11aと小径部11bとが交互に位置する円柱状軸体1
1の大径部11a,11a,11a・・・の表面に該円
柱状軸体11の長手方向一端側から他端側に向かう螺旋
状の細い凹溝11cを設け、該円柱状軸体11の大径部
11aに陽極電極12を巻き付け、該陽極電極12,1
2,12・・・の外側にイオン交換膜13を、さらにこ
のイオン交換膜13の外側に金網製の陰極電極14を、
夫々が圧接するようにオゾナイザーエレメント10を構
成し、上記オゾナイザーエレメント10を水が流過する
筒状流路20内に、該陽極電極12の外面が筒状流路2
0の内周面に接触するようになすか、該陰極電極14と
筒状流路20との間で該筒状流路20の上流側に設けた
オゾナイザーエレメント10の保持リング21で同心状
に保持して収納し、該陽極電極12と陰極電極14との
間に直流電圧を印加して、水の流過方向に放電部と非放
電部とが交互に位置するようになした技術的手段を講じ
たものである。
Next, according to a third aspect of the present invention, there is provided a cylindrical shaft body 1 in which large-diameter portions 11a and small-diameter portions 11b are alternately positioned in the axial direction.
Are provided on the surface of the large-diameter portions 11a, 11a, 11a,..., With a spiral thin groove 11c extending from one end side to the other end side in the longitudinal direction of the cylindrical shaft body 11. An anode electrode 12 is wound around the large diameter portion 11a, and the anode electrodes 12, 1 are wound.
An ion-exchange membrane 13 is provided outside 2, 12,..., And a metal mesh cathode electrode 14 is provided outside the ion-exchange membrane 13.
The ozonizer elements 10 are configured so as to be pressed against each other, and the outer surface of the anode electrode 12 is placed in the cylindrical flow path 2 in a cylindrical flow path 20 through which water flows through the ozonizer element 10.
0, or concentrically with the holding ring 21 of the ozonizer element 10 provided between the cathode electrode 14 and the cylindrical flow path 20 on the upstream side of the cylindrical flow path 20. A technical means for holding and storing, and applying a DC voltage between the anode electrode 12 and the cathode electrode 14 so that discharge portions and non-discharge portions are alternately positioned in the flow direction of water. It was taken.

【0016】それ故、本発明は、前記「請求項1」の作
用に加え、陰極電極14側は水が金網をその面方向に横
切る量に制限され、陽極電極12側は水が金網をその面
方向に横切って流れると共に、螺旋の細い凹溝11c内
をも流れるため、両者に流量の差を設ける作用を呈する
ものである。
Therefore, according to the present invention, in addition to the function of the above-mentioned "Claim 1," the amount of water crossing the wire mesh on the cathode electrode 14 side is limited, and the amount of water passing through the wire mesh on the anode electrode 12 side is limited. Since it flows across the surface direction and also flows inside the spiral concave groove 11c, it has the effect of providing a flow rate difference between the two.

【0017】[0017]

【発明の実施の形態】本発明の代表的な具体的実施の形
態を記載すると、円柱状軸体11はテフロン樹脂製で直
径10mm・長さ90mmのものを使用し、20mm間
隔で直径を6mmに縮径した幅10mmの小径部11b
を設けている。凹溝11cを螺子状となし、該凹溝11
cは深さ略1.5mmの正三角形の一部となるV型溝と
なし四条を設けた。そして、陽極電極12は55メッシ
ュの白金網を使用し、20mm幅で大径部10aに巻き
付けた。また、イオン交換膜13はナフィオン膜((デ
ュポン社(社名)製・450番・厚み0.15mm)を
使用し、陰極電極14は陽極電極12と同じ白金の金網
を使用した。そして、このようにして構成したオゾナイ
ザーエレメント10を、肉厚2mm・外径20mmのナ
イロン樹脂製パイプの筒状流路20内に収納し、該オゾ
ナイザーエレメント10の上流端の外周と筒状流路20
内周面との間に、外径16mm・内径約11mm・幅3
mmのナイロン樹脂製の保持リング21を介装した。ま
た、各陽極電極12,12,12・・・と陰極電極14
とはリード線15a,15bを図示しない電源に連結
し、その間に直流12Vを印加したところ、通水時、電
流は電極1cmあたり約0.7アンペア流れた。そし
て、筒状流路20内を流れる水の量を毎分1.0リット
ルとしたところ、出口のオゾン水のオゾン濃度は7から
10ppmで、水の量を毎分2.5リットルとするとオ
ゾン水のオゾン濃度は約5ppm、水の量を毎分5.0
リットルとするとオゾン水のオゾン濃度は約2.5pp
mであり、5ppmの得られたオゾン水はオゾン臭を感
ずることはなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical concrete embodiment of the present invention will be described. The cylindrical shaft 11 is made of Teflon resin and has a diameter of 10 mm and a length of 90 mm. 10mm wide small diameter part 11b
Is provided. The concave groove 11c is formed in a screw shape,
c provided a V-shaped groove and four strips which are a part of an equilateral triangle having a depth of about 1.5 mm. The anode electrode 12 was wound around the large diameter portion 10a with a width of 20 mm using a platinum mesh of 55 mesh. The ion-exchange membrane 13 used was a Nafion membrane (No. 450, manufactured by DuPont, having a thickness of 0.15 mm), and the cathode electrode 14 used the same platinum wire netting as the anode electrode 12. The ozonizer element 10 constructed as described above is housed in a cylindrical flow path 20 of a nylon resin pipe having a thickness of 2 mm and an outer diameter of 20 mm, and the outer periphery of the upstream end of the ozonizer element 10 and the cylindrical flow path 20 are formed.
Outer diameter 16mm, inner diameter about 11mm, width 3 between the inner circumference
A holding ring 21 made of nylon resin having a thickness of 2 mm was interposed. Each of the anode electrodes 12, 12, 12,...
Means that the leads 15a and 15b were connected to a power supply (not shown), and a DC voltage of 12 V was applied between them. When water was passed, the current flowed about 0.7 amps per cm 2 of the electrode. When the amount of water flowing in the cylindrical flow path 20 is set to 1.0 liter per minute, the ozone concentration of the ozone water at the outlet is 7 to 10 ppm. The ozone concentration of water is about 5 ppm, and the amount of water is 5.0 per minute.
If it is liter, the ozone concentration of ozone water is about 2.5pp
m, and 5 ppm of the obtained ozone water did not feel the ozone odor.

【0018】[0018]

【実施例】次に、本発明の実施例を添付図面にしたがっ
て説明する。図中、10が本発明オゾナイザーの主要部
を構成するオゾナイザーエレメントで、このオゾナイザ
ーエレメント10は、中心が円柱状軸体11で、その外
側に、白金製金網で構成した陽極電極12・イオン交換
膜13・金網製の陰極電極14を、夫々が順に圧接する
ように巻き付けてある。
Next, an embodiment of the present invention will be described with reference to the accompanying drawings. In the figure, reference numeral 10 denotes an ozonizer element which constitutes a main part of the ozonizer of the present invention. The ozonizer element 10 has a columnar shaft 11 at the center, and an anode electrode 12 and an ion-exchange membrane formed of a platinum mesh on the outside thereof. 13. A wire mesh cathode electrode 14 is wound so as to be pressed against each other.

【0019】上記円柱状軸体11はテフロン製のものを
使用したが、耐オゾン性と非電導性を有したものであれ
ば、セラミック等のその他の材質のものを使用しても差
し支えない。また、上記陽極電極12は白金の金網が使
用されている。この種、オゾナイザーに白金を使用する
ことは従来公知で、白金は電気分解によるオゾン発生効
率が高まる触媒機能があるとされている。
Although the cylindrical shaft 11 is made of Teflon, other materials such as ceramics may be used as long as they have ozone resistance and non-conductivity. The anode electrode 12 is made of platinum wire mesh. The use of platinum in this kind of ozonizer is conventionally known, and it is said that platinum has a catalytic function to increase the efficiency of ozone generation by electrolysis.

【0020】そして、上記陽極電極12を金網状とする
と金網はその網目から水を通すのは無論であるが、表裏
両面に板等を重ねてその間に水を圧送すると、水は金網
を構成する針金の湾曲した隙間を迂回して金網の面方向
にも流れる(以下、面方向の流れという。)ことができ
る。そして、この金網の面方向の流れは針金部位で複雑
に方向転換するので、この方向の流れは複雑な流れとな
り、発生したばかりのオゾンとの接触頻度を高め、発生
したオゾンを発生部位より即座に別の場所に移動させ電
気分解、及びオゾン発生効率を高めるものである。
If the anode electrode 12 is formed into a wire mesh, it is a matter of course that water passes through the wire mesh. However, if a plate or the like is superposed on both front and back surfaces and water is pumped therebetween, the water constitutes the wire mesh. The wire can also flow in the direction of the surface of the wire mesh by bypassing the curved gap of the wire (hereinafter referred to as flow in the surface direction). Since the flow in the surface direction of the wire mesh is complicatedly changed at the wire portion, the flow in this direction becomes a complicated flow, the frequency of contact with the ozone just generated is increased, and the generated ozone is immediately discharged from the generated portion. To improve the efficiency of electrolysis and ozone generation.

【0021】また、後記するイオン交換膜13を挟持し
ての電気分解では、電極がイオン交換膜に接触している
部位とイオン交換膜13が露出する面との境界部位付近
での電気分解がもっとも強く行われ、オゾンの発生率が
よいもので、金網を使用することで陽極電極12とイオ
ン交換膜との接触境界部位が多くなるので、陽極電極1
2は金網状となすのがよいとされている。
In the later-described electrolysis with the ion exchange membrane 13 interposed therebetween, the electrolysis near the boundary between the portion where the electrode is in contact with the ion exchange membrane 13 and the surface where the ion exchange membrane 13 is exposed occurs. It is most strongly performed and has a high ozone generation rate. The use of a wire mesh increases the number of contact boundaries between the anode electrode 12 and the ion exchange membrane.
It is said that 2 is preferably formed in a wire mesh shape.

【0022】また、上記イオン交換膜13はナフィオン
膜が使用でき、この種イオン交換膜13は固体ではある
が電解質で、電気分解の陽極電極12と陰極電極14と
をこのイオン交換膜13を両面に重ねることで、両者の
距離を近づけることが可能となり、低電圧での激しい電
気分解が可能となるものである。
The ion-exchange membrane 13 may be a Nafion membrane. This type of ion-exchange membrane 13 is a solid but an electrolyte, and the anode electrode 12 and the cathode electrode 14 for electrolysis are formed on both sides of the ion-exchange membrane 13. , The distance between the two can be reduced, and intense electrolysis at a low voltage becomes possible.

【0023】さらに、前記陰極電極14は、同じく金網
状のものが使用され、その材質は耐食性金属であればよ
いが、白金、金、銀等を使用すると触媒機能でオゾン発
生効率が高まることが知られている。なお、チタンの網
に白金をメッキしたものは耐食性に優れオゾン発生効率
も高いもので、また長時間使用しても白金が溶け出るこ
とが無く実用的には白金製と同等に取扱えるものであっ
た。
Further, the cathode electrode 14 is also made of a wire mesh, and the material may be a corrosion-resistant metal. However, if platinum, gold, silver, or the like is used, the ozone generation efficiency may be increased by the catalytic function. Are known. Titanium mesh plated with platinum has excellent corrosion resistance and high ozone generation efficiency, and even if used for a long period of time, platinum does not dissolve and can be handled practically equivalent to platinum. there were.

【0024】上記陽極電極12・イオン交換膜13・陰
極電極14は、それ自体はこの種オゾナイザーに使用す
ることが知られていたが、本発明では、これらを前記し
た円柱状軸体11に順次巻き付けて相互に圧接するよう
に重ねてある。なお、該円柱状軸体11は、単なる円柱
状で無論差し支えないが、図示例では外面に螺旋状に細
い凹溝11cを一端から多端に連結するように設け、こ
の凹溝11c内を水が流過するようになしてある。
Although it has been known that the anode electrode 12, the ion-exchange membrane 13 and the cathode electrode 14 are themselves used for this kind of ozonizer, in the present invention, these are sequentially added to the above-mentioned cylindrical shaft body 11. They are wrapped and pressed against each other. The cylindrical shaft body 11 may be of a simple columnar shape, of course. However, in the illustrated example, a thin spiral groove 11c is provided on the outer surface so as to connect from one end to the other end, and water flows in the concave groove 11c. It is made to flow.

【0025】また、本発明では上記陽極電極12を円柱
状軸体11の軸方向に所定間隔で間欠的に巻き付ける
か、前記陽極電極12と陰極電極14との間を円柱状軸
体11の軸方向に所定間隔で間欠的に絶縁してある。す
なわち、本発明では、後記するように、オゾナイザーエ
レメント10の軸方向(本願では円柱状軸体11の軸方
向という)に放電部と非放電部とを交互に位置されたも
ので、図2例が陽極電極12を円柱状軸体11の軸方向
に所定間隔で間欠的に巻き付けてなる。また、図3例
は、陽極電極12は円柱状軸体11の一端から多端に至
るまで連続して巻き付けるが、この陽極電極12とイオ
ン交換膜13との間に所定幅の絶縁テープ16,16,
16・・・を所定の間隔で介挿し、図2例と同等に放電
部と非放電部とが交互に位置するようになしてある。
In the present invention, the anode electrode 12 is intermittently wound at a predetermined interval in the axial direction of the cylindrical shaft body 11 or the space between the anode electrode 12 and the cathode electrode 14 is formed by the shaft of the cylindrical shaft body 11. Insulated intermittently at predetermined intervals in the direction. That is, in the present invention, as described later, discharge portions and non-discharge portions are alternately positioned in the axial direction of the ozonizer element 10 (referred to as the axial direction of the cylindrical shaft body 11 in the present application). Are formed by intermittently winding the anode electrode 12 at predetermined intervals in the axial direction of the cylindrical shaft body 11. In the example of FIG. 3, the anode electrode 12 is continuously wound from one end of the cylindrical shaft body 11 to multiple ends, and insulating tapes 16 having a predetermined width are provided between the anode electrode 12 and the ion exchange membrane 13. ,
16 are interposed at predetermined intervals so that the discharge parts and the non-discharge parts are alternately positioned as in the example of FIG.

【0026】上記陽極電極12・イオン交換膜13・陰
極電極14・絶縁テープ16は予め筒状に形成してこれ
を順次円柱状軸体11に圧着気味に被せていけばよい
が、夫々可撓性を有しているので平面状に構成したもの
を用意して、該円柱状軸体11に巻き付けるようになせ
ばよく、巻き付け始端部と終端部とは重ならないように
なすのがよいのは無論であるが、実際には多少重なる部
位があっても著しい効率低下はなかった。
The anode electrode 12, the ion exchange membrane 13, the cathode electrode 14, and the insulating tape 16 may be formed in a cylindrical shape in advance, and these may be successively pressed on the cylindrical shaft body 11 in a slightly compressed state. What is necessary is just to prepare what was formed in a planar shape so as to wind it around the cylindrical shaft body 11, and it is good that the winding start and end portions do not overlap. Needless to say, there was no remarkable reduction in efficiency even in the case where there were actually some overlapping portions.

【0027】上記のように、円柱状軸体11に陽極電極
12・イオン交換膜13・陰極電極14・絶縁テープ1
6を順次巻き付けて取り付けると、高い寸法精度が容易
に得られるものである。なお、巻き付けた最後の陰極電
極14は接合両端をスポット溶接、ロー付け、縫合、結
び止め、または図示しない締着帯で締着したり、糸を巻
きつけて締着して、合わせ目が開くのを防止すればよい
ものである。
As described above, the anode 12, the ion exchange membrane 13, the cathode 14, and the insulating tape 1 are attached to the cylindrical shaft 11.
When the coils 6 are sequentially wound and attached, high dimensional accuracy can be easily obtained. The last wound cathode electrode 14 is spot-welded, brazed, stitched, tied, or fastened with a fastening band (not shown) at the joining both ends, or wound with a thread and fastened to open the joint. It is only necessary to prevent this.

【0028】そして、本発明は上記オゾナイザーエレメ
ント10を水が流過する筒状流路20内に、その円柱状
軸体11の中心軸が水の流過方向を向くようにして収納
し、該陽極電極12と陰極電極14との間に直流電圧を
印加して、水の流過方向に放電部と非放電部とが交互に
位置するようになしてある。該筒状流路20はナイロン
樹脂等の非導電性材で構成され、一端に水の流入口22
aを、他端に流出口22bを設け、該流入口22aより
筒状流路20内に流入した水が流出口22bより流出す
るようになしてある。
According to the present invention, the ozonizer element 10 is housed in a cylindrical flow path 20 through which water flows so that the center axis of the cylindrical shaft body 11 is directed to the flow direction of water. A DC voltage is applied between the anode electrode 12 and the cathode electrode 14 so that the discharge portions and the non-discharge portions are alternately positioned in the direction of flow of water. The cylindrical channel 20 is made of a non-conductive material such as nylon resin, and has a water inlet 22 at one end.
a, an outlet 22b is provided at the other end, and water flowing into the cylindrical flow path 20 from the inlet 22a flows out from the outlet 22b.

【0029】上記オゾナイザーエレメント10は、その
円柱状軸体11の中心軸が水の流過方向を向くようにし
てあるので、流過する水は、金網状の陽極電極12と同
じく金網状の陰極電極14との部位を、その金網を構成
する針金を包み込んで複雑に流れ方向を変えながら面方
向に流れることになる。したがって、陽極電極12側で
は水の電気分解で酸素とオゾンのガスが発生し、これら
は水の微小な渦流に巻き込まれ、オゾンは直ちに水に溶
解してオゾン水となる。なお、オゾンと同時に発生した
酸素ガスは、オゾンガスに比べて水への溶解度が低い
(ヘンリー係数が10倍異なる。)ので、ほとんどは水
中に未溶解気泡として懸濁して流出口22bに向かうこ
とになる。
Since the central axis of the cylindrical shaft body 11 of the ozonizer element 10 is directed to the flowing direction of the water, the flowing water is the same as the wire mesh anode electrode 12 and the wire mesh cathode. The wire with the electrode 14 wraps around the wire constituting the wire mesh and flows in the plane direction while changing the flow direction in a complicated manner. Therefore, gas of oxygen and ozone is generated on the anode electrode 12 side by the electrolysis of water, and these are caught in a minute vortex of water, and ozone is immediately dissolved in water to become ozone water. Oxygen gas generated at the same time as ozone has a lower solubility in water than H 2 gas (Henry's coefficient is different by 10 times). Therefore, most of the oxygen gas is suspended as undissolved bubbles in water and flows toward the outlet 22b. Become.

【0030】しかし、オゾンは溶解性が大きいことに間
違えはないが、実際には流出口22bより流出するオゾ
ン水はオゾン臭がするもので、一部未溶解オゾンが微小
気泡となって懸濁している。従って、この未溶解オゾン
を確実に溶解させれば効率向上に益することになるが、
その量は1パーセントに満たないわずかな量であるの
で、効率の面からは改良の価値は認められないとされ
る。しかし、このオゾン水を使用する場所に、オゾンガ
スが放出されることは作業環境を悪化することになるの
で、防止せざるを得ない。オゾンガスを人が吸い込む
と、その濃度・量にもよるが、粘膜等を損傷して危険な
ことがある。従って、クリーンルームや診察室等の限ら
れた密閉性のある場所でオゾン水を使用する場合、この
わずかな未溶解オゾンガスの混入も抑止すべきである。
However, there is no doubt that ozone has high solubility, but the ozone water flowing out from the outlet 22b actually has an ozone smell, and some undissolved ozone is suspended as fine bubbles. ing. Therefore, if this undissolved ozone is reliably dissolved, it will be beneficial to improve the efficiency,
Since the amount is a small amount of less than 1 percent, the value of the improvement is not recognized in terms of efficiency. However, the release of the ozone gas to the place where the ozone water is used deteriorates the working environment and must be prevented. Inhalation of ozone gas by humans may damage the mucous membranes and the like, depending on the concentration and amount, and may be dangerous. Therefore, when using ozone water in a place with a limited hermeticity, such as a clean room or a consultation room, the entry of this slight undissolved ozone gas should be suppressed.

【0031】上記未溶解オゾンガスの混入抑止のため、
本発明では、上記したように、円柱状軸体11の軸方向
に放電部と非放電部とを交互に位置させ、オゾン発生部
と攪拌部とが交互に位置するようになしてある。すなわ
ち、水が流過するに従って、放電部でオゾンと接触し、
非放電部で十分な攪拌を行い、本発明はこの両者を繰り
返すことで未溶解オゾンの混入を抑止するものである。
To suppress the mixing of the undissolved ozone gas,
In the present invention, as described above, the discharge portion and the non-discharge portion are alternately located in the axial direction of the cylindrical shaft body 11, and the ozone generation portion and the stirring portion are alternately located. That is, as the water flows, it comes into contact with ozone in the discharge section,
In the present invention, sufficient stirring is performed in the non-discharge portion, and the present invention is intended to suppress mixing of undissolved ozone by repeating the both.

【0032】一方、陰極電極14側では、電気分解で水
素ガスが発生し、気泡となって水と共に流出口22bに
向かう。そして、上記陽極電極12側を流過した水と、
陰極電極14側を流過した水とは、オゾナイザーエレメ
ント10の下流側で混合されることになる。しかし、陰
極電極14側で発生した気相の水素はオゾンが溶解した
オゾン水とは、ほとんど反応しないとされている。
On the other hand, on the cathode electrode 14 side, hydrogen gas is generated by the electrolysis and becomes bubbles and goes to the outlet 22b together with water. And water flowing on the anode electrode 12 side;
The water flowing through the cathode electrode 14 is mixed on the downstream side of the ozonizer element 10. However, it is said that gaseous phase hydrogen generated on the side of the cathode electrode 14 hardly reacts with ozone water in which ozone is dissolved.

【0033】次に、「請求項2」の発明は、軸方向に大
径部11aと小径部11bとが交互に位置する円柱状軸
体11の大径部11a,11a,11a・・・の表面に
該円柱状軸体11の長手方向一端側から他端側に向かう
螺旋状の細い凹溝11cを設け、該円柱状軸体11の大
径部11aに陽極電極12を巻き付け、該陽極電極1
2,12,12・・・の外側にイオン交換膜13を、さ
らにこのイオン交換膜13の外側に金網製の陰極電極1
4を、夫々が圧接するようにオゾナイザーエレメント1
0を構成してある。
The second aspect of the present invention relates to a method of forming a large diameter portion 11a, 11a, 11a,... Of a cylindrical shaft body 11 in which a large diameter portion 11a and a small diameter portion 11b are alternately located in the axial direction. The surface of the cylindrical shaft 11 is provided with a helical thin groove 11c extending from one end to the other end in the longitudinal direction of the cylindrical shaft 11, and the anode 12 is wound around the large diameter portion 11a of the cylindrical shaft 11, 1
The ion exchange membrane 13 is provided outside the ion exchange membrane 13, and the cathode electrode 1 made of wire mesh is provided outside the ion exchange membrane 13.
4 and the ozonizer elements 1 so that they are pressed against each other.
0 is configured.

【0034】すなわち、本発明は図4および図5に示す
ように、円柱状軸体11を間欠的に縮径して、大径部1
1aと小径部11bとが円柱状軸体11の軸方向に交互
に位置するようになしてある。そして、大径部を放電部
となし、小径部11bは水の流過流路断面積を局所的に
拡大し流路面積の変化に伴う渦流の発生を惹起し混合効
率を高めようとしたものである。
That is, according to the present invention, as shown in FIG. 4 and FIG.
1a and the small diameter portion 11b are arranged alternately in the axial direction of the cylindrical shaft body 11. The large-diameter portion is formed as a discharge portion, and the small-diameter portion 11b locally increases the cross-sectional area of the flow passage of water to cause the generation of a vortex due to a change in the flow area, thereby increasing the mixing efficiency. It is.

【0035】なお、上記オゾナイザーエレメント10を
水が流過する筒状流路20内に、その円柱状軸体11の
中心軸が水の流過方向を向くようにして収納し、該陽極
電極12と陰極電極14との間に直流電圧を印加して、
水の流過方向に放電部と非放電部とが交互に位置するよ
うになしたのは請求項1と同じである。
The ozonizer element 10 is housed in a cylindrical flow path 20 through which water flows so that the center axis of the cylindrical shaft body 11 is oriented in the flow direction of water. And applying a DC voltage between the cathode electrode 14 and
The discharge portion and the non-discharge portion are alternately arranged in the flow direction of the water as in the first aspect.

【0036】次に、「請求項3」の発明は、軸方向に大
径部11aと小径部11bとが交互に位置する円柱状軸
体11の大径部11a,11a,11a・・・の表面に
該円柱状軸体11の長手方向一端側から他端側に向かう
螺旋状の細い凹溝11cを設け、該円柱状軸体11の大
径部11aに陽極電極12を巻き付け、該陽極電極1
2,12,12・・・の外側にイオン交換膜13を、さ
らにこのイオン交換膜13の外側に金網製の陰極電極1
4を、夫々が圧接するようにオゾナイザーエレメント1
0を構成してあるのは請求項2と同じである。
The third aspect of the present invention relates to a method for forming large-diameter portions 11a, 11a, 11a,... Of a cylindrical shaft 11 in which large-diameter portions 11a and small-diameter portions 11b are alternately located in the axial direction. The surface of the cylindrical shaft 11 is provided with a helical thin groove 11c extending from one end to the other end in the longitudinal direction of the cylindrical shaft 11, and the anode 12 is wound around the large diameter portion 11a of the cylindrical shaft 11, 1
The ion exchange membrane 13 is provided outside the ion exchange membrane 13, and the cathode electrode 1 made of wire mesh is provided outside the ion exchange membrane 13.
4 and the ozonizer elements 1 so that they are pressed against each other.
0 is the same as in claim 2.

【0037】そして、本発明は、上記オゾナイザーエレ
メント10を水が流過する筒状流路20内に、該陽極電
極12の外面が筒状流路20の内周面に接触するように
なすか、該陰極電極14と筒状流路20との間で該筒状
流路20の上流側に設けたオゾナイザーエレメント10
の保持リング21で同心状に保持して収納してある。
The present invention is directed to the present invention, in which the outer surface of the anode electrode 12 is brought into contact with the inner peripheral surface of the cylindrical flow path 20 in the cylindrical flow path 20 through which water flows through the ozonizer element 10. An ozonizer element 10 provided between the cathode electrode 14 and the cylindrical flow path 20 on the upstream side of the cylindrical flow path 20.
And is stored concentrically by the holding ring 21 of FIG.

【0038】従って、本発明では陽極電極12側では該
陽極電極12を面方向に水が流れると共に、凹溝11c
内をも水が流れる。これに比べ、陰極電極14側はこの
陰極電極14を面方向にのみ水が流れることになり、凹
溝11cの断面積にもよるが、陽極電極12側をより水
が流過できるようになすことができる。そして、オゾン
が発生する陽極電極12側により多くの水を流過させる
ことで効率を向上できるものである。
Therefore, in the present invention, on the anode electrode 12 side, water flows in the anode electrode 12 in the surface direction, and the groove 11c is formed.
Water flows inside. On the other hand, on the cathode electrode 14 side, water flows only in the surface direction of the cathode electrode 14, and depending on the cross-sectional area of the concave groove 11c, water can flow more through the anode electrode 12 side. be able to. The efficiency can be improved by allowing more water to flow through the anode electrode 12 where ozone is generated.

【0039】そして、該陽極電極12と陰極電極14と
の間に直流電圧を印加して、水の流過方向に放電部と非
放電部とが交互に位置するようになしてあるのは請求項
1および請求項2と同じである。
[0039] The DC voltage is applied between the anode electrode 12 and the cathode electrode 14 so that the discharge part and the non-discharge part are alternately positioned in the flow direction of water. It is the same as the first and second aspects.

【0040】なお、本発明オゾナイザーは容量を増やす
場合はヘッダーに複数個を並列に連結すればよく、オゾ
ン濃度を高めたい場合は複数個を直列に連結すればよ
い。なお、前記「発明の実施の形態」で例示した具体例
を二本直列に連結したところ、オゾン水のオゾン濃度は
毎分2.5リッターの流水量で10+α(ppm)で、
オゾンの飽和濃度は20℃・1気圧で18ppmとされ
ているので、直列に連結する場合は2〜4本が実用範囲
といえるものである。
Incidentally, in the case of increasing the capacity of the ozonizer of the present invention, a plurality of ozonizers may be connected in parallel to the header, and in order to increase the ozone concentration, a plurality of ozonizers may be connected in series. In addition, when two specific examples illustrated in the above-mentioned “Embodiment of the Invention” are connected in series, the ozone concentration of ozone water is 10 + α (ppm) at a flow rate of 2.5 liters per minute,
Since the saturated concentration of ozone is 18 ppm at 20 ° C. and 1 atm, two to four tubes can be said to be in a practical range when they are connected in series.

【0041】[0041]

【発明の効果】本発明は上記のごときで、円柱状軸体1
1に白金製金網で構成した陽極電極12を、該陽極電極
12の外側にイオン交換膜13を、さらにこのイオン交
換膜13の外側に金網製の陰極電極14を、夫々が圧接
するように巻き付けてオゾナイザーエレメント10を構
成してあるので、電解部の寸法精度を簡易な構成で容易
に製造できるオゾナイザーを提供できるものである。
According to the present invention, as described above, a cylindrical shaft 1 is provided.
1, an anode electrode 12 made of a platinum wire mesh, an ion exchange membrane 13 outside the anode electrode 12, and a wire mesh cathode electrode 14 outside the ion exchange membrane 13 are wound so as to be pressed against each other. Since the ozonizer element 10 is configured by the above-described configuration, it is possible to provide an ozonizer that can be easily manufactured with a simple configuration with dimensional accuracy of the electrolytic unit.

【0042】また、本発明は、放電部と非放電部とを交
互に位置させたので、未溶解オゾンの混入が抑止できる
オゾナイザーを提供できるものである。ちなみに、本発
明の効果を調べるため、現在知られている他のオゾン水
生成法との比較試験を行った。この試験には、従来多く
使われている、高濃度オゾンガスを水中に曝気溶解する
ガス溶解法と、最近普及し始めて平板式オゾン水電解生
成法、そして本発明の生成方式が選ばれた。ガス溶解法
においては、PSA酸素濃縮機で空気中の酸素を約90
%に濃縮し、沿面放電法のセラミックオゾナイザーによ
って約20000ppmのオゾンガスを生成し、水中に
吹き込んで約5ppmのオゾン水を生成した。一方、平
板式オゾン水電解法においては、電極面積30cm
白金陽極と、前記ナフィオン450膜を使用した電極に
軟水を供送して、約5ppmのオゾン水を得た。また、
本方式においては前記実施形態のものを使用して5pp
mのオゾン水を得た。
Further, the present invention can provide an ozonizer capable of suppressing mixing of undissolved ozone, since discharge portions and non-discharge portions are alternately positioned. By the way, in order to investigate the effect of the present invention, a comparative test with other currently known ozone water generation methods was performed. For this test, a gas dissolution method of aerating and dissolving high-concentration ozone gas in water, a plate-type ozone water electrolysis generation method which has recently become popular, and a generation method of the present invention were selected. In the gas dissolution method, the oxygen in the air is reduced to about 90% by a PSA oxygen concentrator.
%, And about 20,000 ppm of ozone gas was generated by a creeping discharge method ceramic ozonizer, which was blown into water to generate about 5 ppm of ozone water. On the other hand, in the flat plate type ozone water electrolysis method, soft water was supplied to a platinum anode having an electrode area of 30 cm 2 and an electrode using the Nafion 450 membrane to obtain about 5 ppm of ozone water. Also,
In this method, 5 pp
m of ozone water was obtained.

【0043】上記各方式のオゾン水より放散されるオゾ
ンガスの濃度を測定するため、オゾン水はそれぞれ1リ
ットル容量のガラス製ビーカーに入れ、水面より、50
mm上に北川式ガス検知管の吸入口を配設し、検知管方
式によりそのガス濃度を測定した。その結果、ガス溶解
法において、水温20℃の場合放散ガス濃度は15〜1
7ppmに達し、次いで、平板式オゾン水電解法におい
ては3〜4ppm、さらに本発明法の場合、検知管感度
の最低限目盛りである0.1ppm以下であり、本方式
の効果が立証されたものである。
In order to measure the concentration of the ozone gas emitted from the ozone water of each of the above-mentioned methods, the ozone water was placed in a glass beaker having a capacity of 1 liter, and the ozone water was discharged from the surface of the water.
The inlet of the Kitagawa type gas detector tube was arranged above mm, and the gas concentration was measured by the detector tube method. As a result, in the gas dissolution method, when the water temperature is 20 ° C., the emission gas concentration is 15 to 1
7 ppm, and then 3 to 4 ppm in the flat plate type ozone water electrolysis method, and 0.1 ppm or less, which is the minimum scale of the detector tube sensitivity in the case of the present invention method, which proves the effect of the present method. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明オゾナイザーの一部縦断面正面図であ
る。
FIG. 1 is a partial longitudinal sectional front view of an ozonizer of the present invention.

【図2】オゾナイザーエレメント部位の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of an ozonizer element site.

【図3】別の実施例での、オゾナイザーエレメント部位
の縦断面図である。
FIG. 3 is a longitudinal sectional view of an ozonizer element portion according to another embodiment.

【図4】さらに別の実施例での、オゾナイザーエレメン
ト部位の縦断面図である。
FIG. 4 is a longitudinal sectional view of an ozonizer element in still another embodiment.

【図5】さらに、別の実施例での、オゾナイザーエレメ
ント部位の縦断面図である。
FIG. 5 is a longitudinal sectional view of an ozonizer element in still another embodiment.

【符号の説明】[Explanation of symbols]

10 オゾナイザーエレメント 11 円柱状軸体 11a 凹溝 11b 凹溝 12 陽極電極 13 イオン交換膜 14 陰極電極 20 筒状流路 21 保持リング DESCRIPTION OF SYMBOLS 10 Ozonizer element 11 Cylindrical shaft 11a Concave groove 11b Concave groove 12 Anode electrode 13 Ion exchange membrane 14 Cathode electrode 20 Cylindrical flow path 21 Holding ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円柱状軸体(11)に白金製金網で構成
した陽極電極(12)を、該陽極電極(12)の外側に
イオン交換膜(13)を、さらにこのイオン交換膜(1
3)の外側に金網製の陰極電極(14)を、夫々が圧接
するように巻き付けると共に、該陽極電極(12)を円
柱状軸体(11)の軸方向に所定間隔で間欠的に巻き付
けるか、前記陽極電極(12)と陰極電極(14)との
間を円柱状軸体(11)の軸方向に所定間隔で間欠的に
絶縁してオゾナイザーエレメント(10)を構成し、 上記オゾナイザーエレメント(10)を水が流過する筒
状流路(20)内に、その円柱状軸体(11)の中心軸
が水の流過方向を向くようにして収納し、該陽極電極
(12)と陰極電極(14)との間に直流電圧を印加し
て、水の流過方向に放電部と非放電部とが交互に位置す
るようになしたオゾナイザー。
1. An anode electrode (12) composed of a platinum wire mesh on a cylindrical shaft (11), an ion exchange membrane (13) outside the anode electrode (12), and an ion exchange membrane (1).
A cathode electrode (14) made of a wire mesh is wound around the outside of (3) so that they are pressed against each other, and the anode electrode (12) is wound intermittently at a predetermined interval in the axial direction of the cylindrical shaft (11). An intermittent insulation between the anode electrode (12) and the cathode electrode (14) in the axial direction of the cylindrical shaft body (11) at a predetermined interval to form an ozonizer element (10); 10) is accommodated in a cylindrical flow path (20) through which water flows so that the central axis of the cylindrical shaft body (11) is directed to the flow direction of water, and is connected to the anode electrode (12). An ozonizer in which a DC voltage is applied between the cathode electrode (14) and a discharge part and a non-discharge part are alternately positioned in a flowing direction of water.
【請求項2】 軸方向に大径部(11a)と小径部(1
1b)とが交互に位置する円柱状軸体(11)の大径部
(11a,11a,11a・・・)の表面に該円柱状軸
体(11)の長手方向一端側から他端側に向かう螺旋状
の細い凹溝(11c)を設け、該円柱状軸体(11)の
大径部11aに陽極電極(12)を巻き付け、該陽極電
極(12,12,12・・・)の外側にイオン交換膜
(13)を、さらにこのイオン交換膜(13)の外側に
金網製の陰極電極(14)を、夫々が圧接するようにオ
ゾナイザーエレメント(10)を構成し、 上記オゾナイザーエレメント(10)を水が流過する筒
状流路(20)内に、その円柱状軸体(11)の中心軸
が水の流過方向を向くようにして収納し、該陽極電極
(12)と陰極電極(14)との間に直流電圧を印加し
て、水の流過方向に放電部と非放電部とが交互に位置す
るようになしたオゾナイザー。
2. A large diameter portion (11a) and a small diameter portion (1) in an axial direction.
1b) on the surface of the large-diameter portion (11a, 11a, 11a...) Of the cylindrical shaft body (11) alternately positioned from one end side to the other end side in the longitudinal direction of the cylindrical shaft body (11). A spiral concave groove (11c) is provided, and an anode electrode (12) is wound around a large-diameter portion 11a of the cylindrical shaft body (11), and the outside of the anode electrode (12, 12, 12,...) An ozonizer element (10) is formed so that the ion-exchange membrane (13) and the cathode electrode (14) made of wire mesh are pressed against the outside of the ion-exchange membrane (13). ) Is accommodated in a cylindrical flow path (20) through which water flows so that the central axis of the cylindrical shaft body (11) faces the flow direction of water, and the anode electrode (12) and the cathode are accommodated. A direct current voltage is applied between the electrode (14) and the discharge part in the direction of flow of water and non-discharge Ozonizer with alternate parts.
【請求項3】 軸方向に大径部(11a)と小径部(1
1b)とが交互に位置する円柱状軸体(11)の大径部
(11a,11a,11a・・・)の表面に該円柱状軸
体(11)の長手方向一端側から他端側に向かう螺旋状
の細い凹溝(11c)を設け、該円柱状軸体(11)の
大径部11aに陽極電極(12)を巻き付け、該陽極電
極(12,12,12・・・)の外側にイオン交換膜
(13)を、さらにこのイオン交換膜(13)の外側に
金網製の陰極電極(14)を、夫々が圧接するようにオ
ゾナイザーエレメント(10)を構成し、 上記オゾナイザーエレメント(10)を水が流過する筒
状流路(20)内に、該陽極電極(12)の外面が筒状
流路(20)の内周面に接触するようになすか、該陰極
電極(14)と筒状流路(20)との間で該筒状流路
(20)の上流側に設けたオゾナイザーエレメント(1
0)の保持リング(21)で同心状に保持して収納し、 該陽極電極(12)と陰極電極(14)との間に直流電
圧を印加して、水の流過方向に放電部と非放電部とが交
互に位置するようになしたオゾナイザー。
3. A large-diameter portion (11a) and a small-diameter portion (1) in an axial direction.
1b) on the surface of the large-diameter portion (11a, 11a, 11a...) Of the cylindrical shaft body (11) alternately positioned from one end side to the other end side in the longitudinal direction of the cylindrical shaft body (11). A spiral concave groove (11c) is provided, and an anode electrode (12) is wound around a large-diameter portion 11a of the cylindrical shaft body (11), and the outside of the anode electrode (12, 12, 12,...) An ozonizer element (10) is formed so that the ion-exchange membrane (13) and the cathode electrode (14) made of wire mesh are pressed against the outside of the ion-exchange membrane (13). ), The outer surface of the anode electrode (12) is brought into contact with the inner peripheral surface of the cylindrical channel (20) in the cylindrical channel (20) through which water flows, or the cathode electrode (14) ) And a cylindrical flow path (20), provided at an upstream side of the cylindrical flow path (20). The element (1
0) is concentrically held and stored by a holding ring (21), and a direct current voltage is applied between the anode electrode (12) and the cathode electrode (14), so that the discharge part is connected to the discharge part in the flow direction of water. Ozonizer with non-discharge parts alternately positioned.
JP11298226A 1999-10-20 1999-10-20 Ozonizer Expired - Lifetime JP3073990B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11298226A JP3073990B1 (en) 1999-10-20 1999-10-20 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11298226A JP3073990B1 (en) 1999-10-20 1999-10-20 Ozonizer

Publications (2)

Publication Number Publication Date
JP3073990B1 JP3073990B1 (en) 2000-08-07
JP2001115286A true JP2001115286A (en) 2001-04-24

Family

ID=17856872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11298226A Expired - Lifetime JP3073990B1 (en) 1999-10-20 1999-10-20 Ozonizer

Country Status (1)

Country Link
JP (1) JP3073990B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060011A (en) * 2002-07-30 2004-02-26 Neo Ozone Kk Electrolytic ozone water manufacturing apparatus
JP2008532739A (en) * 2005-03-09 2008-08-21 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Cylindrical electrode
JP2018094004A (en) * 2016-12-12 2018-06-21 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Washing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060011A (en) * 2002-07-30 2004-02-26 Neo Ozone Kk Electrolytic ozone water manufacturing apparatus
JP2008532739A (en) * 2005-03-09 2008-08-21 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Cylindrical electrode
JP2018094004A (en) * 2016-12-12 2018-06-21 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Washing machine

Also Published As

Publication number Publication date
JP3073990B1 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
JP2531772B2 (en) Ozone generator
US7967958B2 (en) Electrode for water electrolysis
CN101912761B (en) Dielectric discharge reactor of uniform electric field
JP3001551B1 (en) Ozonizer
US10781115B2 (en) Apparatus and method for generating metal ions in a fluid stream
CN106186172A (en) A kind of method activating hydrogen persulfate salt treatment waste water
CN201209121Y (en) High efficient ozone generator
US20080156642A1 (en) System for the Disinfection of Low-Conductivity Liquids
JP3073990B1 (en) Ozonizer
KR102168258B1 (en) Membrane electrode assembly and electrolyzed water production device using the same
SG194658A1 (en) Plasma generating method and generating device
JP3297227B2 (en) Ozone water production equipment
JP5243657B1 (en) Mixing device and installation structure of mixing device
CN108325351A (en) A kind of double medium low temperature plasma gas purifiers of electromagnetic induction coupling
JP3838611B2 (en) Nitrogen oxide / sulfur oxide purification method and purification device
JP3682275B2 (en) Ozone water production equipment
JP3498076B2 (en) Electrolytic ozone water production equipment
WO2014136063A2 (en) Systems and methods for generating and collecting reactive species
JPS6259504A (en) Ozonizer by corona discharge
JP4895472B2 (en) Gap spacer, ozone generating tube having the gap spacer disposed therein, and ozone generating apparatus including the ozone generating tube
JP3483624B2 (en) Device for removing moisture from gas
JP2002087804A (en) Ozone generating device
JPS6168120A (en) Method and apparatus for removing trace oxygen in gas
KR102486379B1 (en) Manufacturing Apparatus for Water Contained Nitrogen Monoxide
JP2012241206A (en) Ozone generating device