JP2001113159A - Method for manufacturing particulate of organic compound - Google Patents

Method for manufacturing particulate of organic compound

Info

Publication number
JP2001113159A
JP2001113159A JP29224499A JP29224499A JP2001113159A JP 2001113159 A JP2001113159 A JP 2001113159A JP 29224499 A JP29224499 A JP 29224499A JP 29224499 A JP29224499 A JP 29224499A JP 2001113159 A JP2001113159 A JP 2001113159A
Authority
JP
Japan
Prior art keywords
organic compound
fine particles
laser
particulates
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29224499A
Other languages
Japanese (ja)
Other versions
JP4457439B2 (en
Inventor
Hiroshi Masuhara
宏 増原
Takeshi Asahi
剛 朝日
Norimasa Fukazawa
憲正 深澤
Tatsugo Maeda
龍吾 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP29224499A priority Critical patent/JP4457439B2/en
Publication of JP2001113159A publication Critical patent/JP2001113159A/en
Application granted granted Critical
Publication of JP4457439B2 publication Critical patent/JP4457439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0002Grinding; Milling with solid grinding or milling assistants

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing particulates of an organic compound which yields the particulates of this organic compound by dispersing the organic compound into a solvent, then irradiating the organic compound with a laser beam. SOLUTION: This method prevents the inclusion of impurities into the particulates in forming the particulates, does not require a special large-sized container and is therefore capable of easily and efficiently manufacturing the particulates of the organic compound of various kinds and sizes. There is no flocculation of the manufactured particulates and the dispersibility thereof may be improved. The particulates may be formed with relatively low energy of about 1.5 J/m2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機化合物の微粒
子の製造方法に関し、更に詳しくは、特殊な大型の容器
を必要とせず、微粒子化に際して不純物の混入がなく、
比較的低いエネルギーで微粒子化することができる有機
化合物の微粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine particles of an organic compound, and more particularly, to a method for producing fine particles without the need for a special large container and no contamination during the formation of fine particles.
The present invention relates to a method for producing fine particles of an organic compound which can be finely divided with relatively low energy.

【0002】[0002]

【従来の技術】物質を微粒子化(あるいは粉体化)する
と比表面積が増大して化学的に著しく高い活性を示すこ
とが知られている。例えば、CdSのような化合物から
なる半導体超微粒子では、粒径が小さくなるに従って、
バンド構造が離散、吸収端が高エネルギー側へシフトす
るなどの量子サイズ効果が現れることが知られている。
これらの微粒子物質は、バルクとは異なる興味ある各種
特性を有し、機能性材料としての応用が期待される。
2. Description of the Related Art It is known that, when a substance is made finer (or powdered), its specific surface area is increased to exhibit a significantly higher activity chemically. For example, in semiconductor ultrafine particles made of a compound such as CdS, as the particle size becomes smaller,
It is known that quantum size effects such as a discrete band structure and a shift of the absorption edge to the higher energy side appear.
These fine particles have various interesting properties different from those of bulk, and are expected to be applied as functional materials.

【0003】既に金属または無機化合物の微粒子につい
ては、磁性材料、半導体材料、センサー材料、焼結材料
等として有用であることが知られており、これら微粒子
の応用、及びその製造方法についての技術開発が進めら
れている。
[0003] Fine particles of metal or inorganic compounds are already known to be useful as magnetic materials, semiconductor materials, sensor materials, sintered materials, and the like. Is being promoted.

【0004】一方、有機物質についても、微粒子化によ
る比表面積の増大による化学的活性の向上、電子状態の
変化、分散安定性の向上等、様々な興味深い特性が期待
され、また、有機色素化合物の微粒子化は、顔料化技術
として工業的に非常に重要である。そこで、有機化合物
の微粒子化に関する技術開発が求められているが、金属
あるいは無機物・セラミックスの微粒子に比べてはるか
に遅れているのが現状である。
On the other hand, organic substances are expected to have various interesting properties such as improvement in chemical activity due to increase in specific surface area due to fine particles, change in electronic state, improvement in dispersion stability, and the like. Micronization is industrially very important as a pigmentation technique. Therefore, there is a demand for the development of technology for fine particles of organic compounds, but the current situation is far behind that of fine particles of metals or inorganic substances / ceramics.

【0005】一般には有機化合物の微粒子化法として、
ボールミル等による磨砕法が公知であるが、この方法で
は、磨砕助剤や、磨砕に用いるボールの金属等の不純物
が混入し、これらを取り除く作業が必要であるという欠
点がある。また、化合物の溶液を貧溶媒中に注入して析
出させることにより微細化するという方法が知られてい
るが、溶液濃度や注入条件の細かい調整が必要であり、
廃液の処理も問題となる。
[0005] Generally, as a method of forming fine particles of an organic compound,
A grinding method using a ball mill or the like is known, but this method has a drawback that a grinding aid or impurities such as metal of a ball used for grinding are mixed in, and it is necessary to remove the impurities. In addition, a method of injecting a solution of the compound into a poor solvent to precipitate the solution is known, but fine adjustment of the solution concentration and the injection conditions is required,
Disposal of waste liquid is also a problem.

【0006】金属あるいは無機化合物の微粒子化方法と
して、不活性ガス雰囲気中で加熱蒸発させるガス中蒸発
法が広く知られている。このガス中蒸発法によると、加
熱により原子は蒸発し、これが雰囲気不活性ガスにより
冷却されて凝縮することにより、空間に微粒子が生成す
る。不純物が混入しないこと、不活性ガスの導入圧を調
整することにより微粒子サイズの制御性があることか
ら、有効な微粒子調製法とされている。
As a method for forming fine particles of a metal or an inorganic compound, a gas evaporation method of heating and evaporating in an inert gas atmosphere is widely known. According to the in-gas evaporation method, atoms evaporate by heating, and are cooled and condensed by an inert gas, thereby generating fine particles in a space. It is considered to be an effective method for preparing fine particles because it does not contain impurities and has a controllability of fine particle size by adjusting the introduction pressure of an inert gas.

【0007】有機化合物についても同様の手法が適用さ
れ、特開昭62−106833号公報、特開昭63−3
9631号公報に開示されている。しかしながら、有機
化合物は一般に熱的に不安定であるため、この方法を適
用できる化合物が限定されるという欠点がある。また、
不活性ガスを導入して、その圧力の調整が可能である特
殊な容器を必要とする。
[0007] A similar method is applied to an organic compound, as disclosed in JP-A-62-106833 and JP-A-63-3106.
9631. However, since organic compounds are generally thermally unstable, there is a drawback that compounds to which this method can be applied are limited. Also,
It requires a special vessel into which an inert gas can be introduced and whose pressure can be adjusted.

【0008】また、ガス中蒸発法の改良法として、試料
に高強度のレーザー光を照射して瞬間的に加熱蒸発さ
せ、微粒子化する方法も金属など無機化合物について知
られている。この方法では、試料の加熱時間が短くな
り、粒径分布も狭い良好な微粒子が得られるが、有機化
合物については、やはり熱安定性の問題を解決できず、
種々の有機化合物に対して適用することは困難である。
As a method of improving the gas evaporation method, a method of irradiating a sample with a high-intensity laser beam to instantaneously heat and evaporate the sample to form fine particles has been known for inorganic compounds such as metals. In this method, the heating time of the sample is shortened, and good fine particles having a narrow particle size distribution can be obtained. However, with respect to organic compounds, the problem of thermal stability cannot be solved.
It is difficult to apply to various organic compounds.

【0009】所定圧の反応容器中に原料ガスを導入し、
これにレーザー光を照射して加熱し、反応あるいは焼結
させて微粒子を製造する方法も知られている。この方法
の場合、原料をガスで供給する必要があり、やはり有機
化合物の場合には、適用可能な試料の制限が大きい。一
般に、ガスを用いる方法では、他の方法に比べて、より
小さい微粒子の作成が可能と考えられているが、目的の
微粒子を大量に作成することは困難であり、また、生成
した微粒子の回収が困難であるという欠点を有する。
A raw material gas is introduced into a reaction vessel having a predetermined pressure,
There is also known a method in which fine particles are produced by irradiating this with a laser beam, heating and reacting or sintering. In the case of this method, the raw material needs to be supplied as a gas, and in the case of an organic compound, the applicable sample is largely limited. In general, it is considered that a method using gas can produce smaller fine particles than other methods, but it is difficult to produce a large amount of target fine particles. Is difficult.

【0010】特開昭62−83055号公報には、不活
性ガスを充填した密閉容器中で固形材料を回転させつ
つ、この表面にレーザー光を照射して該固形材料を粉砕
する方法が開示されている。この方法では、不純物の混
入が無く、固形材料を効率良く粉砕でき、また、粉砕さ
れて生成した微粒子が容器中に堆積するので、その回収
も容易である。しかしながら、この方法では、特別な密
閉容器が必要であり、また、しばしば調製した微粒子が
再凝集して粒子の融合や粗大化が起こりやすく、一度集
めた微粒子を再び個々の粒子にまで完全に分散させるこ
とは困難である。
Japanese Patent Application Laid-Open No. 62-83055 discloses a method in which a solid material is rotated in a closed container filled with an inert gas, and the surface is irradiated with laser light to grind the solid material. ing. According to this method, the solid material can be efficiently pulverized without mixing of impurities, and the fine particles generated by the pulverization accumulate in the container, so that the collection is easy. However, this method requires a special closed container, and the prepared fine particles are often re-agglomerated, which tends to cause coalescence and coarsening of the particles, and once collected fine particles are completely dispersed again into individual particles. It is difficult to do that.

【0011】特開平4−63203号公報には、固体試
料を液層中に保持し、高密度のレーザー光を照射するこ
とにより、固体試料を蒸発、プラズマ化し、液層中で急
激に冷却することによって超微粒子の懸濁液を作成させ
る方法が開示されている。この方法では、微粒子の凝集
を抑制することができるが、試料を蒸発・プラズマ化さ
せて微粒子化するため高強度のレーザー光を照射する必
要がある。この方法を有機化合物に適用して、蒸発、プ
ラズマ化させるために、高強度のレーザー光を照射する
と、レーザーアブレーションと呼ばれる現象が起こり、
化合物が分解してしまう可能性が大きい。また、これら
液層中に粉砕用の固体材料を保持してレーザー光を照射
する方法では、粉砕用のターゲットを駆動モーターに取
り付けているため、大きな固体原料が必要となる。
Japanese Patent Application Laid-Open No. 4-63203 discloses that a solid sample is held in a liquid layer and irradiated with a high-density laser beam to evaporate and solidify the solid sample and rapidly cool it in the liquid layer. Thus, a method for producing a suspension of ultrafine particles has been disclosed. In this method, aggregation of the fine particles can be suppressed, but it is necessary to irradiate a high-intensity laser beam in order to evaporate and plasmanize the sample to form fine particles. When this method is applied to an organic compound to evaporate and turn it into plasma, irradiation with high-intensity laser light causes a phenomenon called laser ablation.
There is a high possibility that the compound will decompose. In the method of irradiating a laser beam while holding a solid material for grinding in these liquid layers, a large solid raw material is required because the target for grinding is attached to the drive motor.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0012】このように、現在公知の技術の多くは、金
属やセラミックスなど無機化合物の微粒子化方法として
優れた利点を有するが、材料の機械的強度や熱安定性等
の問題から、そのまま有機化合物へ応用することはでき
ない。このため、従来はより微細な任意の種類の有機化
合物の微粒子を製造することは極めて困難であった。
As described above, many of the currently known techniques have an excellent advantage as a method for forming fine particles of inorganic compounds such as metals and ceramics. However, due to problems such as mechanical strength and thermal stability of the materials, organic compounds can be used as they are. It cannot be applied to For this reason, conventionally, it has been extremely difficult to produce finer fine particles of any kind of organic compound.

【0013】本発明が解決しようとする課題は、従来法
では調製が困難であった種々の有機化合物の十〜数百nm
サイズの微粒子を、容易に、かつ、効率良く製造する方
法を提供することにある。また、本発明が解決しようと
する第2の課題は、種々の有機化合物の十〜数百nmサイ
ズの微粒子が分散した微粒子分散液を提供することにあ
る。さらに、本発明が解決しようとする第3の課題は、
分散性が向上した微粒子の製造方法を提供することにあ
る。
The problem to be solved by the present invention is that various organic compounds, which have been difficult to prepare by the conventional method, have tens to hundreds of nm.
An object of the present invention is to provide a method for easily and efficiently producing fine particles having a size. A second object of the present invention is to provide a fine particle dispersion in which fine particles of various organic compounds having a size of tens to several hundreds of nm are dispersed. Further, a third problem to be solved by the present invention is:
An object of the present invention is to provide a method for producing fine particles having improved dispersibility.

【0014】[0014]

【課題を解決するための手段】本発明者らは、鋭意努力
した結果、有機化合物をその非溶媒中に分散し、この溶
液にレーザー光を照射することによって該有機化合物の
微粒子を製造する方法を見出し、本発明を完成させるに
至った。
Means for Solving the Problems As a result of the present inventors' earnest efforts, a method for producing fine particles of an organic compound by dispersing an organic compound in a non-solvent and irradiating the solution with a laser beam. And completed the present invention.

【0015】即ち、本発明は上記課題を解決するため
に、溶媒中に分散させた有機化合物にレーザー光を照射
することを特徴とする有機化合物の微粒子の製造方法を
提供する。
That is, in order to solve the above-mentioned problems, the present invention provides a method for producing fine particles of an organic compound, which comprises irradiating a laser beam to an organic compound dispersed in a solvent.

【0016】[0016]

【発明の実施の形態】本発明の製造方法によって微粒子
化可能な有機化合物としては、該化合物が波長190〜
3000nmの間に光吸収を示し、常温で固体の有機化合
物が挙げられる。そのような有機化合物としては、例え
ば、ナフタレン、アントラセン、フェナントレン、ピレ
ン、ペリレンの如き芳香族炭化化合物とその誘導体;フ
タロシアニン、キナクリドンの如き顔料などである。ま
た、分散媒を選択することにより、水やアルコールに溶
解性の各種色素も対象となり得る。
BEST MODE FOR CARRYING OUT THE INVENTION As an organic compound which can be made into fine particles by the production method of the present invention, the compound has a wavelength of 190 to 190.
Organic compounds which exhibit light absorption between 3000 nm and are solid at room temperature can be mentioned. Examples of such organic compounds include aromatic carbonized compounds such as naphthalene, anthracene, phenanthrene, pyrene, and perylene and derivatives thereof; and pigments such as phthalocyanine and quinacridone. Further, by selecting a dispersion medium, various dyes soluble in water or alcohol can be targeted.

【0017】本発明の製造方法を適用するに際し、溶媒
中に分散させる有機化合物は、合成後の粗製粉末など、
任意のサイズ・形状の粉末固体で良いが、微粒子化の効
率が向上するので、予め、平均粒径1〜100μmの範
囲に粉砕しておくことが好ましい。
In applying the production method of the present invention, the organic compound to be dispersed in a solvent is, for example, a crude powder after synthesis.
A powdered solid of any size and shape may be used, but it is preferable to previously pulverize the powder to an average particle diameter in the range of 1 to 100 μm, since the efficiency of fine particle formation is improved.

【0018】溶媒中に有機化合物を分散させる方法とし
ては、分散安定剤を用いても良いが、不純物として残留
する恐れがあるので、純度の高い微粒子を必要とする場
合には好ましくない。本発明の製造方法では、レーザー
光照射によって有機化合物の分散性を向上させることが
できるので、むしろ、何らかの攪拌装置を用いて、液を
攪拌して達成される程度の分散状態で充分である。
As a method of dispersing the organic compound in the solvent, a dispersion stabilizer may be used, but it is not preferable when fine particles of high purity are required because it may remain as impurities. In the production method of the present invention, since the dispersibility of the organic compound can be improved by laser light irradiation, a dispersion state that can be achieved by stirring the liquid using a certain stirring device is sufficient.

【0019】有機化合物を分散させる溶媒としては、、
例えば、水、アルコール等を用いることができるが、こ
れは、微粒子化する有機化合物が溶解しない溶媒を選択
して用いれば良い。ただし、ベンゼンやトルエン等、化
学構造中に芳香環を有する溶媒に分散させた場合、例え
ば、248nmのエキシマーレーザーを照射すると、溶媒
自身がレーザー光を吸収してしまうので、好ましくな
い。分散溶媒の選択は、微粒子化すべき有機化合物が溶
解しない溶媒で、かつ、照射するレーザー光の波長にお
いて吸収を示さないものを選択すべきである。
As the solvent for dispersing the organic compound,
For example, water, alcohol, or the like can be used, but it is only necessary to select and use a solvent that does not dissolve the organic compound to be formed into fine particles. However, when dispersed in a solvent having an aromatic ring in the chemical structure such as benzene or toluene, irradiation with an excimer laser of 248 nm, for example, is not preferable because the solvent itself absorbs laser light. The choice of the dispersion solvent should be a solvent that does not dissolve the organic compound to be formed into fine particles and does not show absorption at the wavelength of the laser light to be irradiated.

【0020】非溶媒中に分散させた有機化合物に吸収波
長のレーザー光を照射すると、該有機化合物の粉末が光
を吸収し、光吸収部では急激に局所的な温度上昇が起こ
る。この光照射部の温度上昇は、レーザー光照射後瞬間
的に起こり、一方、光照射部周辺の温度上昇は熱伝導に
よって起こるため、比較的大きな粉末原料を用いた場合
には、光吸収部と光非吸収部で急峻な温度差が生じる。
このため、粉末のレーザー光照射部とその周辺部に著し
い内部応力が生じて固体粉末にクラックが発生し破砕が
起こる。粉末がレーザー光の照射波長に強い吸収を有す
る場合には、光吸収は主として粉末の表面で起こり、光
照射表面と内部に温度差が生じるので、この場合にも粉
末に内部歪みが生じて破砕が進行する。破砕が進み、原
料粉末が小さくなってレーザー光が粉末全体でほぼ均一
に吸収される場合でも、粉末表面が周囲の溶媒によって
冷却されるため、内部との間に温度分布が生じて応力が
発生し、破砕が達成される。
When an organic compound dispersed in a non-solvent is irradiated with a laser beam having an absorption wavelength, the powder of the organic compound absorbs the light, and a local temperature rise occurs sharply in the light absorbing portion. The temperature rise of the light irradiation part occurs instantaneously after laser light irradiation, while the temperature rise around the light irradiation part occurs due to heat conduction. A steep temperature difference occurs in the light non-absorbing portion.
For this reason, a remarkable internal stress is generated in the laser beam irradiated portion of the powder and its peripheral portion, so that the solid powder is cracked and crushed. If the powder has a strong absorption at the irradiation wavelength of the laser light, the light absorption mainly occurs on the surface of the powder, and a temperature difference occurs between the light irradiation surface and the inside. Progresses. Even if crushing progresses and the raw material powder becomes smaller and the laser light is absorbed almost uniformly throughout the powder, the surface of the powder is cooled by the surrounding solvent, creating a temperature distribution between the powder and the interior, causing stress. And crushing is achieved.

【0021】このように有機化合物の分散に用いる溶媒
は、単純に分散用に用いるだけでなく、粉末の冷却、生
成した微粒子の回収を容易にするほか、レーザー照射に
よって粉末に生じたクラックに浸透して破砕を促進する
等の役割を担っている。
As described above, the solvent used for dispersing the organic compound is used not only for simple dispersing but also for facilitating the cooling of the powder, the recovery of the generated fine particles, and the penetration into cracks formed in the powder by laser irradiation. It plays a role such as promoting crushing.

【0022】以上のように本発明の微粒子の製造方法
は、レーザー光照射によって溶媒中に分散した粉末内部
に急激な温度差を生じさせ、その結果、内部応力を誘起
して粉末を破砕し、該有機化合物の微粒子を得るという
方法である。従って、照射するレーザー光は、微粒子化
する粉末内部に熱による応力を生じさせる出力を有する
ものであれば良い。また、過剰な光強度での照射は、有
機化合物の分解、劣化を引き起こすので好ましくない。
As described above, according to the method for producing fine particles of the present invention, a sharp temperature difference is caused inside the powder dispersed in the solvent by laser light irradiation, and as a result, internal stress is induced to crush the powder, This is a method of obtaining fine particles of the organic compound. Therefore, the laser beam to be applied may be any laser beam as long as the laser beam has an output to generate stress due to heat inside the powder to be finely divided. Irradiation with excessive light intensity is not preferable because it causes decomposition and deterioration of the organic compound.

【0023】本発明の製造方法に用いるレーザー光とし
ては、紫外レーザー光、可視レーザー光、近赤外レーザ
ー光及び赤外レーザー光からなる群から微粒子化する有
機化合物の吸収波長に合わせて選択すればよい。紫外光
レーザーとしては、例えば、エキシマーレーザー(19
3nm、248nm、308nm、351nm)や窒素レーザー
(337nm)、YAGレーザーの3倍波及び4倍波(3
55nm、266nm)などが挙げられる。可視光レーザー
としては、例えば、YAGレーザーの2倍波(532n
m)、Arイオンレーザー(488nm又は514n
m)、、その他色素レーザーなどが挙げられる。近赤外
レーザー光としては、例えば、種々の半導体レーザー、
チタンサファイヤレーザー、YAGレーザー、ガラスレ
ーザー、などが挙げられる。また、これらのレーザーと
光パラメトリック発振器を用いて、紫外から赤外領域の
任意の波長の光を発振させて用いても良い。
The laser light used in the production method of the present invention is selected from the group consisting of ultraviolet laser light, visible laser light, near-infrared laser light and infrared laser light according to the absorption wavelength of the organic compound to be finely divided. I just need. As an ultraviolet light laser, for example, an excimer laser (19
3 nm, 248 nm, 308 nm, 351 nm), nitrogen laser (337 nm), and third and fourth harmonics (3
55 nm, 266 nm). As a visible light laser, for example, a second harmonic (532n) of a YAG laser is used.
m), Ar ion laser (488 nm or 514 n)
m), and other dye lasers. As near-infrared laser light, for example, various semiconductor lasers,
Titanium sapphire laser, YAG laser, glass laser and the like can be mentioned. Further, light of any wavelength in the ultraviolet to infrared region may be oscillated using these lasers and an optical parametric oscillator.

【0024】レーザー光の照射時間は、数十フェムト〜
数百ナノ秒程度の短時間パルスレーザーを繰り返し照射
することが望ましい。これよりも長時間の照射は、原料
粉末に溶融や熱分解等の熱損傷を与える傾向にあるので
好ましくない。
The irradiation time of the laser beam is several tens femto
It is desirable to repeatedly irradiate a pulse laser for a short time of about several hundred nanoseconds. Irradiation for a longer time than this is not preferable because it tends to cause thermal damage such as melting and thermal decomposition to the raw material powder.

【0025】照射するレーザー光波長の選択にあたって
は、例えば、「有機化合物のUV−VIS図(第2版)
(UV-VIS Atlas of Organic Compounds 2nd ed)」(V
CH社、1992年発行)、「JOEMハンドブック2
ダイオードレーザーに対する染料の吸収スペクトル
(Absorption Spectra of Dyes for Diode Lasers JOEM
Handbook 2)」(ぶんしん出版社、1990年発行)又
は「芳香族化合物の蛍光スペクトルのハンドブック(第
2版)(Handbook of Fluorescence Spectra of Aromat
ic Molecules 2nd ed.)」(アカデミック・プレス(Ac
ademic Press)社、1971年発行)などのスペクトル
集を参考にすれば良い。
When selecting the wavelength of the laser beam to be irradiated, for example, a UV-VIS diagram of an organic compound (second edition)
(UV-VIS Atlas of Organic Compounds 2nd ed) "(V
CH Company, published in 1992), “JOEM Handbook 2
Absorption Spectra of Dyes for Diode Lasers JOEM
Handbook 2) "(published by Bunshin Publishing Company, 1990) or" Handbook of Fluorescence Spectra of Aromat "(second edition)
ic Molecules 2nd ed.) ”(Academic Press (Ac
ademic Press), published in 1971).

【0026】[0026]

【実施例】以下、実施例を用いて、本発明を更に詳細に
説明するが、本発明は以下の実施例の範囲に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

【0027】<実施例1>ペリレン結晶を乳鉢上で磨砕
して数μmの粉末とした後、水中に分散させ、ガラス製
容器中でマグネチックスターラーを用いて攪拌しながら
レーザー光(351nm、1.5J/m2、パルス幅30n
s)を照射した。5Hzで50分間の照射により、〜15
0±100nmのペリレン微粒子が安定に分散した微粒子
分散液を得た。このようにして得たペリレン微粒子の粒
度分布を測定し、その結果を図2に示した。
Example 1 A perylene crystal was ground in a mortar to obtain a powder of several μm, dispersed in water, and stirred with a magnetic stirrer in a glass container with laser light (351 nm, 1.5J / m 2 , pulse width 30n
s). By irradiation at 5 Hz for 50 minutes, ~ 15
A fine particle dispersion in which fine particles of perylene of 0 ± 100 nm were stably dispersed was obtained. The particle size distribution of the perylene fine particles thus obtained was measured, and the results are shown in FIG.

【0028】<実施例2>フタロシアニンの粉末を乳鉢
上で磨砕して数μmの粉末とした後、水中に分散させ、
ガラス製容器中でマグネチックスターラーを用いて攪拌
しながらレーザー光(351nm、〜1.5J/m2、パル
ス幅30ns)を照射した。5Hzで10分程度の照射に
より、液の色が均一な青色に変化し、フタロシアニン粒
子が安定に分散した微粒子分散液を得た。
Example 2 A powder of phthalocyanine was ground in a mortar to a powder of several μm, and then dispersed in water.
Laser light (351 nm, 1.51.5 J / m 2 , pulse width 30 ns) was irradiated while stirring with a magnetic stirrer in a glass container. By irradiation at 5 Hz for about 10 minutes, the color of the liquid changed to a uniform blue color, and a fine particle dispersion in which phthalocyanine particles were stably dispersed was obtained.

【0029】<実施例3>フタロシアニンの粉末を乳鉢
上で磨砕して数μmの粉末とした後、水中に分散させ、
ガラス製容器中でマグネチックスターラーを用いて攪拌
しながらレーザー光(532nm、〜0.8J/m2、パル
ス幅35ns)を照射した。5Hzで10分程度の照射に
より、液の色が均一な青色に変化し、フタロシアニン粒
子が安定に分散した微粒子分散液を得た。
Example 3 A powder of phthalocyanine was ground in a mortar to a powder of several μm, and then dispersed in water.
Laser light (532 nm, -0.8 J / m 2 , pulse width 35 ns) was irradiated while stirring with a magnetic stirrer in a glass container. By irradiation at 5 Hz for about 10 minutes, the color of the liquid changed to a uniform blue color, and a fine particle dispersion in which phthalocyanine particles were stably dispersed was obtained.

【0030】[0030]

【発明の効果】本発明の製造方法は、特殊な大型の容器
を必要とせず、また、微粒子化に際して不純物の混入が
なく、しかも、1.5J/m2程度の比較的低いエネルギ
ーで微粒子化することができる。従って、本発明の製造
方法によれば、簡便で効率良く、種々の種類・大きさの
有機化合物の微粒子を製造することができる。また、本
発明の製造方法で得られる微粒子は、凝集が少なく、分
散性に優れている。
According to the production method of the present invention, a special large container is not required, no impurities are mixed in the fine particles, and the fine particles are formed with a relatively low energy of about 1.5 J / m 2 . can do. Therefore, according to the production method of the present invention, various kinds and sizes of organic compound fine particles can be produced simply and efficiently. Further, the fine particles obtained by the production method of the present invention have little aggregation and are excellent in dispersibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた有機化合物の微粒子を製造する
ために用いた製造装置の断面図である。
FIG. 1 is a cross-sectional view of a manufacturing apparatus used for manufacturing fine particles of an organic compound used in Examples.

【符号の説明】[Explanation of symbols]

1 レーザー光 2 有機化合物の分散液 3 ガラス容器 4 攪拌装置 5 スターラーチップ Reference Signs List 1 laser light 2 organic compound dispersion 3 glass container 4 stirrer 5 stirrer chip

【図2】本発明の実施例1で得たペリレン微粒子の粒径
分布を示した図表である。なお、縦軸は、分率(%)
を、横軸は、粒径(μm)である。
FIG. 2 is a table showing a particle size distribution of perylene fine particles obtained in Example 1 of the present invention. The vertical axis is the fraction (%)
The horizontal axis represents the particle size (μm).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D067 CG06 GA07 GA20 4G075 AA27 CA32 CA33 CA34 CA36 CA51 EC11 4H006 AA02 AD15 AD17 BA95 BB14 BB31 BJ50 FC54  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D067 CG06 GA07 GA20 4G075 AA27 CA32 CA33 CA34 CA36 CA51 EC11 4H006 AA02 AD15 AD17 BA95 BB14 BB31 BJ50 FC54

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 溶媒中に分散させた有機化合物にレーザ
ー光を照射することを特徴とする有機化合物の微粒子の
製造方法。
1. A method for producing fine particles of an organic compound, comprising irradiating the organic compound dispersed in a solvent with a laser beam.
【請求項2】 平均粐径が1〜100μmとなる範囲に
有機化合物を溶媒中に分散させた後、レーザー光を照射
する請求項1記載の微粒子の製造方法。
2. The method for producing fine particles according to claim 1, wherein the organic compound is dispersed in a solvent so as to have an average diameter of 1 to 100 μm, and then a laser beam is irradiated.
【請求項3】 有機化合物の分散液を攪拌装置を用いて
攪拌しながら、レーザー光を照射する請求項1又は2記
載の微粒子の製造方法。
3. The method for producing fine particles according to claim 1, wherein the dispersion of the organic compound is irradiated with laser light while being stirred using a stirrer.
【請求項4】 レーザー光として、紫外光、可視光、近
赤外、又は赤外光のレーザーを用いる請求項1又は2記
載の微粒子の製造方法。
4. The method for producing fine particles according to claim 1, wherein a laser of ultraviolet light, visible light, near-infrared light or infrared light is used as the laser light.
【請求項5】 有機化合物がその構造中に二重結合を有
する化合物である請求項1、2又は3記載の微粒子の製
造方法。
5. The method for producing fine particles according to claim 1, wherein the organic compound is a compound having a double bond in its structure.
【請求項6】 有機化合物が有機顔料である請求項1、
2又は3記載の微粒子の製造方法。
6. The method according to claim 1, wherein the organic compound is an organic pigment.
4. The method for producing fine particles according to 2 or 3.
【請求項7】 溶媒が水又はアルコールである請求項4
又は5記載の微粒子の製造方法。
7. The method according to claim 4, wherein the solvent is water or alcohol.
Or the method for producing fine particles according to 5.
JP29224499A 1999-10-14 1999-10-14 Method for producing fine particles of organic compound Expired - Lifetime JP4457439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29224499A JP4457439B2 (en) 1999-10-14 1999-10-14 Method for producing fine particles of organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29224499A JP4457439B2 (en) 1999-10-14 1999-10-14 Method for producing fine particles of organic compound

Publications (2)

Publication Number Publication Date
JP2001113159A true JP2001113159A (en) 2001-04-24
JP4457439B2 JP4457439B2 (en) 2010-04-28

Family

ID=17779331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29224499A Expired - Lifetime JP4457439B2 (en) 1999-10-14 1999-10-14 Method for producing fine particles of organic compound

Country Status (1)

Country Link
JP (1) JP4457439B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047841A (en) * 2001-08-02 2003-02-18 Electron Kiki Kk Surface stripping and cleaning method using ultra short pulse laser and device therefor
EP1325944A2 (en) 2001-12-18 2003-07-09 Toda Kogyo Corporation Fine organic pigment particles, dispersion containing said fine particles and process for producing the fine organic pigment particles
WO2004020086A1 (en) * 2002-08-30 2004-03-11 Hamamatsu Photonics K.K. Process for producing nanoparticle, apparatus therefor and method of storing nanoparticle
WO2004080586A1 (en) * 2003-03-07 2004-09-23 Hamamatsu Photonics K.K. Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
WO2005049213A1 (en) 2003-11-20 2005-06-02 Hamamatsu Photonics K.K. Microparticle, process for producing microparticle and production apparatus
WO2005058480A2 (en) * 2003-12-18 2005-06-30 Hamamatsu Photonics K.K. Particle and particle manufacturing method and apparatus
JP2005279328A (en) * 2004-03-26 2005-10-13 Hamamatsu Photonics Kk Determination method for finely pulverizing condition, determination device, production method for particulate and production device
JP2005334782A (en) * 2004-05-27 2005-12-08 Hamamatsu Photonics Kk Device and method for preparing particulate
JP2006152032A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Method for producing phosphor nanoparticle
CN100344362C (en) * 2003-03-07 2007-10-24 浜松光子学株式会社 Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
WO2007132852A1 (en) 2006-05-15 2007-11-22 Ebara Corporation Poorly-water-soluble pharmaceutical agent
JP2007301534A (en) * 2006-05-15 2007-11-22 Ebara Corp Atomizer
WO2007132828A1 (en) * 2006-05-15 2007-11-22 Osaka University Method of producing nanoparticle dispersion of medicinal component
EP1939140A1 (en) * 2005-08-10 2008-07-02 Osaka University Process for producing fullerene dispersion liquid, and fullerene dispersion liquid
WO2010073388A1 (en) * 2008-12-26 2010-07-01 株式会社荏原製作所 Laser ablation-in-liquid system and method of subdividing solid material
US7838843B2 (en) 2005-03-14 2010-11-23 Hamamatsu Photonics K.K. Carbon nano tube processing method, processing apparatus, and carbon nano tube dispersion liquid, carbon nano tube powder
JP2010271538A (en) * 2009-05-21 2010-12-02 Ricoh Co Ltd Toner and developer
WO2011111794A1 (en) * 2010-03-11 2011-09-15 浜松ホトニクス株式会社 Fine-particle dispersion liquid manufacturing method and fine-particle dispersion liquid manufacturing apparatus
US8445019B2 (en) 2007-09-26 2013-05-21 Hamamatsu Photonics K.K. Microparticle dispersion liquid manufacturing method and microparticle dispersion liquid manufacturing apparatus
US8512436B2 (en) 2004-09-15 2013-08-20 Kyoto University Metal fine particles and manufacturing method therefor
CN108057406A (en) * 2017-12-14 2018-05-22 中国科学院长春光学精密机械与物理研究所 A kind of phthalocyanin nano material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195751A (en) * 2015-10-16 2015-12-30 南京理工大学 Method for preparing high-purity anti-oxidization base metal nano particles with liquid-phase laser erosion method

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047841A (en) * 2001-08-02 2003-02-18 Electron Kiki Kk Surface stripping and cleaning method using ultra short pulse laser and device therefor
EP1325944A2 (en) 2001-12-18 2003-07-09 Toda Kogyo Corporation Fine organic pigment particles, dispersion containing said fine particles and process for producing the fine organic pigment particles
WO2004020086A1 (en) * 2002-08-30 2004-03-11 Hamamatsu Photonics K.K. Process for producing nanoparticle, apparatus therefor and method of storing nanoparticle
US7922786B2 (en) 2002-08-30 2011-04-12 Hamamatsu Photonics K.K. Nanoparticle production method and production device and nanoparticle preservation method
CN1305558C (en) * 2002-08-30 2007-03-21 浜松光子学株式会社 Process for producing nanoparticle, apparatus therefor and method of storing nanoparticle
EP1602404A1 (en) * 2003-03-07 2005-12-07 Hamamatsu Photonics K.K. Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
WO2004080586A1 (en) * 2003-03-07 2004-09-23 Hamamatsu Photonics K.K. Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
CN100344362C (en) * 2003-03-07 2007-10-24 浜松光子学株式会社 Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
EP1602404A4 (en) * 2003-03-07 2006-11-15 Hamamatsu Photonics Kk Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
JPWO2005049213A1 (en) * 2003-11-20 2007-11-29 浜松ホトニクス株式会社 Fine particles, method for producing fine particles, and production apparatus
US7938344B2 (en) 2003-11-20 2011-05-10 Hamamatsu Photonics K.K. Microparticles, microparticle production method, and microparticle production apparatus
JP4545690B2 (en) * 2003-11-20 2010-09-15 浜松ホトニクス株式会社 Fine particle production method and production apparatus
CN100423847C (en) * 2003-11-20 2008-10-08 浜松光子学株式会社 Microparticle, process for producing microparticle and production apparatus
WO2005049213A1 (en) 2003-11-20 2005-06-02 Hamamatsu Photonics K.K. Microparticle, process for producing microparticle and production apparatus
JP2005177596A (en) * 2003-12-18 2005-07-07 Hamamatsu Photonics Kk Particulate, and method and apparatus for manufacturing the same
JP4482322B2 (en) * 2003-12-18 2010-06-16 浜松ホトニクス株式会社 Fine particle production method and production apparatus
WO2005058480A2 (en) * 2003-12-18 2005-06-30 Hamamatsu Photonics K.K. Particle and particle manufacturing method and apparatus
WO2005058480A3 (en) * 2003-12-18 2005-09-01 Hamamatsu Photonics Kk Particle and particle manufacturing method and apparatus
US7597277B2 (en) 2003-12-18 2009-10-06 Hamamatsu Photonics K.K. Microparticles, microparticle production method, and microparticle production apparatus
JP4593144B2 (en) * 2004-03-26 2010-12-08 浜松ホトニクス株式会社 Method and apparatus for determining atomization conditions, and method and apparatus for producing fine particles
JP2005279328A (en) * 2004-03-26 2005-10-13 Hamamatsu Photonics Kk Determination method for finely pulverizing condition, determination device, production method for particulate and production device
JP4717376B2 (en) * 2004-05-27 2011-07-06 浜松ホトニクス株式会社 Fine particle production method and production apparatus
JP2005334782A (en) * 2004-05-27 2005-12-08 Hamamatsu Photonics Kk Device and method for preparing particulate
KR101317067B1 (en) * 2004-09-15 2013-10-11 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Process for producing metal, microparticle
US8512436B2 (en) 2004-09-15 2013-08-20 Kyoto University Metal fine particles and manufacturing method therefor
JP2006152032A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Method for producing phosphor nanoparticle
US7838843B2 (en) 2005-03-14 2010-11-23 Hamamatsu Photonics K.K. Carbon nano tube processing method, processing apparatus, and carbon nano tube dispersion liquid, carbon nano tube powder
EP1939140A4 (en) * 2005-08-10 2009-05-27 Absize Inc Process for producing fullerene dispersion liquid, and fullerene dispersion liquid
EP1939140A1 (en) * 2005-08-10 2008-07-02 Osaka University Process for producing fullerene dispersion liquid, and fullerene dispersion liquid
US7900855B2 (en) 2005-08-10 2011-03-08 Absize, Inc. Method for producing fullerene suspension
WO2007132852A1 (en) 2006-05-15 2007-11-22 Ebara Corporation Poorly-water-soluble pharmaceutical agent
US8399024B2 (en) 2006-05-15 2013-03-19 Ebara Corporation Water-insoluble medicine
US7815426B2 (en) 2006-05-15 2010-10-19 Absize Inc. Apparatus for forming ultrafine particles
US7597278B2 (en) 2006-05-15 2009-10-06 Osaka University Method of producing medicinal nanoparticle suspension
JP2007306950A (en) * 2006-05-15 2007-11-29 Osaka Univ Method of producing dispersion liquid with nanoparticulate medicinal component
WO2007132828A1 (en) * 2006-05-15 2007-11-22 Osaka University Method of producing nanoparticle dispersion of medicinal component
JP2007301534A (en) * 2006-05-15 2007-11-22 Ebara Corp Atomizer
US8445019B2 (en) 2007-09-26 2013-05-21 Hamamatsu Photonics K.K. Microparticle dispersion liquid manufacturing method and microparticle dispersion liquid manufacturing apparatus
US8563044B2 (en) 2007-09-26 2013-10-22 Hamamatsu Photonics K.K. Microparticle dispersion liquid manufacturing method and microparticle dispersion liquid manufacturing apparatus
WO2010073388A1 (en) * 2008-12-26 2010-07-01 株式会社荏原製作所 Laser ablation-in-liquid system and method of subdividing solid material
JP2010271538A (en) * 2009-05-21 2010-12-02 Ricoh Co Ltd Toner and developer
CN102791368A (en) * 2010-03-11 2012-11-21 浜松光子学株式会社 Fine-particle dispersion liquid manufacturing method and fine-particle dispersion liquid manufacturing apparatus
WO2011111794A1 (en) * 2010-03-11 2011-09-15 浜松ホトニクス株式会社 Fine-particle dispersion liquid manufacturing method and fine-particle dispersion liquid manufacturing apparatus
JP5677409B2 (en) * 2010-03-11 2015-02-25 浜松ホトニクス株式会社 Fine particle dispersion production method and fine particle dispersion production apparatus
US9168504B2 (en) 2010-03-11 2015-10-27 Hamamatsu Photonics K.K. Fine-particle dispersion liquid manufacturing method and fine-particle dispersion liquid manufacturing apparatus
CN102791368B (en) * 2010-03-11 2015-11-25 浜松光子学株式会社 Micro-dispersed liquid manufacture method and micro-dispersed liquid manufacturing installation
CN108057406A (en) * 2017-12-14 2018-05-22 中国科学院长春光学精密机械与物理研究所 A kind of phthalocyanin nano material and preparation method thereof

Also Published As

Publication number Publication date
JP4457439B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4457439B2 (en) Method for producing fine particles of organic compound
JP4142675B2 (en) Method for producing fullerene dispersion
JP4643155B2 (en) Method for producing ultrafine particles of medicinal ingredients
JP5979394B2 (en) Method for producing spherical nanoparticles
JP4482322B2 (en) Fine particle production method and production apparatus
Klassen et al. Laser and electric arc synthesis of nanocrystalline scintillators
Gondal et al. Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation in liquids
Van Overschelde et al. Photo-fragmentation of selenium powder by Excimer laser ablation in liquids
Chubilleau et al. Laser fragmentation in liquid medium: A new way for the synthesis of PbTe nanoparticles
CN101528181A (en) Method of producing nanoparticle dispersion of medicinal component
CN108046223A (en) A kind of preparation method of quantum dot solution
Amin et al. Laser-assisted synthesis of ultra-small anatase TiO2 nanoparticles
Sugiyama et al. Size and phase control in quinacridone nanoparticle formation by laser ablation in water
Sugiyama et al. Formation of 10 nm-sized Oxo (phtalocyaninato) vanadium (IV) Particles by Femtosecond Laser Ablation in Water
Janbua et al. Direct synthesis and growth mechanism of metal molybdate (AMoO4; A= Ca and Ba) fine particles via the Mechanochemical method
Tay et al. Growth mechanism of spherical ZnO nanostructures synthesized via colloid chemistry
Ishikawa et al. Pulsed laser melting in liquid for crystalline spherical submicrometer particle fabrication–Mechanism, process control, and applications
Eroshova et al. Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media
Ye et al. Defect‐Rich MoSe2 2H/1T Hybrid Nanoparticles Prepared from Femtosecond Laser Ablation in Liquid and Their Enhanced Photothermal Conversion Efficiencies
Azadi et al. Effects of energy and hydrogen peroxide concentration on structural and optical properties of CuO nanosheets prepared by pulsed laser ablation
Hopp et al. Production of meloxicam suspension using pulsed laser ablation in liquid (PLAL) technique
Guo et al. Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses
Zheng et al. Stable, small, and water-soluble Cu-doped ZnS quantum dots prepared via femtosecond laser ablation
JP2010234218A (en) Manufacturing method and apparatus for organic compound nanoparticle dispersion solution
Gondal et al. A rapid and cost-effective laser based synthesis of high purity cadmium selenide quantum dots

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4457439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term