JP2001115224A - Orientation gradient type functionally gradient material and its manufacturing method - Google Patents

Orientation gradient type functionally gradient material and its manufacturing method

Info

Publication number
JP2001115224A
JP2001115224A JP33038499A JP33038499A JP2001115224A JP 2001115224 A JP2001115224 A JP 2001115224A JP 33038499 A JP33038499 A JP 33038499A JP 33038499 A JP33038499 A JP 33038499A JP 2001115224 A JP2001115224 A JP 2001115224A
Authority
JP
Japan
Prior art keywords
plate
orientation
reinforcing phase
phase particles
centrifugal force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33038499A
Other languages
Japanese (ja)
Inventor
Yoshimi Watanabe
義見 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueda Textile Science Foundation
Original Assignee
Ueda Textile Science Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueda Textile Science Foundation filed Critical Ueda Textile Science Foundation
Priority to JP33038499A priority Critical patent/JP2001115224A/en
Publication of JP2001115224A publication Critical patent/JP2001115224A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture an orientation gradient type functionally gradient material in which the volume fraction and orientation of plate-like reinforcement-phase grains in a matrix are gradiently changed simultaneously by using a composite material having plate-like reinforcement-phase grains and applying centrifugal force during melting and solidification and to obtain a composite material whose desired part is reinforced by the desired amount in the desired direction. SOLUTION: Although plate-like reinforcement-phase grains receive moment during the application of centrifugal force and are oriented in such a way that the plate surface normal of the plate-like reinforcement-phase grains becomes parallel to the direction of centrifugal force, the moment differs according to the position of a ring. By using the above phenomenon, a composite material having the plate-like reinforcement-phase grains is used and centrifugal force is applied during melting and solidification. By this method, the orientation gradient type functionally gradient material in which the volume fraction and orientation of the plate-like reinforcement-phase grains in the matrix are gradiently changed simultaneously can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合材料において
母相中の板状強化相粒子の体積分率と配向度とが同時に
傾斜的に変化することを特徴とする傾斜機能材料及びそ
の製造方法に関する。
[0001] The present invention relates to a functionally graded material characterized in that the volume fraction and the degree of orientation of the plate-like reinforcing phase particles in the matrix of the composite material are simultaneously gradiently changed, and a method for producing the same. About.

【0002】[0002]

【従来の技術】傾斜機能材料とは、材料の設計段階で使
用条件に合わせて意図的に組成、組織、その他の機能を
積極的に変化させて、発生する熱応力や、その他の機能
を積極的に制御させた新しい材料設計概念である。傾斜
機能材料を製造するためには、材料設計に応じ、組成分
布と組織とを自由に制御できる技術が要求される。傾斜
機能材料に関する従来製造技術としては、化学蒸着法、
物理蒸着法、粒子配列法、粒子噴射法、薄膜積層法、プ
ラズマツイントーチ溶射法、自己発熱反応法(燃焼合成
法)などがある。
2. Description of the Related Art Functionally graded materials are intended to actively change the composition, structure and other functions intentionally in accordance with the use conditions in the design stage of the material, thereby aggressively generating the thermal stress and other functions. This is a new material design concept that is controlled in a controlled manner. In order to manufacture a functionally gradient material, a technology that can freely control the composition distribution and the structure according to the material design is required. Conventional manufacturing technologies for functionally graded materials include chemical vapor deposition,
There are a physical vapor deposition method, a particle arrangement method, a particle injection method, a thin film lamination method, a plasma twin torch spraying method, a self-heating reaction method (combustion synthesis method), and the like.

【0003】しかしながら、これらの製造方法は比較的
新しい技術を応用したものであり、製造設備が高価であ
るという短所があり、また、結果として製造コストも高
くなってしまうという問題点がある。さらに、大型形状
の製品を製造するのが困難であるという欠点がある。
[0003] However, these manufacturing methods apply relatively new technology, and have the disadvantage that the manufacturing equipment is expensive, and the manufacturing cost is also increased as a result. Further, there is a disadvantage that it is difficult to manufacture a large-sized product.

【0004】これに対し遠心力法では、安価な製造設備
で、大型形状の製品を低い製造コストで製造できる。こ
こで、遠心力法とは、セラミックスあるいは第二相粒子
を含む金属溶湯に遠心力を印加し、主として金属溶湯と
分散粒子との密度差に起因する遠心力の差により生じる
移動速度差を用いて組成傾斜を制御しようとする傾斜機
能材料製造法をさす。
On the other hand, according to the centrifugal force method, a large-sized product can be manufactured at low manufacturing cost with inexpensive manufacturing equipment. Here, the centrifugal force method applies a centrifugal force to a molten metal containing ceramics or second phase particles, and uses a moving speed difference mainly caused by a difference in centrifugal force caused by a density difference between the molten metal and the dispersed particles. The method for producing a functionally graded material in which the composition gradient is controlled by using

【0005】[0005]

【発明が解決するための課題】板状粒子強化もしくは繊
維強化複合材料の機械的性質は母相中の強化相の体積分
率のみならず配向度によっても依存する。したがって、
傾斜機能材料において、単に強化相の体積分率を傾斜的
に変化させるだけではなく、配向度をも位置によって傾
斜的に変化させれば、所要の設計条件に合致する性能を
有する傾斜機能材料を提供できる。
SUMMARY OF THE INVENTION The mechanical properties of plate-like particle-reinforced or fiber-reinforced composite materials depend not only on the volume fraction of the reinforcing phase in the matrix but also on the degree of orientation. Therefore,
In functionally graded materials, not only simply changing the volume fraction of the reinforcing phase in a gradient manner, but also changing the degree of orientation in a gradient manner depending on the position, it is possible to obtain a functionally graded material having performance that meets the required design conditions. Can be provided.

【0006】本発明はかかる事情に鑑みなされたもの
で、設計の要求する様々な条件に合致する性能を有する
傾斜機能材料を製造することを目的とし、比較的製造が
容易で製造コストが安く大型形状の製品を製造しうる遠
心力法を利用して、母相中の板状強化相粒子の体積分率
と配向度とが同時に傾斜的に変化する傾斜機能材料の製
造方法を提供する。
The present invention has been made in view of such circumstances, and has as its object to manufacture a functionally graded material having performance meeting various conditions required by design, and is relatively easy to manufacture, has a low manufacturing cost, and has a large size. Provided is a method for producing a functionally graded material in which the volume fraction and the degree of orientation of plate-like reinforcing phase particles in a matrix phase change simultaneously and gradient utilizing a centrifugal force method capable of producing a product having a shape.

【0007】[0007]

【発明を解決するための手段】本発明は、板状の強化相
粒子を分散させた液相状態の母相に遠心力を印加するこ
とによって、材料中の板状強化相粒子の体積分率と配向
度とが同時に傾斜的に分布する機能材料を得るものであ
る。
SUMMARY OF THE INVENTION According to the present invention, a volume fraction of plate-like reinforcing phase particles in a material is obtained by applying a centrifugal force to a liquid phase matrix in which plate-like reinforcing phase particles are dispersed. And a functional material in which the and the degree of orientation are simultaneously and obliquely distributed.

【0008】さらに、液相状態にある母相に板状強化相
粒子を分散させ、これを回転する金型へと注入すること
により遠心力を印加し、母相と板状強化相粒子との間の
密度差に起因する遠心力の差によって粒子の移動を制御
すると同時に、板状強化相粒子に受けるモーメントを制
御することによって、材料中の板状強化相粒子の体積分
率と配向度とが同時に傾斜的に分布する機能材料を得る
ものである。
Further, centrifugal force is applied by dispersing the plate-like reinforcing phase particles in a liquid-phase parent phase and injecting the dispersed particles into a rotating mold, whereby the parent phase and the plate-like reinforcing phase particles are mixed. By controlling the movement of the particles by the difference in centrifugal force caused by the density difference between them, and simultaneously controlling the moment applied to the plate-like reinforcing phase particles, the volume fraction and orientation degree of the plate-like reinforcing phase particles in the material Is to obtain a functional material which is simultaneously and obliquely distributed.

【0009】ここで、板状強化相粒子は遠心力印加中、
液相状態の母相内においてモーメントを受けるため、板
状強化相粒子の板面法線方向が遠心力方向と平行となる
ように配向する。このとき、リングの内周と外周とでの
遠心力に差、また、リングの内周と外周とでの溶湯の角
速度の差を利用すれば、板状強化相粒子の配向度が位置
によって変化するという配向度傾斜型の傾斜機能材料が
得られる。
Here, the plate-shaped reinforcing phase particles are subjected to centrifugal force application,
The plate-like reinforcing phase particles are oriented so that the normal direction of the plate surface is parallel to the direction of the centrifugal force because a moment is received in the parent phase in the liquid state. At this time, if the difference in the centrifugal force between the inner circumference and the outer circumference of the ring and the difference in the angular velocity of the molten metal between the inner circumference and the outer circumference of the ring are used, the degree of orientation of the plate-like reinforcing phase particles changes depending on the position. Thus, a functionally graded material having an orientation degree gradient type is obtained.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて具体的に説明する。本発明で使用した複合材
料の母材は市販のAl−5mass%Ti合金である。
この母材中、Tiは板状のAlTi金属間化合物粒子
として存在する。ここで、AlTi金属間化合物は軽
量、高硬度、優れた耐食性を有することから、次世代の
耐熱構造材料として期待されている新素材である。ま
た、融点は1342℃と高温のため、母相が溶解しても
板状強化相粒子が固相として存在するという条件を実現
できる。
Embodiments of the present invention will be specifically described below with reference to the drawings. The base material of the composite material used in the present invention is a commercially available Al-5 mass% Ti alloy.
In this base material, Ti exists as plate-like Al 3 Ti intermetallic compound particles. Here, the Al 3 Ti intermetallic compound is a new material that is expected as a next-generation heat-resistant structural material because of its light weight, high hardness, and excellent corrosion resistance. Further, since the melting point is as high as 1342 ° C., it is possible to realize the condition that the plate-like reinforcing phase particles exist as a solid phase even when the parent phase is dissolved.

【0011】この材料を、母相が液相、板状強化相粒子
が固相として存在する温度範囲まで加熱し、溶解した。
そして、遠心力印加下での鋳造を行い、板状粒子強化型
傾斜機能材料を作製した。遠心力印加下での鋳造は、図
1に示す遠心鋳造装置により行った。
The material was dissolved by heating to a temperature range in which the parent phase was in the liquid phase and the plate-like reinforcing phase particles were in the solid phase.
Casting was performed under the application of centrifugal force to produce a plate-like particle-reinforced functionally graded material. Casting under the application of centrifugal force was performed by the centrifugal casting device shown in FIG.

【0012】ここで、遠心鋳造装置を説明する。まず、
溶解炉の中に設置されたるつぼの中にAl−5mass
%Ti合金を入れ、溶解する。このるつぼの底には穴が
開けられており、注入前にはセラミックス棒にて栓がし
てある。規定の鋳造条件において、この栓を抜くことに
より、溶湯はるつぼの底から湯口を経て、回転する金型
へと直接注入することが可能である。ここで、金型は金
型加熱炉により加熱されており、さらにシャフトとベル
トプーリでつながれたモータによって回転するため、母
相が液相、板状強化相粒子が固相の状態で遠心力の印加
が可能である。なお、金型加熱炉は台車に乗せられてお
り、レールの上を移動することができるため、溶湯の注
入後、冷却速度を制御することができる。
Here, the centrifugal casting device will be described. First,
Al-5 mass in the crucible installed in the melting furnace
% Ti alloy is added and melted. A hole is made in the bottom of this crucible, which is plugged with a ceramic rod before injection. Under specified casting conditions, by removing this plug, the molten metal can be injected directly from the bottom of the crucible through the gate to the rotating mold. Here, the mold is heated by a mold heating furnace and further rotated by a motor connected by a shaft and a belt pulley. Application is possible. In addition, since the mold heating furnace is mounted on a cart and can move on rails, the cooling rate can be controlled after pouring the molten metal.

【0013】このとき、母相と板状強化相粒子との密度
差に起因する遠心力の差が発生する。そして、遠心力印
加下、板状強化相粒子はモーメントを受け、板状強化相
粒子の板面法線方向が遠心力方向と平行となるように配
向する。
At this time, a difference in centrifugal force occurs due to a difference in density between the matrix phase and the plate-like reinforcing phase particles. Then, under the application of the centrifugal force, the plate-like reinforced phase particles receive a moment, and are oriented such that the plate surface normal direction of the plate-shaped reinforced phase particles is parallel to the centrifugal force direction.

【0014】次に、製造したAl/AlTi傾斜機能
材料リングの模式図を図2に示す。板状AlTi金属
間化合物粒子は板状強化相粒子の板面法線方向が遠心力
方向と平行となるように配向していた。このリングの組
織を回転軸方向から観察した。
Next, FIG. 2 is a schematic view of the manufactured Al / Al 3 Ti functionally gradient material ring. The plate-like Al 3 Ti intermetallic compound particles were oriented such that the plate surface normal direction of the plate-like reinforcing phase particles was parallel to the centrifugal force direction. The structure of this ring was observed from the rotation axis direction.

【0015】製造した傾斜機能材料における板状Al
Ti金属間化合物粒子の体積分率の位置による変化を図
3に示す。ここで、横軸は規格化したリング位置を示
し、0.0がリング最内周部、1.0がリング最外周部
である。これらの材料は、重力倍数がG=10、30お
よび50での条件にて製造したものである。ここで、重
力倍数とは遠心力を重力で規格化したものである。
Plate-like Al 3 in the manufactured functionally graded material
FIG. 3 shows changes in the volume fraction of the Ti intermetallic compound particles depending on the position. Here, the horizontal axis indicates the standardized ring position, where 0.0 is the innermost circumference of the ring and 1.0 is the outermost circumference of the ring. These materials were produced under conditions where the gravity multiple was G = 10, 30 and 50. Here, the gravity multiple is obtained by normalizing the centrifugal force by gravity.

【0016】図3からわかるように、リングの外側では
板状AlTi金属間化合物粒子の体積分率が高く、リ
ング内周部に向かうに従い、体積分率は徐々に減少して
いた。これは、板状AlTi金属間化合物粒子の密度
が溶湯Alのそれに比べて大きいため、遠心力印加下に
おいて、板状AlTi金属間化合物粒子がリング外側
に移動したためである。また、体積分率の傾斜の度合い
は重力倍数が大きいほど強まっていた。このように、板
状AlTi金属間化合物粒子の体積分率は緩やかに傾
斜しており、強化相の形状が板状でも、遠心力法により
傾斜機能材料が製造可能となった。
As can be seen from FIG. 3, the volume fraction of the plate-like Al 3 Ti intermetallic compound particles was high outside the ring, and gradually decreased toward the inner periphery of the ring. This is because the plate-like Al 3 Ti intermetallic compound particles have a higher density than that of the molten aluminum Al, and thus the plate-like Al 3 Ti intermetallic compound particles have moved to the outside of the ring under the application of centrifugal force. In addition, the degree of the gradient of the volume fraction increased as the multiple of gravity increased. As described above, the volume fraction of the plate-like Al 3 Ti intermetallic compound particles is gently inclined, and the functionally gradient material can be manufactured by the centrifugal force method even if the shape of the reinforcing phase is plate-like.

【0017】次に粒子の配向度について着目する。その
ため、図4に示すように板状強化相粒子の配向角を定義
する。すなわち、遠心力方向を基準軸にとり、板状強化
相粒子の板面法線方向と基準軸との角度を配向角と定義
した。
Next, attention is paid to the degree of orientation of the particles. Therefore, the orientation angle of the plate-like reinforcing phase particles is defined as shown in FIG. That is, the direction of the centrifugal force was taken as the reference axis, and the angle between the normal direction of the plate surface of the plate-shaped reinforcing phase particles and the reference axis was defined as the orientation angle.

【0018】製造した試料リングの各位置において、個
々の板状AlTi金属間化合物粒子に関して配向角を
計測した。配向角と相対頻度との関係に整理した一例を
図5に示す。ここで、試料リングの製造条件はG=30
であり、図中左上に書かれた値はリングの規格化した位
置である。
At each position of the manufactured sample ring, the orientation angle of each plate-like Al 3 Ti intermetallic compound particle was measured. FIG. 5 shows an example in which the relationship between the orientation angle and the relative frequency is arranged. Here, the manufacturing condition of the sample ring is G = 30.
, And the value written in the upper left of the figure is the normalized position of the ring.

【0019】規格化した位置が1.0〜0.9におい
て、すなわちリング外周部において、配向角が0°の板
状強化相粒子の頻度が高くなっていた。すなわち、リン
グ外周部では、板状AlTi金属間化合物粒子は板状
強化相粒子の板面法線方向が遠心力方向と平行となるよ
うに配向していた。
When the normalized position was 1.0 to 0.9, that is, at the outer periphery of the ring, the frequency of the plate-like reinforcing phase particles having an orientation angle of 0 ° was high. That is, the plate-like Al 3 Ti intermetallic compound particles were oriented such that the normal direction of the plate surface of the plate-like reinforcing phase particles was parallel to the centrifugal force direction at the outer periphery of the ring.

【0020】これに対して、リングの中央部である規格
化した位置が0.5〜0.4においては、その傾向は弱
まっていた。また、リングの内周部である規格化した位
置が0.1〜0.0においては配向が認められず、板状
強化相粒子は全ての方向に等頻度存在していた。このよ
うに、製造したリング内、配向度が位置によって変化す
ることが見いだされた。
On the other hand, when the standardized position at the center of the ring is 0.5 to 0.4, the tendency is weakened. When the normalized position, which is the inner peripheral portion of the ring, was 0.1 to 0.0, no orientation was recognized, and the plate-like reinforcing phase particles were present at equal frequencies in all directions. As described above, it has been found that the degree of orientation varies depending on the position in the manufactured ring.

【0021】次に、これら配向の様相を定量的に評価す
るため、ヘルマンの配向度を用いて配向を評価した。こ
こで、ヘルマンの配向度は、現在最も広く用いられてい
る2次元的配向度評価方法である。ヘルマンの配向度
は、fp=[2〈cosφ〉−1]で定義されてい
る。ここでφは配向角であり、また、〈cosφ〉は
3角法の平均である。すべての板状強化相粒子が配向し
た場合、ヘルマンの配向度fpの値は1に、すべての板
状強化相粒子が完全無秩序に存在した状態にある場合、
ヘルマンの配向度fpの値は0となる。
Next, in order to quantitatively evaluate these aspects of the orientation, the orientation was evaluated using the Hermann degree of orientation. Here, the Hermann orientation degree is a two-dimensional orientation degree evaluation method most widely used at present. The Hermann orientation degree is defined by fp = [2 <cos 2 φ> −1]. Here, φ is the orientation angle, and <cos 2 φ> is the average of the triangular method. When all the plate-like reinforcing phase particles are oriented, the value of the degree of orientation fp of Herman is 1 and when all the plate-like reinforcing phase particles are present in a completely disordered state,
The value of the Hermann orientation fp is 0.

【0022】図6に傾斜機能材料におけるヘルマンの配
向度の位置に関する傾斜を示す。リングの外側では板状
AlTi金属間化合物粒子の配向度が高く、リング内
周部に向かうに従い、配向度は徐々に減少していた。ま
た、配向度の傾斜の度合いは重力倍数が大きいほど強ま
った。このように、板状AlTi金属間化合物粒子の
配向度は緩やかに傾斜しており、遠心力法により配向度
傾斜型傾斜機能材料が製造可能となった。
FIG. 6 shows the inclination with respect to the position of the orientation degree of Hermann in the functionally graded material. Outside the ring, the degree of orientation of the plate-like Al 3 Ti intermetallic compound particles was high, and the degree of orientation gradually decreased toward the inner periphery of the ring. Also, the degree of inclination of the degree of orientation was increased as the gravity multiple was increased. As described above, the degree of orientation of the plate-like Al 3 Ti intermetallic compound particles is gently inclined, and it becomes possible to produce an orientation-graded functionally graded material by the centrifugal force method.

【0023】板状粒子強化複合材料の機械的性質は母相
中の強化相の体積分率のみならず配向度によっても依存
する。また、配向によって機械的性質の異方性も出現す
る。したがって、得られた配向度傾斜型傾斜機能材料に
おいて、単に機械的性質のみならず、その異方性も傾斜
していることが予想される。このことを確認するため、
ピン−オン−ディスク型の摩耗試験を行った。
The mechanical properties of the plate-like particle-reinforced composite material depend not only on the volume fraction of the reinforcing phase in the matrix but also on the degree of orientation. In addition, anisotropy of mechanical properties also appears depending on the orientation. Therefore, it is expected that not only the mechanical properties but also the anisotropy of the obtained gradient-graded functionally graded material are inclined. To confirm this,
A pin-on-disk wear test was performed.

【0024】G=30の条件で製造した傾斜機能材料と
純アルミニウムの摩耗試験の結果を図7に示す。横軸は
摩耗距離、縦軸は摩耗量である。全ての傾斜機能材料の
摩耗量は同様の方法で作製した純アルミニウム試験片に
比べて摩耗量が少なく、また、板状AlTi金属間化
合物粒子量の多いリング外側の摩耗量は粒子量の少ない
リング内側に比べて小さく、板状AlTi金属間化合
物粒子が強化相として有効に働いていることがわかる。
FIG. 7 shows the results of the wear test of the functionally graded material and pure aluminum manufactured under the condition of G = 30. The horizontal axis is the wear distance, and the vertical axis is the wear amount. The wear of all the functionally graded materials was smaller than that of the pure aluminum test piece prepared by the same method, and the wear of the ring outside where the amount of plate-like Al 3 Ti intermetallic compound particles was large was smaller than the amount of particle. It can be seen that the plate-like Al 3 Ti intermetallic compound particles are effectively working as a reinforcing phase, being smaller than the inside of the ring, which is less.

【0025】リング外周部においては方向により摩耗特
性の異方性が現れた。これは、板状AlTi金属間化
合物粒子の配向に起因するものであり、板状強化相粒子
の分断されにくい方向の摩耗特性は、分断されやすい方
向のそれに比べて優れていることが見いだされた。
At the outer periphery of the ring, anisotropy of the wear characteristics appeared depending on the direction. This is due to the orientation of the plate-like Al 3 Ti intermetallic compound particles, and it has been found that the wear characteristics of the plate-like reinforcing phase particles in the direction in which the particles are difficult to be divided are superior to those in the direction in which the particles are easily divided. Was.

【0026】このように、配向度傾斜型傾斜機能材料は
優れた機械的性質を示すばかりでなく、位置により機械
的性質およびその異方性が変化しており、必要な部位を
必要な方向で必要な量だけ強化することができ、材料設
計の要求とする機械的性質を与えることが可能となっ
た。
As described above, the functionally gradient graded functional material exhibits not only excellent mechanical properties, but also mechanical properties and its anisotropy change depending on the position. The required amount of reinforcement can be provided, and the mechanical properties required for material design can be provided.

【0027】[0027]

【発明の効果】以上に述べたように、本発明により、複
合材料において板状強化相粒子の体積分率が位置ごとに
傾斜的に変化している機能材料(請求項1)を製造する
ことが可能となった。また、複合材料において板状強化
相粒子が配向している傾斜機能材料(請求項2)を製造
することが可能となった。
As described above, according to the present invention, it is possible to produce a functional material in which the volume fraction of the plate-like reinforcing phase particles in the composite material is inclinedly changed for each position. Became possible. Further, it has become possible to produce a functionally graded material (claim 2) in which plate-like reinforcing phase particles are oriented in a composite material.

【0028】さらに、複合材料において板状強化相粒子
の体積分率が位置ごとに傾斜的に変化していると同時に
板状強化相粒子の配向度が位置ごとに傾斜的に変化して
いる傾斜機能材料を製造することが可能となった(請求
項3)。また、配向度を変化させることによって機械的
性質及び物理的性質における異方性の傾斜を有する傾斜
機能材料(請求項4)を、板状強化相粒子を有する複合
材料を溶解し、遠心力を印加することにより製造するこ
とが可能となった(請求項6)。
Further, in the composite material, the volume fraction of the plate-like reinforcing phase particles changes at each position in an inclined manner, and at the same time, the orientation degree of the plate-like reinforcing phase particles changes at each position in an inclined manner. It has become possible to produce a functional material (claim 3). Further, by changing the degree of orientation, a functionally graded material having a gradient of anisotropy in mechanical properties and physical properties (claim 4) is dissolved in a composite material having plate-like reinforcing phase particles, and centrifugal force is reduced. It is possible to manufacture by applying the voltage (claim 6).

【0029】加えて、複合材料において、母相が液相、
板状強化相粒子が固相として存在する温度範囲で遠心力
を印加することにより、板状強化相粒子の体積分率と配
向度とが同時に傾斜的に変化する傾斜機能材料を製造す
ることが可能となった(請求項7)。さらに、アルミニ
ウム母相に板状AlTi金属間化合物粒子が分散した
複合材料において、遠心力を印加することにより、板状
強化相粒子の体積分率と配向度とが同時に傾斜的に変化
する傾斜機能材料を製造することが可能となった(請求
項8)。
In addition, in the composite material, the mother phase is a liquid phase,
By applying a centrifugal force in a temperature range in which the plate-like reinforcing phase particles exist as a solid phase, it is possible to produce a functionally graded material in which the volume fraction and the degree of orientation of the plate-like reinforcing phase particles simultaneously change in a gradient manner. It has become possible (claim 7). Further, in a composite material in which plate-like Al 3 Ti intermetallic compound particles are dispersed in an aluminum matrix, by applying a centrifugal force, the volume fraction and the degree of orientation of the plate-like reinforcing phase particles simultaneously and obliquely change. It has become possible to produce a functionally gradient material (claim 8).

【0030】配向度傾斜型傾斜機能材料は優れた機械的
性質を示すばかりでなく、位置により機械的性質および
その異方性が変化しているので、必要な部位を必要な方
向で必要な量だけ強化することができ、より高品位の傾
斜機能材料を提供し得る。しかも、本発明に係る傾斜機
能材料の製造法は、簡単な装置を用いて、簡単な原理を
応用した傾斜機能材料製造方法であるので、大型の材料
を安価に生産性も高く製造できる。
The graded orientation type functionally graded material not only exhibits excellent mechanical properties but also changes mechanical properties and its anisotropy depending on the position. Can provide a higher grade functionally graded material. In addition, since the method for producing a functionally graded material according to the present invention is a method for producing a functionally graded material using a simple apparatus and applying a simple principle, large-sized materials can be produced at low cost and with high productivity.

【0031】地球環境問題を解決し、社会、経済の持続
可能発展を可能とするための新材料としてエコマテリア
ルの概念が日本で初めて提案された。エコマテリアルは
材料性能と環境調和性の両立を目指した新しい考え方で
ある。極限的な材料性能と低環境負荷性とを同時に追求
することにより環境効率を革命的に向上させるという基
本思想が技術の底流として世界的に形成されつつあり、
エコマテリアルやエコデザイン(環境配慮設計)は技術
開発のキーコンセプトになってきた。
The concept of eco-material was proposed for the first time in Japan as a new material for solving global environmental problems and enabling sustainable development of society and economy. Eco-materials is a new concept that aims to achieve both material performance and environmental harmony. The basic philosophy of revolutionarily improving environmental efficiency by simultaneously pursuing extreme material performance and low environmental impact is being formed worldwide as the undercurrent of technology,
Eco-materials and eco-design (environmentally friendly design) have become key concepts in technology development.

【0032】エコマテリアルの代表はリサイクリング容
易材料である。また、資源有効利用の観点から、製品全
体に均一に特性を求めるのではなく、必要な部位を必要
な方向に必要なだけの性質を得ることが望ましい。
The representative of the eco-material is a material that is easy to recycle. In addition, from the viewpoint of effective use of resources, it is desirable to obtain the required properties in the required directions in the required directions, instead of uniformly seeking the characteristics of the entire product.

【0033】通常、傾斜機能材料は複合材料の範ちゅう
に分類されており、リサイクル困難な材料である場合が
多い。しかし、本発明で得られた傾斜機能材料は図8に
示すように再溶解により機能傾斜付加前の状態に容易に
戻るので、リサイクル容易な材料であると考えられる。
また、体積分率の傾斜、配向度の傾斜および配向による
異方性を本発明の機能材料には併せ持つため、必要な部
位を必要な方向に必要なだけの性質を得る傾斜機能材料
を提供し得る。
Generally, functionally graded materials are classified into the category of composite materials, and are often difficult to recycle. However, since the functionally gradient material obtained in the present invention easily returns to the state before the functional gradient is added by re-dissolution as shown in FIG. 8, it is considered that the material is easily recyclable.
Further, since the functional material of the present invention has a gradient of volume fraction, a gradient of degree of orientation and anisotropy due to orientation, the present invention provides a functionally graded material that obtains necessary properties in necessary directions in necessary directions. obtain.

【0034】以上のように、配向度傾斜型傾斜機能材料
は高機能を有し、大量生産が可能で、大型の製品も製造
可能であり、省資源を実現し、リサイクリングが容易で
あるため、様々な分野において工業的応用が考えられ
る。例えば、エンジンなどのような摩耗条件で使用され
る部位などへの適応が可能である。
As described above, the gradient-graded material having a high degree of orientation has high performance, can be mass-produced, can be manufactured in large products, can save resources, and can be easily recycled. Industrial applications are conceivable in various fields. For example, it can be applied to a part used under wear conditions such as an engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に供される係る配向度傾斜型傾斜
機能材料製造用の遠心鋳造装置の一実施例を模式的に示
す図である。
FIG. 1 is a diagram schematically showing an embodiment of a centrifugal casting apparatus for producing a functionally graded material with a gradient degree of orientation according to the present invention.

【図2】Al/AlTi傾斜機能材料リングにおける
板状AlTi金属間化合物粒子の配向の様相を示す概
略図である。
FIG. 2 is a schematic diagram showing the orientation of plate-like Al 3 Ti intermetallic compound particles in an Al / Al 3 Ti functionally gradient material ring.

【図3】傾斜機能材料における板状強化相粒子の体積分
率分布を示す図である。
FIG. 3 is a view showing a volume fraction distribution of plate-like reinforcing phase particles in a functionally gradient material.

【図4】板状強化相粒子の配向角の定義を示す図であ
る。
FIG. 4 is a view showing a definition of an orientation angle of plate-like reinforcing phase particles.

【図5】傾斜機能材料における配向度分布を示す図であ
る。
FIG. 5 is a diagram showing an orientation degree distribution in a functionally graded material.

【図6】傾斜機能材料におけるヘルマンの配向度の位置
に関する傾斜を示す図である。
FIG. 6 is a diagram showing an inclination with respect to the position of the orientation degree of Hermann in a functionally graded material.

【図7】製造した傾斜機能材料と純アルミニウムの摩耗
試験の結果を示す図である。
FIG. 7 is a view showing the results of a wear test of the manufactured functionally graded material and pure aluminum.

【図8】製造した傾斜機能材料のリサイクリングの方法
を示す流れ図である。
FIG. 8 is a flowchart showing a method of recycling the manufactured functionally graded material.

【符号の説明】[Explanation of symbols]

1…溶解炉 2…るつぼ 3…溶湯 4…セラミックス栓 5…湯口 6…金型 7…金型加熱炉 8…モータ 9…ベルトプーリ 10…シャフト 11…台車 12…レール 13…Al/AlTi傾斜機能材料リング 14…板状AlTi金属間化合物粒子 15…回転軸 16…観察面 17…板状強化相粒子 18…配向角 19…遠心力方向 20…インゴット 21…遠心鋳造装置 22…配向度傾斜型傾斜機能材料リング 23…配向度傾斜型傾斜機能材料1 ... melting furnace 2 ... crucible 3 ... melt 4 ... ceramic plug 5 ... sprue 6 ... die 7 ... die heating furnace 8 ... motor 9 ... belt pulley 10 ... shaft 11 ... carriage 12 ... rails 13 ... Al / Al 3 Ti Functionally graded material ring 14 Plate Al 3 Ti intermetallic compound particles 15 Rotation axis 16 Observation surface 17 Plate reinforcing phase particles 18 Orientation angle 19 Centrifugal direction 20 Ingot 21 Centrifugal casting device 22 Orientation Degree-graded functionally graded material ring 23 ... graded degree-graded functionally graded material

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複合材料において板状強化相粒子の体積分
率が位置ごとに傾斜的に変化していることを特徴とする
機能材料。
1. A functional material characterized in that the volume fraction of the plate-like reinforcing phase particles in the composite material changes obliquely from position to position.
【請求項2】複合材料において板状強化相粒子が配向し
ていることを特徴とする請求項1記載の傾斜機能材料。
2. The functionally gradient material according to claim 1, wherein the plate-like reinforcing phase particles are oriented in the composite material.
【請求項3】複合材料において板状強化相粒子の体積分
率が位置ごとに傾斜的に変化していると同時に板状強化
相粒子の配向度が位置ごとに傾斜的に変化していること
を特徴とする請求項1及び2記載の傾斜機能材料。
3. The composite material in which the volume fraction of the plate-like reinforcing phase particles is inclinedly changed at each position, and at the same time, the degree of orientation of the plate-shaped reinforcing phase particles is inclinedly changed at each position. The functionally gradient material according to claim 1, wherein:
【請求項4】配向度を変化させることによって機械的性
質及び物理的性質における異方性の傾斜を有することを
特徴とする請求項1及至3記載の傾斜機能材料。
4. The functionally gradient material according to claim 1, wherein the functionally graded material has an anisotropic gradient in mechanical properties and physical properties by changing the degree of orientation.
【請求項5】板状強化相粒子を有する複合材料を利用す
ることにより板状強化相粒子の体積分率と配向度とが同
時に傾斜的に変化することを特徴とする請求項1及至4
記載の傾斜機能材料の製造方法。
5. The method according to claim 1, wherein the volume fraction and the degree of orientation of the plate-like reinforcing phase particles are simultaneously and obliquely changed by utilizing the composite material having the plate-like reinforcing phase particles.
A method for producing the functionally gradient material according to the above.
【請求項6】板状強化相粒子を有する複合材料を溶解
し、遠心力を印加することによる、板状強化相粒子の体
積分率と配向度とが同時に傾斜的に変化することを特徴
とする請求項5記載の傾斜機能材料の製造方法。
6. The volume fraction and the degree of orientation of the plate-like reinforcing phase particles are simultaneously and obliquely changed by dissolving the composite material having the plate-like reinforcing phase particles and applying a centrifugal force. The method for producing a functionally gradient material according to claim 5.
【請求項7】複合材料において、母相が液相、板状強化
相粒子が固相として存在する温度範囲で遠心力を印加す
ることを特徴とする請求項5及び6記載の傾斜機能材料
の製造方法。
7. The functionally graded material according to claim 5, wherein a centrifugal force is applied in a temperature range in which the matrix is in a liquid phase and the plate-like reinforcing phase particles are in a solid phase. Production method.
【請求項8】アルミニウム母相に板状AlTi金属間
化合物粒子が分散した複合材料において、遠心力を印加
することを特徴とする請求項5及至7記載の傾斜機能材
料の製造方法。
8. The method for producing a functionally gradient material according to claim 5, wherein a centrifugal force is applied to a composite material in which plate-like Al 3 Ti intermetallic compound particles are dispersed in an aluminum matrix.
JP33038499A 1999-10-15 1999-10-15 Orientation gradient type functionally gradient material and its manufacturing method Pending JP2001115224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33038499A JP2001115224A (en) 1999-10-15 1999-10-15 Orientation gradient type functionally gradient material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33038499A JP2001115224A (en) 1999-10-15 1999-10-15 Orientation gradient type functionally gradient material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001115224A true JP2001115224A (en) 2001-04-24

Family

ID=18232007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33038499A Pending JP2001115224A (en) 1999-10-15 1999-10-15 Orientation gradient type functionally gradient material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001115224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085820A1 (en) * 2007-01-11 2008-07-17 The Gates Corporation Method of reinforcing low melting temperature cast metal parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085820A1 (en) * 2007-01-11 2008-07-17 The Gates Corporation Method of reinforcing low melting temperature cast metal parts

Similar Documents

Publication Publication Date Title
Sharma et al. A study of fabrication methods of aluminum based composites focused on stir casting process
AU732289B2 (en) Particulate field distributions in centrifugally cast metal matrix composites
US4830084A (en) Spray casting of articles
US7144441B2 (en) Process for producing materials reinforced with nanoparticles and articles formed thereby
US20120207611A1 (en) Casting long products
Lan et al. Anisotropy study of the microstructure and properties of AlCoCrFeNi2. 1 eutectic high entropy alloy additively manufactured by selective laser melting
CN102409188B (en) Method for preparing semisolid alloy through centrifuging and chilling
CN102527978A (en) Casting and forming method for double-layer-material engine cylinder liner
CN105568036A (en) Preparing method of high-silicon aluminum composite material
Xie et al. Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al-19Si-5Mg alloy
Lee et al. Fabrication of Al/Al3Fe composites by plasma synthesis method
CN103406514B (en) The method of the spontaneous particle reinforce cylinder jacket of a kind of centrifugal casting
JP2001115224A (en) Orientation gradient type functionally gradient material and its manufacturing method
US11685976B2 (en) Method for preparing amorphous particle-modified magnesium alloy surface-gradient composites
Li et al. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film
CN106756293B (en) A kind of preparation method of ferro-silicon-aluminium copper magnesium alloy
Tang et al. Preparation of Al–Fe–V–Si alloy by spray co-deposition with added its over-sprayed powders
Chaudhury et al. Role of processing parameters on microstructural evolution of spray formed Al–2Mg alloy and Al–2Mg–TiO2 composite
CN103418767A (en) Method for centrifugally casting particle-reinforced composites
JP2002038225A (en) Sheet-like particle reinforced functionally gradient material having abrasion anisotropy and its production method
JP2002069546A (en) Crystallized grain gradient type functionally gradient material and its production method
JP2001329301A (en) Method for producing high hardness high chromium cast iron powder alloy
Lee et al. Effects of particle properties on the microstructure of aluminum based metal–metal composites fabricated by plasma synthesis method
Acharya et al. Effect of cooling slope angle on microstructure of Al-7Si alloy
JP2001152263A (en) Hybrid functionally gradient material and its manufacturing method