JP2001114735A - Material for electronic product - Google Patents

Material for electronic product

Info

Publication number
JP2001114735A
JP2001114735A JP28785199A JP28785199A JP2001114735A JP 2001114735 A JP2001114735 A JP 2001114735A JP 28785199 A JP28785199 A JP 28785199A JP 28785199 A JP28785199 A JP 28785199A JP 2001114735 A JP2001114735 A JP 2001114735A
Authority
JP
Japan
Prior art keywords
compound
formula
glass transition
electronic product
transition point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28785199A
Other languages
Japanese (ja)
Inventor
Tetsuzo Miki
鉄藏 三木
Naoko Nakanishi
直子 中西
Toshihide Kimura
俊秀 木村
Naohiro Tarumoto
直浩 樽本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP28785199A priority Critical patent/JP2001114735A/en
Publication of JP2001114735A publication Critical patent/JP2001114735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a triphenylamine tetramer having excellent positive hole transport ability and thin film formability, electrically and chemically stable and having a remarkably high glass transition. SOLUTION: The tetramer is a benzidine compound represented by the formula, a material for electronic products is represented by the formula and a charge-transfer material is produced by using the material for electronic products. The compound can be synthesized by performing Ullmann reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は環境安定性に優れた
電子製品材料およびその電子製品材料を用いた電荷輸送
材料、有機電界発光素子に関するものである。
The present invention relates to an electronic product material having excellent environmental stability, a charge transport material using the electronic product material, and an organic electroluminescent device.

【0002】[0002]

【従来の技術】電子製品を構成する材料の中で、化合物
材料の果たす役割は大きい。電子製品の化合物材料とし
て多用される正孔輸送材料に関して、それを有機EL素
子に用いる場合について、トリフェニルアミン誘導体
(トリフェニルアミン2量体・3量体・4量体)が優れ
た正孔輸送能力を有し、薄膜形成性に優れ、電気的・化
学的に安定であると報告されている(特開平7-126226号
公報、特開平7-126615号公報)。また特開平8-48656号
公報でもトリフェニルアミン誘導体が有機EL素子用化
合物として優れていると報告され、それらの化合物は6
40〜2000程度の分子量を有し、190〜300℃
の高融点を有し、80〜200℃の高ガラス転移温度を
有していると記載されている。しかしこれら多くの化合
物について、その構造とその化合物が有する正孔輸送材
料としての特性との関係については、特に論議されてい
ない。
2. Description of the Related Art Among materials constituting electronic products, compound materials play an important role. Regarding a hole transport material frequently used as a compound material of an electronic product, a triphenylamine derivative (triphenylamine dimer / trimer / tetramer) having an excellent hole is used in an organic EL device when the material is used for an organic EL device. It is reported that it has a transport ability, has excellent thin film forming properties, and is electrically and chemically stable (JP-A-7-126226, JP-A-7-126615). JP-A-8-48656 also reports that triphenylamine derivatives are excellent as compounds for organic EL devices.
It has a molecular weight of about 40-2000, 190-300 ° C
And a high glass transition temperature of 80 to 200 ° C. However, for many of these compounds, the relationship between their structures and the properties of the compounds as hole transport materials is not specifically discussed.

【0003】有機EL素子の正孔輸送材料に用いた場合
に、トリフェニルアミン4量体を使用した時にはトリフ
ェニルアミン2量体に比べて、その輝度半減期が大幅に
向上したという報告がされている(第58回応用物理学
会学術講演会講演予稿集p1190、講演番号3p−Z
Q−12)。ここで使用された正孔輸送材料は、高耐熱
性のトリフェニルアミン4量体[化2]式
[0003] It has been reported that when used as a hole transport material in an organic EL device, the luminance half-life of triphenylamine tetramer was greatly improved when triphenylamine tetramer was used, as compared with triphenylamine dimer. (58th Annual Meeting of the Japan Society of Applied Physics Preprints p1190, Lecture number 3p-Z
Q-12). The hole transport material used here is a highly heat-resistant triphenylamine tetramer [formula 2]

【0004】[0004]

【化3】 Embedded image

【0005】であり、特開平7-126226号公報、特開平7-
126615号公報で開示されたものである。これら線状につ
ながったトリフェニルアミン誘導体を正孔輸送材料に選
び、それら化合物の長さ、ガラス転移点、有機EL素子
の熱安定性の関係について研究した(IEEE TRANSACTION
S ON ELECTRON DEVICES,1239-1244,VOL.44,NO.8,AUGUST
1997)報告もされ、以上の相関も次第に分かってきて
いる。ガラス転移点の高い正孔輸送材料と有機EL素子
の耐熱性との相関に着目して、ガラス転移点の高い正孔
輸送材料(トリフェニルアミン4量体[化3]式)を
[0005] JP-A-7-126226, JP-A-7-126
This is disclosed in 126615. These linearly connected triphenylamine derivatives were selected as hole transport materials, and the relationship between the lengths of these compounds, the glass transition point, and the thermal stability of organic EL devices was studied (IEEE TRANSACTION).
S ON ELECTRON DEVICES, 1239-1244, VOL.44, NO.8, AUGUST
1997) It has been reported, and the above correlation is gradually being understood. Focusing on the correlation between the hole-transporting material having a high glass transition point and the heat resistance of the organic EL device, a hole-transporting material having a high glass transition point (triphenylamine tetramer [Formula 3]) has been developed.

【0006】[0006]

【化4】 Embedded image

【0007】使用することによって、トリフェニルアミ
ン2量体[化4]式
By using the compound, triphenylamine dimer [formula 4]

【0008】[0008]

【化5】 Embedded image

【0009】に比して電子製品の寿命を著しく延長した
という報告(第46回応用物理学関係連合講演会講演予
稿集p1295、29a−ZD−20)もされている。
[0009] There is also a report that the life of an electronic product has been significantly extended as compared to that of the 46th Joint Lecture on Applied Physics (P1295, 29a-ZD-20).

【0010】一方、トリフェニルアミン誘導体の中で
も、線状につながっていない化合物を正孔輸送材料を使
用した場合について、特にガラス転移点の高いものとし
てナフタレン環を有するスター・バースト型化合物が示
されている(特開平11-124358号公報)。
On the other hand, among the triphenylamine derivatives, when a hole-transporting material is used for a compound which is not connected linearly, a star-burst type compound having a naphthalene ring has been shown as having a particularly high glass transition point. (JP-A-11-124358).

【0011】[0011]

【発明が解決しようとする課題】電子製品材料は高温環
境下や発熱環境下において使用される場合、電子製品を
構成する機能性膜が劣化して電子製品の寿命が短くなる
という問題点があり、特に正孔輸送材料を含む電子製品
においては環境安定性が求められている。これらの要件
を満たすためには、以上の知見からガラス転移点の高い
正孔輸送材料を選べば良い結果が得られることがわかっ
てきている。しかし、ガラス転移点の高い化合物であっ
ても、他の性能において問題点が生じる場合もある。
When an electronic product material is used in a high-temperature environment or a heat-generating environment, there is a problem that the functional film constituting the electronic product is deteriorated and the life of the electronic product is shortened. In particular, electronic products including hole transport materials are required to have environmental stability. From the above findings, it has been found that a good result can be obtained by selecting a hole transporting material having a high glass transition point in order to satisfy these requirements. However, even a compound having a high glass transition point may cause problems in other performances.

【0012】[化3]式の化合物のように、正孔輸送材
料が構造中に縮合環を有する場合には、例えば1−ナフ
チルアミンのユニットを有するときは発ガン性の心配が
生じる等の問題点を有する。また、特開平11-124358号
公報に記載されているようなスターバースト型化合物の
場合には、結晶性が高いことに起因する性能の低下が懸
念されている。線状につながったトリフェニルアミン誘
導体の中では、4量体以上になるとガラス転移点が高く
なることが知られているが、4量体以上になると分子を
長くしてガラス転移点を上昇させる効果が低下するこ
と、また5量体になると昇華点が上昇して真空蒸着が制
限を受けたり、EL素子の発光効率が低下する等の問題
点が生じてくることも(IEEE TRANSACTIONS ON ELEC
TRON DEVICES,1239-1244,VOL.44,NO.8,AUGUST 1997)
報告されている。
When the hole transporting material has a condensed ring in the structure as in the compound of the formula (3), for example, when it has a unit of 1-naphthylamine, there is a problem that carcinogenicity may occur. Have a point. Also, in the case of a starburst type compound as described in JP-A-11-124358, there is a concern that the performance may be deteriorated due to high crystallinity. It is known that among the linearly connected triphenylamine derivatives, the glass transition point increases when the tetramer or higher is used, but when the tetramer or higher is used, the molecule is lengthened to increase the glass transition point. In addition, when the pentamer is used, the sublimation point rises and the vapor deposition is restricted, and the luminous efficiency of the EL element is reduced.
TRON DEVICES, 1239-1244, VOL.44, NO.8, AUGUST 1997)
It has been reported.

【0013】本発明は、優れた正孔輸送能力を有し、薄
膜形成性に優れ、電気的・化学的に安定で、トリフェニ
ルアミン誘導体の中でも線状につながった4量体にしぼ
って、かつ従来の正孔輸送材料より顕著にガラス転移点
の高い化合物を提供することを目的としている。
The present invention is directed to a tetramer which has excellent hole transporting ability, excellent thin film forming property, is electrically and chemically stable, and is linearly connected among triphenylamine derivatives. Another object of the present invention is to provide a compound having a significantly higher glass transition point than a conventional hole transport material.

【0014】[0014]

【課題を解決するための手段】本発明者らは、電子製品
作製の際に材料として頻繁に用いられているAlq[化
5]式
Means for Solving the Problems The present inventors have proposed Alq [formula 5] which is frequently used as a material in the production of electronic products.

【0015】[0015]

【化6】 Embedded image

【0016】のように分子中に金属を有する化合物と比
較しても、同等以上の高いガラス転移点を有する正孔輸
送材料を探索した結果、[化1]式の化合物が類似構造
の化合物に比べて顕著に高いガラス転移点を有すること
を見出して本発明を完成するに至った。
As a result of searching for a hole transporting material having a glass transition point equal to or higher than that of a compound having a metal in the molecule as described above, the compound of the formula [1] is converted to a compound having a similar structure. The present inventors have found that they have a significantly higher glass transition point, and completed the present invention.

【0017】[0017]

【化7】 Embedded image

【0018】すなわち、本発明は[化1]式で表される
ベンジジン化合物であり、また、[化1]式で表される
電子製品材料である。さらに本発明は[化1]式で表さ
れる電子製品材料を用いたことを特徴とする電荷輸送材
料であり、その電荷輸送材料を用いたことを特徴とする
有機電界発光素子である。
That is, the present invention relates to a benzidine compound represented by the formula [1] and an electronic product material represented by the formula [1]. Further, the present invention relates to a charge transporting material using an electronic product material represented by the formula [1], and an organic electroluminescent device using the charge transporting material.

【0019】本発明の[化1]式で表されるベンジジン
化合物は、178℃という顕著に高いガラス転移点を示
し、線状につながったトリフェニルアミン4量体である
類似の化合物群が、150℃以下のガラス転移点を有す
るのに比べて際だっている。さらに線状につながったト
リフェニルアミン5量体である[化6]式の化合物(ガ
ラス転移点145℃)よりも勝っている。
The benzidine compound represented by the formula [1] of the present invention shows a remarkably high glass transition point of 178 ° C., and a similar group of linearly connected triphenylamine tetramers is It is outstanding compared to having a glass transition point of 150 ° C. or less. Furthermore, it is superior to the compound of the formula [6] (glass transition point: 145 ° C.), which is a linearly connected triphenylamine pentamer.

【0020】[0020]

【化8】 Embedded image

【0021】分子中に金属を有する化合物Alq[化
5]式(ガラス転移点175℃)とほぼ同等である。
The compound having a metal in the molecule Alq [formula 5] (glass transition point: 175 ° C.) is almost equivalent.

【0022】本発明の化合物はウルマン反応をおこなう
ことで合成できる。さらに晶析や吸着、またはカラムク
ロマトグラフィーを行うことによって精製でき、高純度
品を得ることができる。
The compound of the present invention can be synthesized by carrying out an Ullmann reaction. Furthermore, purification can be performed by crystallization, adsorption, or column chromatography, and a highly purified product can be obtained.

【0023】本発明の化合物の仕事関数は5.2eVで
あり、電子材料として使用するのに十分な特性を有して
いる。
The work function of the compound of the present invention is 5.2 eV, which is sufficient for use as an electronic material.

【0024】本発明の化合物は線状につながったトリフ
ェニルアミン4量体でありながら、顕著に高いガラス転
移点を有しているが、その主な理由はこの化合物の対称
性が高く、しかも置換基のt−ブチル基が密な構造を有
するためと考えられる。その結果、アモルファス状態を
安定的に保持し、化学的にも安定であるので、電子製品
材料に使用された場合は、高温環境下や発熱環境下にお
いて優れた安定性を発揮することができる。また、基本
的に高い電荷輸送能を有しており、電荷輸送性を利用す
る電子製品材料、素子やシステム、例えば有機電界発光
素子や電子写真用感光体に使用された場合も、高温環境
下や発熱環境下において優れた安定性を発揮することが
できる。
Although the compound of the present invention is a linearly connected triphenylamine tetramer, it has a remarkably high glass transition point mainly because of the high symmetry of this compound, and This is probably because the t-butyl group of the substituent has a dense structure. As a result, since the amorphous state is stably maintained and chemically stable, excellent stability can be exhibited in a high-temperature environment or a heat-generating environment when used in electronic product materials. In addition, it basically has a high charge transport ability, and when used in electronic product materials, devices and systems that utilize the charge transport property, for example, organic electroluminescent devices and photoreceptors for electrophotography, even in high temperature environments. And excellent stability under heat-generating environment.

【0025】[0025]

【発明の実施の形態】以下本発明の化合物の製造方法お
よび物性について、実施例により具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The production method and physical properties of the compound of the present invention will be specifically described below with reference to examples.

【0026】[0026]

【実施例】〔実施例1〕N−(4’−ヨード−4−ビフ
ェニル)アセトアニリド20.7g(0.05モル)、
4,4’−ジ−t−ブチルジフェニルアミン10.3g
(0.04モル)、無水炭酸カリウム6.91g(0.
05モル)、銅粉0.64g(0.01モル)、トリデ
カン80mlを混合し、窒素雰囲気下で還流して10時
間反応させた。反応生成物をトルエン150mlで抽出
し、イソアミルアルコール75mlと水酸化カリウム
3.36g(0.06モル)を加え、80℃で2時間攪
拌した。不溶分を濾別した後、濾液を乾固して得られた
黒色の粉体をシリカゲルを用いたカラムクロマトグラフ
ィーによって精製した。精製によって得られたN−フェ
ニル−N’−ビス(4−t−ブチルフェニル)ベンジジ
ンは12.2gであった。
EXAMPLES Example 1 20.7 g (0.05 mol) of N- (4'-iodo-4-biphenyl) acetanilide,
10.3 g of 4,4'-di-t-butyldiphenylamine
(0.04 mol), 6.91 g of anhydrous potassium carbonate (0.
(0.5 mol), 0.64 g (0.01 mol) of copper powder, and 80 ml of tridecane, and reacted under reflux in a nitrogen atmosphere for 10 hours. The reaction product was extracted with 150 ml of toluene, 75 ml of isoamyl alcohol and 3.36 g (0.06 mol) of potassium hydroxide were added, and the mixture was stirred at 80 ° C. for 2 hours. After filtering off the insoluble matter, the filtrate was dried to obtain a black powder, which was purified by column chromatography using silica gel. N-phenyl-N′-bis (4-t-butylphenyl) benzidine obtained by the purification was 12.2 g.

【0027】〔実施例2〕N−フェニル−N’−ビス
(4−t−ブチルフェニル)ベンジジン11.5g
(0.022モル)、4,4’−ジヨードビフェニル
4.06g(0.01モル)、無水炭酸カリウム3.1
7g(0.023モル)、銅粉0.32g(0.005
モル)、トリデカン40mlを混合し、窒素雰囲気下で
還流して72時間反応させた。反応生成物をトルエン1
20mlで抽出し、不溶分を濾別した。濾液にアセトニ
トリル120mlを加えて粗製物を得た。得られた粉体
をシリカゲルを用いたカラムクロマトグラフィーによっ
て精製した。精製によって得られた白色粉体は7.12
gで、収率は27%、融点は326.2〜335.8℃
であった。
Example 2 11.5 g of N-phenyl-N'-bis (4-t-butylphenyl) benzidine
(0.022 mol), 4.06 g (0.01 mol) of 4,4'-diiodobiphenyl, anhydrous potassium carbonate 3.1
7g (0.023 mol), copper powder 0.32g (0.005
Mol) and tridecane (40 ml), and the mixture was refluxed under a nitrogen atmosphere and reacted for 72 hours. The reaction product is toluene 1
The mixture was extracted with 20 ml, and the insoluble matter was separated by filtration. 120 ml of acetonitrile was added to the filtrate to obtain a crude product. The obtained powder was purified by column chromatography using silica gel. The white powder obtained by purification was 7.12.
g, yield 27%, melting point 326.2-335.8 ° C.
Met.

【0028】得られた白色粉体について、NMRで化学
構造を同定した。測定結果は[図1]13C−NMR、
[図2]プロトンNMRの通りであった
The chemical structure of the obtained white powder was identified by NMR. Measurement results [FIG. 1] 13 C-NMR,
FIG. 2 Proton NMR

【0029】[図1]の13C−NMRの測定結果は次の
通り。1個の脂肪族3級炭素(31.463ppm)と
1個の脂肪族4級炭素(34.298ppm)、11個
の芳香族3級炭素(122.944、123.296、
124.000、124.231、124.353、1
24.456、126.028、127.152、12
7.285、127.385、129.295pp
m)、9個の芳香族4級炭素(133.940、13
4.911、135.233、145.099、14
5.719、146.496、146.726、14
7.218、147.716ppm)を検出した。
The measurement results of 13 C-NMR in FIG. 1 are as follows. One aliphatic tertiary carbon (31.463 ppm), one aliphatic quaternary carbon (34.298 ppm), and 11 aromatic tertiary carbons (122.944, 123.296,
124.000, 124.231, 124.353, 1
24.456, 126.028, 127.152, 12
7.285, 127.385, 129.295 pp
m), 9 aromatic quaternary carbons (133.940, 13
4.911, 135.233, 145.099, 14
5.719, 146.496, 146.726, 14
7.218, 147.716 ppm).

【0030】プロトンNMRの積分値より、芳香族性水
素と脂肪族水素の比率が50.0:36.2(理論値5
0:36)であることを確認した。
From the integral value of proton NMR, the ratio of aromatic hydrogen to aliphatic hydrogen was 50.0: 36.2 (theoretical value: 5
0:36).

【0031】さらに、元素分析を実施した測定結果は次
の通りであった。 理論値(炭素88.1%)(水素7.2%)(窒素4.7%) 実測値(炭素87.8%)(水素7.2%)(窒素4.1%) 以上の13C−NMR、プロトンNMRおよび元素分析の
結果を総合して[化1]式の構造を同定した。
Further, the results of the elementary analysis were as follows. Theoretical value (88.1% carbon) (7.2% hydrogen) (4.7% nitrogen) Actual value (87.8% carbon) (7.2% hydrogen) (4.1% nitrogen) 13 C above The structure of Formula 1 was identified by combining the results of NMR, proton NMR and elemental analysis.

【0032】〔実施例3〕本発明の化合物について、D
SC(マックサイエンス製)によってガラス転移点を測
定し、他の化合物のガラス転移点と比較した。結果を
[表1]に示した。
Example 3 For the compound of the present invention, D
The glass transition point was measured by SC (manufactured by Mac Science) and compared with the glass transition points of other compounds. The results are shown in [Table 1].

【0033】[0033]

【表1】 [Table 1]

【0034】[表1]に掲載されている[化7]式の化
合物は特開平8-48656号公報の実施例4に記載された化
合物であり、[化8]式の化合物は前述した文献「IEEE
TRANSACTIONS ON ELECTRON DEVICES」において4
量体として掲載されている化合物である。それらの構造
式を次に示す。
The compound of the formula [Chemical formula 7] listed in [Table 1] is the compound described in Example 4 of JP-A-8-48656, and the compound of the formula [Chemical formula 8] is described in the aforementioned literature. "IEEE
TRANSACTIONS ON ELECTRON DEVICES "
It is a compound listed as a monomer. The structural formulas are shown below.

【0035】[0035]

【化9】 Embedded image

【0036】[0036]

【化10】 Embedded image

【0037】本発明の化合物が類似の化合物群に比べて
際だって高いガラス転移点を有することが明白である。
It is evident that the compounds according to the invention have a markedly higher glass transition point compared to similar compounds.

【0038】[実施例4]本発明の化合物について表面
分析計AC1(理研計器製)で、一般的な正孔輸送材料
と比較して仕事関数を測定した。測定結果を次に示す。 本発明の化合物 仕事関数 : 5.2eV [化4]式の正孔輸送材料 仕事関数 : 5.2eV [化2]式の正孔輸送材料 仕事関数 : 5.2eV この結果から、本発明の化合物は従来の正孔輸送材料と
同程度の仕事関数を有しており、正孔輸送材料として適
性であるといえる。
Example 4 The work function of the compound of the present invention was measured using a surface analyzer AC1 (manufactured by Riken Keiki Co., Ltd.) as compared with a general hole transport material. The measurement results are shown below. Compound of the present invention Work function: 5.2 eV Hole transport material of the formula [4] Work function: 5.2 eV Hole transport material of the formula [2] Work function: 5.2 eV From the results, the compound of the present invention is obtained. Has a work function comparable to that of a conventional hole transport material, and can be said to be suitable as a hole transport material.

【0039】[0039]

【発明の効果】本発明の化合物は従来の正孔輸送材料よ
り顕著にガラス転移点が高いので、優れた正孔輸送能力
を有し、薄膜形成性に優れ、電気的・化学的に安定であ
る。したがって、本発明の化合物を電子製品材料として
使用した場合には環境安定性に優れた性能を発揮するこ
とができる。また、この電子製品の使用された電荷輸送
材料や有機電界発光素子は環境安定性に優れた性能を発
揮する。
The compound of the present invention has a remarkably higher glass transition point than conventional hole transporting materials, so it has excellent hole transporting ability, excellent thin film forming properties, and is electrically and chemically stable. is there. Therefore, when the compound of the present invention is used as a material for electronic products, it can exhibit excellent performance in environmental stability. In addition, the charge transport material and the organic electroluminescent device used in this electronic product exhibit excellent performance in environmental stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の化合物を測定した13C−NMRスペク
トル図である。
FIG. 1 is a 13 C-NMR spectrum of a compound of the present invention.

【図2】本発明の化合物を測定したプロトンNMRスペ
クトル図である。
FIG. 2 is a proton NMR spectrum of the compound of the present invention.

フロントページの続き (72)発明者 樽本 直浩 茨城県つくば市御幸が丘45番地 保土谷化 学工業株式会社筑波研究所内 Fターム(参考) 3K007 AB00 AB11 AB12 DA00 DB03 EB00 4H006 AA01 AB91 AB92 Continuation of the front page (72) Inventor Naohiro Tarumoto 45 Miyukigaoka, Tsukuba, Ibaraki Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 [化1]式で表されるベンジジン化合
物。 【化1】
A benzidine compound represented by the following formula: Embedded image
【請求項2】 [化1]式で表される電子製品材料。 【化2】 2. An electronic product material represented by the formula [1]. Embedded image 【請求項3】 請求項2記載の電子製品材料を用いたこ
とを特徴とする電荷輸送材料。
3. A charge transport material using the electronic product material according to claim 2.
【請求項4】 請求項3記載の電荷輸送材料を用いたこ
とを特徴とする有機電界発光素子。
4. An organic electroluminescent device using the charge transport material according to claim 3.
JP28785199A 1999-10-08 1999-10-08 Material for electronic product Pending JP2001114735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28785199A JP2001114735A (en) 1999-10-08 1999-10-08 Material for electronic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28785199A JP2001114735A (en) 1999-10-08 1999-10-08 Material for electronic product

Publications (1)

Publication Number Publication Date
JP2001114735A true JP2001114735A (en) 2001-04-24

Family

ID=17722613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28785199A Pending JP2001114735A (en) 1999-10-08 1999-10-08 Material for electronic product

Country Status (1)

Country Link
JP (1) JP2001114735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080801A1 (en) * 2006-01-11 2007-07-19 Idemitsu Kosan Co., Ltd. Novel imide derivative, material for organic electroluminescent element, and organic electroluminescent element comprising the same
US7605277B2 (en) 2004-02-09 2009-10-20 Nippon Steel Chemical Co., Ltd. Aminodibenzodioxin derivative and organic electroluminescent using the same
WO2012117973A1 (en) * 2011-02-28 2012-09-07 保土谷化学工業株式会社 Organic electroluminescent element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605277B2 (en) 2004-02-09 2009-10-20 Nippon Steel Chemical Co., Ltd. Aminodibenzodioxin derivative and organic electroluminescent using the same
WO2007080801A1 (en) * 2006-01-11 2007-07-19 Idemitsu Kosan Co., Ltd. Novel imide derivative, material for organic electroluminescent element, and organic electroluminescent element comprising the same
JPWO2007080801A1 (en) * 2006-01-11 2009-06-11 出光興産株式会社 Novel imide derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8168327B2 (en) 2006-01-11 2012-05-01 Idemitsu Kosan Co., Ltd. Imide derivative, material for organic electroluminescent device and organic electroluminescent device using the same
WO2012117973A1 (en) * 2011-02-28 2012-09-07 保土谷化学工業株式会社 Organic electroluminescent element
CN103403909A (en) * 2011-02-28 2013-11-20 保土谷化学工业株式会社 Organic electroluminescent element
JP5977227B2 (en) * 2011-02-28 2016-08-24 保土谷化学工業株式会社 Organic electroluminescence device
US9444055B2 (en) 2011-02-28 2016-09-13 Hodogaya Chemical Co., Ltd. Organic electroluminescent device

Similar Documents

Publication Publication Date Title
KR100739498B1 (en) Novel deuteriated aryl amine derivatives, preparation method thereof and organic light emitting diode using the same
KR101555816B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
JP5823679B2 (en) Tetramine compound and organic EL device
US20100145067A1 (en) Novel carbazoles derivative and use thereof
JP5175099B2 (en) Compound having triazole ring structure substituted with pyridyl group and organic electroluminescence device
KR20060130028A (en) Compounds based on fluoranthene and use of thereof
CN111662258A (en) Organic compound containing pyrene and application thereof in OLED
KR101093849B1 (en) Novel 1,3,5-trisdiarylaminobenzenes and use thereof
KR100753454B1 (en) High-Efficient Organic light emitting material and Organic Light Emitting Diode
CN110885338A (en) Organic compound with triarylamine as core, preparation method and application thereof
CN110835318A (en) Organic compound with azafluorene as core and preparation method and application thereof
JP2002179630A (en) Polyamino-fluorene derivative
JP2001114735A (en) Material for electronic product
JP2002275179A (en) Benzimidazole derivative and organic electroluminescent element
JP5110905B2 (en) Organic compound and organic light emitting device
CN110835305A (en) Organic compound containing dibenzosuberene, preparation method and application thereof
CN113402503B (en) Organic electroluminescent compound, preparation method and application
US20070243416A1 (en) Amine Compound and Organic Electroluminescent Element Employing the Same
JP4576141B2 (en) Carbazole derivatives containing fluorene groups
KR20100065503A (en) Aryl amine derivative and organic electroluminescence device using the same
CN112479976A (en) Organic compound containing benzoanthracene, preparation method and application thereof
JP2002053533A (en) Arylamine compound
WO2010027039A1 (en) Novel 1,3,5-tris(diarylamino)benzene and use thereof
EP1300390A1 (en) Novel triphenylamines and use thereof
WO2004083161A1 (en) Novel 1,3,5-tris(arylamino)benzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013