JP2001111388A - Multiple-tuned transformer - Google Patents

Multiple-tuned transformer

Info

Publication number
JP2001111388A
JP2001111388A JP29254899A JP29254899A JP2001111388A JP 2001111388 A JP2001111388 A JP 2001111388A JP 29254899 A JP29254899 A JP 29254899A JP 29254899 A JP29254899 A JP 29254899A JP 2001111388 A JP2001111388 A JP 2001111388A
Authority
JP
Japan
Prior art keywords
winding
tap
tuning
transformer
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29254899A
Other languages
Japanese (ja)
Other versions
JP3517166B2 (en
Inventor
Takahiro Abe
貴弘 阿部
Takeshi Tamura
健 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAGAMI EREKU KK
Original Assignee
SAGAMI EREKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAGAMI EREKU KK filed Critical SAGAMI EREKU KK
Priority to JP29254899A priority Critical patent/JP3517166B2/en
Publication of JP2001111388A publication Critical patent/JP2001111388A/en
Application granted granted Critical
Publication of JP3517166B2 publication Critical patent/JP3517166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superheterodyne Receivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multiple-turned transformer for uniformly suppressing image frequencies with a wide reception band by a small number of parts and simple circuit constitution. SOLUTION: An antenna turned transformer T1 is arranged at the input side, and a negative load turned transformer T2 is arranged at the output side. In the antenna tuned transformer T1, a primary input coil N1 for impedance matching and a primary tuned coil N2 with a tap (a) for turning are transformer-connected, and a variable capacitative element C and an additional capacitative element C1 are connected in parallel with the primary tuned coil N2 so that a primary resonance circuit can be formed. In the negative load tuned transformer T2, a connected coil N3 with a tap (b) and a secondary tuned coil N4 with a tap (c) are coiled so as to be shared, and the tap (b) is directly connected with the starting part of the winding of the secondary tuned coil N4, and the tap (c) is connected through an additional capacitative element C2 with the starting part of the winding of the connected coil N3. Then, a variable capacitative element C is connected with them so that a secondary resonance circuit can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンテナインピー
ダンスと高周波増幅器の入力インピーダンスとの整合を
とリ、受信能率を高くすると共に、受信波を選択する同
調回路とイメージ妨害波を抑圧するトラップ回路を兼ね
備えるスーパヘテロダイン受信機の高周波複同調トラン
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tuning circuit for selecting a received wave and a trap circuit for suppressing an image interference wave while improving the matching between the antenna impedance and the input impedance of the high-frequency amplifier. The present invention relates to a high-frequency double-tuned transformer of a superheterodyne receiver having a function.

【0002】[0002]

【発明が解決しようとする課題】周波数変換により生じ
るイメージ周波数はスーパヘテロダイン方式特有の妨害
波である。このイメージ周波数fimは受信波f1から
中間周波数fiの2倍離れた周波数であり、上側ヘテロ
ダイン方式ではfim=f1+2fi、下側ヘテロダイ
ン方式ではfim=f1−2fiとなる。例えば、28
8kHzのLW帯波を受信するとき、中間周波数を45
0kHzとすると、上側ヘテロダイン方式の場合、 288kHz+450kHz×2=1188kHz の周波数がイメージ周波数となる。このため、通常52
2kHz〜1710kHzのMW帯波にイメージ周波数
が入ってしまい混信する恐れがある。
The image frequency generated by the frequency conversion is an interference wave unique to the superheterodyne system. This image frequency fim is a frequency which is twice the intermediate frequency fi from the reception wave f1, and is fim = f1 + 2fi in the upper heterodyne system, and fim = f1-2fi in the lower heterodyne system. For example, 28
When receiving the LW band wave of 8 kHz, the intermediate frequency is set to 45.
Assuming that the frequency is 0 kHz, in the case of the upper heterodyne method, a frequency of 288 kHz + 450 kHz × 2 = 1188 kHz becomes the image frequency. Therefore, usually 52
The image frequency enters the MW band wave of 2 kHz to 1710 kHz, which may cause interference.

【0003】このイメージ周波数を抑圧するには、高周
波同調コイルの段数を増やしたり、イメージ周波数に対
するトラップ回路を別に設けるなどの対策が必要とな
る。ところが、高周波同調コイルの段数を増やすと、回
路を構成する可変容量素子であるバリコンや可変容量ダ
イオードの数が増えて価格が上昇し、回路の調整も複雑
になる。また、価格の上昇を抑えるため、固定容量素子
を使用したイメージ周波数に対するトラップ回路を別に
設ける場合、特定のイメージ周波数は取り除くことがで
きても、受信周波数に応じて変化する広い受信帯域のイ
メージ周波数を固定的なトラップ回路で取り除くのは不
可能である。
In order to suppress the image frequency, it is necessary to take measures such as increasing the number of stages of the high-frequency tuning coil and separately providing a trap circuit for the image frequency. However, if the number of stages of the high-frequency tuning coil is increased, the number of variable capacitors and variable capacitance diodes, which are variable capacitance elements constituting the circuit, is increased, thereby increasing the price and complicating the adjustment of the circuit. In addition, when a trap circuit for an image frequency using a fixed capacitance element is separately provided in order to suppress a rise in price, even if a specific image frequency can be removed, an image frequency of a wide reception band that changes according to the reception frequency is used. Cannot be removed by a fixed trap circuit.

【0004】そこで本発明は、できるだけ少ない部品点
数と簡単な回路構成で広い受信帯域のイメージ周波数を
一様に抑圧することができる複同調トランスを提供する
ことを目的になされたものである。
Accordingly, an object of the present invention is to provide a double-tuned transformer capable of uniformly suppressing an image frequency in a wide receiving band with as few components as possible and a simple circuit configuration.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention is configured as follows.

【0006】すなわち、請求項1の発明は、タップa付
き1次同調巻線と並列に可変容量素子を接続して成るア
ンテナ同調トランスと、タップb付き結合巻線とタップ
c付き2次同調巻線を共用巻線すると共に、タップbは
直接2次同調巻線の巻き始めに、タップcはインピーダ
ンス補正用の付加容量素子を介して結合巻線の巻き始め
にそれぞれ接続し、これと並列に可変容量素子を接続し
て成る負荷同調トランスと、を入力側と出力側にそれぞ
れ配置し、1次同調巻線のタップaを前記結合巻線の巻
き始めに接続し、2次同調巻線のタップcを直流遮断用
の付加容量素子を介して増幅器に接続することを特徴と
するスーパヘテロダイン受信機の複同調トランスであ
る。請求項2の発明は、前記負荷同調トランスの結合巻
線と2次同調巻線を、その巻数と結合係数をアレンジし
ながら2以上の巻溝を有する複数枚つばのドラム型フェ
ライトコアに巻回することを特徴とする請求項1記載の
複同調トランスである。請求項3の発明は、前記結合巻
線のタップbを介して直列接続する巻き始め側の巻線と
2次同調巻線の結合係数を0.1乃至0.7に設定する
ことを特徴とする請求項1記載の複同調トランスであ
る。請求項4の発明は、前記2次同調巻線のタップcを
介して直列接続する巻線の結合係数を0.85乃至1.
0に設定することを特徴とする請求項1記載の複同調ト
ランスである。請求項5の発明は、前記結合巻線のタッ
プbを介して直列接続する巻き始め側の巻線と2次同調
巻線は、それぞれの巻き始めを同極性にして磁束が加わ
り合う接続の相互誘導回路を形成することを特徴とする
請求項1記載の複同調トランスである。
That is, the first aspect of the present invention is an antenna tuning transformer having a variable capacitance element connected in parallel with a primary tuning winding having a tap a, a coupling winding having a tap b and a secondary tuning winding having a tap c. In addition to the common winding of the wire, the tap b is connected directly to the beginning of the secondary tuning winding, and the tap c is connected to the beginning of the coupling winding via an additional capacitance element for impedance correction. A load tuning transformer comprising a variable capacitance element connected to each of an input side and an output side; a tap a of a primary tuning winding is connected to the beginning of the winding of the coupling winding; A double-tuned transformer for a superheterodyne receiver, wherein a tap c is connected to an amplifier via a DC blocking additional capacitance element. According to a second aspect of the present invention, the coupling winding and the secondary tuning winding of the load tuning transformer are wound around a plurality of brim drum type ferrite cores having two or more winding grooves while arranging the number of turns and the coupling coefficient. The double-tuned transformer according to claim 1, wherein: The invention according to claim 3 is characterized in that the coupling coefficient between the winding on the winding start side and the secondary tuning winding connected in series via the tap b of the coupling winding is set to 0.1 to 0.7. 2. The double-tuned transformer according to claim 1, wherein: According to a fourth aspect of the present invention, the coupling coefficient of the winding connected in series via the tap c of the secondary tuning winding is set to 0.85 to 1.
2. The double-tuned transformer according to claim 1, wherein the transformer is set to zero. According to a fifth aspect of the present invention, the winding on the winding start side and the secondary tuning winding, which are connected in series via the tap b of the coupling winding, are connected in such a manner that the respective winding starts have the same polarity and the magnetic flux is applied. 2. The double-tuned transformer according to claim 1, wherein an induction circuit is formed.

【0007】[0007]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に、本発明を実施したスーパヘテロダ
イン受信機の複同調回路の回路図を示す。複同調回路
は、入力側にアンテナ同調トランスT1と出力側に負荷
同調トランスT2を配置する。アンテナ同調トランスT
1は、インピーダンス整合用の1次入力巻線N1と同調
用のタップa付き1次同調巻線N2を変成器結合し、1
次同調巻線N2と並列に可変容量素子Cと付加容量素子
C1を接続して一次共振回路を形成する。負荷同調トラ
ンスT2は、タップb付き結合巻線N3とタップc付き
2次同調巻線N4を共用巻線し、タップbは2次同調巻
線N4の巻き始めに直結し、タップcは付加容量素子C
2を介して結合巻線N3の巻き始めに接続する。そし
て、これらと並列に可変容量素子Cを接続して二次共振
回路を形成する。
FIG. 1 is a circuit diagram of a double tuning circuit of a superheterodyne receiver embodying the present invention. The double tuning circuit has an antenna tuning transformer T1 on the input side and a load tuning transformer T2 on the output side. Antenna tuning transformer T
Reference numeral 1 denotes a transformer coupling between a primary input winding N1 for impedance matching and a primary tuning winding N2 with a tap a for tuning, and
The variable capacitance element C and the additional capacitance element C1 are connected in parallel with the next tuning winding N2 to form a primary resonance circuit. The load tuning transformer T2 shares a coupling winding N3 with a tap b and a secondary tuning winding N4 with a tap c, and the tap b is directly connected to the beginning of the winding of the secondary tuning winding N4, and the tap c is an additional capacitor. Element C
2 at the beginning of the coupling winding N3. Then, a variable capacitance element C is connected in parallel with these to form a secondary resonance circuit.

【0009】1次入力巻線N1は、一端をアンテナ(図
示しない)に連結する端子1に接続し、他端をアースす
る。1次入力巻線N1は、ロッドアンテナとFETの高
インピーダンスで受けるときもある。
The primary input winding N1 has one end connected to a terminal 1 connected to an antenna (not shown) and the other end grounded. The primary input winding N1 may receive the high impedance of the rod antenna and the FET.

【0010】1次同調巻線N2は、タップaを介して巻
線N21とN22を直列接続し、N22側を可変容量素
子Cと付加容量素子C1に接続し、N21側をアースす
る。
The primary tuning winding N2 has windings N21 and N22 connected in series via a tap a, the N22 side is connected to the variable capacitance element C and the additional capacitance element C1, and the N21 side is grounded.

【0011】結合巻線N3は、タップbを介して巻線N
31とN32を直列接続し、N32の巻き始めを1次同
調巻線N2のタップaと、付加容量素子C2を介して2
次同調巻線N4のタップcに接続し、N31側をアース
する。
The coupling winding N3 is connected to the winding N through a tap b.
31 and N32 are connected in series, and the start of winding of N32 is set to 2 through the tap a of the primary tuning winding N2 and the additional capacitive element C2.
Connect to the tap c of the next tuning winding N4, and ground the N31 side.

【0012】2次同調巻線N4は、タップcを介して巻
線N41とN42を直列接続し、巻き始めを結合巻線N
3のタップbに接続し、巻き終りを可変容量素子Cに接
続する。巻線N32、N41、N42は、それぞれの巻
き始めを同極性にしてN32、N41、N42の磁束が
加わり合う接続の相互誘導回路を形成する。なお、それ
ぞれの巻線の極性を明らかにするために、巻線のスター
ト位置を図のドットで示す。
The secondary tuning winding N4 is formed by connecting windings N41 and N42 in series via a tap c, and starting the winding with a coupling winding N
3 and the end of the winding is connected to the variable capacitance element C. The windings N32, N41, and N42 form a mutual induction circuit in which the magnetic fluxes of the windings N32, N41, and N42 are added with the respective winding starts having the same polarity. In order to clarify the polarity of each winding, the starting position of the winding is indicated by a dot in the figure.

【0013】タップcは、2次同調巻線N4の最大利用
電力レベル箇所付近から負荷回路とのインピーダンス整
合も併せて行いながら引き出し、直流遮断用の付加容量
素子C′を介してIC増幅器(図示しない)に連結する
端子2に接続する。また、付加容量素子C2を介して結
合巻線N3の巻き始めと1次同調巻線N2のタップaに
も接続する。これにより、巻線N31、N32、N4
1、N42、付加容量素子C2、可変容量素子Cによる
イメージ周波数に対するトラップ回路を形成する。付加
容量素子C2は、図では一端をタップa(あるいは結合
巻線N3の巻き始め)と他端をタップcに接続している
が、一端を結合巻線N3内の任意の一点と、他端を2次
同調巻線N4内の任意の一点に接続してもよい。また、
図では巻線N41の巻き始めをタップbに接続している
が、直接アースに落としてもよい。
The tap c is pulled out from the vicinity of the maximum available power level of the secondary tuning winding N4 while also performing impedance matching with the load circuit, and is connected to an IC amplifier (shown in FIG. No) is connected to terminal 2. Further, it is also connected to the winding start of the coupling winding N3 and the tap a of the primary tuning winding N2 via the additional capacitance element C2. Thereby, the windings N31, N32, N4
1, N42, the additional capacitance element C2, and the variable capacitance element C form a trap circuit for an image frequency. In the figure, the additional capacitance element C2 has one end connected to the tap a (or the beginning of the winding of the coupling winding N3) and the other end connected to the tap c. May be connected to any one point in the secondary tuning winding N4. Also,
In the figure, the winding start of the winding N41 is connected to the tap b, but it may be directly dropped to ground.

【0014】巻線N31、N32、N41、N42は、
図2に示すように、キャップコアCAを有する3枚つば
ドラムコアDの第一溝D1と第二溝D2に巻回する。こ
のとき巻線N31、N32、N41、N42の巻数と干
渉度をアレンジし、巻線N32とN4の結合係数を0.
1〜0.7に設定し、巻線N41とN42の結合係数を
0.85〜1.0に設定する。
The windings N31, N32, N41 and N42 are
As shown in FIG. 2, it is wound around the first groove D1 and the second groove D2 of the three-flange drum core D having the cap core CA. At this time, the number of turns and the degree of interference of the windings N31, N32, N41, and N42 are arranged, and the coupling coefficient between the windings N32 and N4 is set to 0.1.
1 to 0.7, and the coupling coefficient between the windings N41 and N42 is set to 0.85 to 1.0.

【0015】本発明を実施した複同調回路は以上のよう
な構成で、端子1に加えられた入力信号を一次共振回路
と二次共振回路に導き、可変容量素子Cを変化させて特
定の受信周波数に同調させる。同時に、入力信号に混入
したイメージ妨害波を巻線N31、N32、N41、N
42、付加容量素子C2、可変容量素子Cによるトラッ
プ回路により減衰する。
The double-tuned circuit embodying the present invention has the above-described configuration, and the input signal applied to the terminal 1 is led to the primary resonance circuit and the secondary resonance circuit, and the specific capacitance is changed by changing the variable capacitance element C. Tune to frequency. At the same time, the image interference wave mixed in the input signal is transmitted to the windings N31, N32, N41, N41.
42, attenuated by a trap circuit including the additional capacitance element C2 and the variable capacitance element C.

【0016】可変容量素子Cの容量を変化させると、図
3に示すように、受信周波数に応じて周波数特性全体が
略平行移動し、トラップ回路の共振周波数もバンド帯域
内において平行移動してイメージ周波数を抑圧する。
When the capacitance of the variable capacitance element C is changed, as shown in FIG. 3, the entire frequency characteristic moves substantially in parallel according to the reception frequency, and the resonance frequency of the trap circuit also moves in parallel within the band. Suppress frequency.

【0017】以下に、トラップ回路の共振周波数が受信
周波数に応じて移動する理由を具体的に説明する。図1
の負荷同調トランスT2の二次共振回路を考えやすくす
るために、以下のように回路を簡略化する。まず、図4
に示すように、タップb、cを入出力共通にしてタップ
cとし、結合巻線N3の巻線N32を省略する。これに
より、巻線N31、N41を巻線N43に置き換え、タ
ップcを介して巻線N43とN42を直列接続する。ま
た、交流バイパスコンデンサC′は、バンド帯域内のイ
ンピーダンスが略0となって無視でき、巻線N21はイ
ンダクタンスを無限大と仮定して省略する。さらに、付
加容量素子C2についてはとりあえず除外して考える。
Hereinafter, the reason why the resonance frequency of the trap circuit moves according to the reception frequency will be specifically described. FIG.
In order to make it easy to think of the secondary resonance circuit of the load tuning transformer T2, the circuit is simplified as follows. First, FIG.
As shown in (1), taps b and c are used as a common input and output to make tap c, and the winding N32 of the coupling winding N3 is omitted. As a result, the windings N31 and N41 are replaced with the winding N43, and the windings N43 and N42 are connected in series via the tap c. The impedance of the AC bypass capacitor C 'in the band is almost zero and can be ignored, and the winding N21 is omitted on the assumption that the inductance is infinite. Further, the additional capacitive element C2 is considered for the time being excluded.

【0018】ここで巻線N43、N42に電流を流す
と、それに従って巻線N43、N42の自己インダクタ
ンスL43、L42はL43′、L42′に変わり、巻
線N43、N42の相互インダクタンスをM(M>0)
とすると、 L43′=L43+M L42′=L42+M となる。ここで、 L43 =L43′−M L42 =L42′−M であるから、巻線N43、N42は、等価的にL4
3′、L42′と直列に−Mを接続する回路を形成す
る。
When a current flows through the windings N43 and N42, the self-inductances L43 and L42 of the windings N43 and N42 change to L43 'and L42', and the mutual inductance of the windings N43 and N42 becomes M (M > 0)
Then, L43 '= L43 + M L42' = L42 + M. Here, since L43 = L43'-M L42 = L42'-M, the windings N43 and N42 are equivalent to L4
A circuit for connecting -M in series with 3 'and L42' is formed.

【0019】以上により、図4の回路を等価回路に置き
換えて可変容量素子CのキャパシタンスをCとすると、
図5に示すように、−Mと直列にL43′とL42′+
Cの並列回路を接続し、入力信号とアース回路の間にー
M、L43′、L42′、Cによるトラップ回路を形成
する。
As described above, when the circuit of FIG. 4 is replaced with an equivalent circuit and the capacitance of the variable capacitance element C is C,
As shown in FIG. 5, L43 'and L42' +
A parallel circuit of C is connected to form a trap circuit between -M, L43 ', L42', and C between the input signal and the ground circuit.

【0020】この等価回路のインピーダンスZを計算す
ると、
When the impedance Z of this equivalent circuit is calculated,

【数1】 となる。この等価回路のインピーダンスZを最大(分母
=0)にする周波数が受信周波数f0となり、最小(分
子=0)にする周波数がトラップの共振周波数f0′と
なる。従って、受信周波数f0は、
(Equation 1) Becomes The frequency at which the impedance Z of this equivalent circuit is maximized (denominator = 0) is the reception frequency f0, and the frequency at which it is minimum (numerator = 0) is the trap resonance frequency f0 '. Therefore, the reception frequency f0 is

【数2】 となり、トラップの共振周波数f0′は(Equation 2) And the resonance frequency f0 'of the trap is

【数3】 となる。(Equation 3) Becomes

【0021】以上により、本発明の複同調回路は、周波
数に応じてインピーダンスが変化し、可変容量素子Cと
巻線N31、N41、N42のリアクタンスが等しくな
る受信周波数f0において同調し、可変容量素子Cと結
合係数Kあるいは巻数をアレンジしたN42のリアクタ
ンスが等しくなるトラップの共振周波数f0′において
減衰を与える。従って、可変容量素子Cを変化させる
と、図3に示すように、受信周波数f0に応じて周波数
特性全体が略平行移動し、このときトラップの共振周波
数f0′も可変容量素子Cの変化に応じて平行移動す
る。これにより、受信周波数f0に応じて変化するイメ
ージ周波数を抑圧することができる。
As described above, the double-tuned circuit of the present invention tunes at the receiving frequency f0 where the impedance changes according to the frequency and the reactance of the variable capacitance element C and the windings N31, N41 and N42 becomes equal. Attenuation is given at the resonance frequency f0 'of the trap where the reactance of C becomes equal to the reactance of C or the coupling coefficient K or the number of turns of N42. Therefore, when the variable capacitance element C is changed, as shown in FIG. 3, the entire frequency characteristic moves substantially in parallel according to the reception frequency f0, and at this time, the resonance frequency f0 ′ of the trap also changes in accordance with the change in the variable capacitance element C. To translate. This makes it possible to suppress the image frequency that changes according to the reception frequency f0.

【0022】計算式より、トラップ回路のリアクタンス
は同調回路のリアクタンスに比べて小さいので、可変容
量素子Cの容量が大きい低周波領域ではトラップの共振
周波数f0′の移動幅は小さいが、可変容量素子Cの容
量が小さい高周波領域では、アンテナ同調トランスT1
の結合が大きく影響してインピーダンスが変化し、受信
周波数f0に対するイメージ周波数のトラップが甘くな
る。
From the calculation formula, since the reactance of the trap circuit is smaller than the reactance of the tuning circuit, the moving width of the resonance frequency f0 'of the trap is small in a low frequency region where the capacitance of the variable capacitance element C is large. In the high frequency region where the capacitance of C is small, the antenna tuning transformer T1
Greatly affects the impedance, and the impedance changes, and the trapping of the image frequency with respect to the reception frequency f0 becomes weak.

【0023】そこで、図1に示すように、インピーダン
ス補正用の付加容量素子C2を巻線N32、N41と並
列に接続する。これにより、同調回路のインピーダンス
を補正してトラップの減衰帯域をイメージ周波数に近付
けることができる。
Therefore, as shown in FIG. 1, an additional capacitance element C2 for impedance correction is connected in parallel with the windings N32 and N41. Thereby, the impedance of the tuning circuit can be corrected to make the attenuation band of the trap close to the image frequency.

【0024】付加容量素子C2を追加すると負荷同調ト
ランスT2の受信周波数f0が若干低域に移動するた
め、アンテナ同調トランスT1の受信周波数f0もこれ
に合わせて低くし、そのために付加容量素子C1を追加
する。付加容量素子C2の容量が小さい場合は、受信周
波数f0もほとんど変化しないので、付加容量素子C1
を追加しないこともある。また、アンテナ同調トランス
T1の結合の影響度によっては付加容量素子C2を追加
しないこともあり、その場合付加容量素子C1は必要と
しない。
When the additional capacitance element C2 is added, the reception frequency f0 of the load tuning transformer T2 moves to a slightly lower frequency, and accordingly, the reception frequency f0 of the antenna tuning transformer T1 is also lowered accordingly. to add. When the capacitance of the additional capacitance element C2 is small, the reception frequency f0 hardly changes.
May not be added. Further, depending on the degree of influence of the coupling of the antenna tuning transformer T1, the additional capacitance element C2 may not be added. In this case, the additional capacitance element C1 is not required.

【0025】また、トラップの共振周波数f0′は、結
合係数Kを大きくすると計算式の分母が小さくなるので
高域に移動し、結合係数Kを小さくすると分母が大きく
なるので低域に移動することが分かる。あるいは、結合
係数Kを固定して巻線N42の巻数を増やすと計算式の
分母が大きくなるので低域に移動し、巻線N42の巻数
を減らすと分母が小さくなるので高域に移動することが
わかる。このように、結合係数Kあるいは巻線N42の
巻数に幅を持たせることにより、トラップの共振周波数
f0′をイメージ周波数帯域に合わせることができる。
Also, the resonance frequency f0 'of the trap moves to a higher frequency because the denominator of the calculation formula decreases when the coupling coefficient K increases, and moves to a lower frequency because the denominator increases when the coupling coefficient K decreases. I understand. Alternatively, when the number of turns of the winding N42 is increased while the coupling coefficient K is fixed, the denominator of the calculation formula becomes large, so that the denominator becomes smaller when the number of turns of the winding N42 is reduced. I understand. As described above, by giving a certain width to the coupling coefficient K or the number of turns of the winding N42, the resonance frequency f0 'of the trap can be adjusted to the image frequency band.

【0026】本発明を実施した複同調回路の特性を、図
6に示す従来回路と比較すると、図7に示すように、イ
メージ周波数付近で減衰し、MW帯域で実測した結果バ
ンド帯域内において30dB〜45dBの改善が見られ
た。また、受信感度においても、従来回路と同等レベル
であり、他の電気特性を劣悪することなく、イメージ周
波数を抑圧している。さらに、複同調トランスの一方の
負荷同調トランスは、共用巻線のため従来に比べて大幅
に巻数が減り、複同調トランスの小型・軽量化を実現し
た。
When the characteristics of the double-tuned circuit embodying the present invention are compared with those of the conventional circuit shown in FIG. 6, as shown in FIG. 7, the characteristics are attenuated near the image frequency and are measured in the MW band. An improvement of ~ 45 dB was seen. Also, the receiving sensitivity is at the same level as that of the conventional circuit, and the image frequency is suppressed without deteriorating other electric characteristics. Furthermore, the load tuning transformer, one of the double-tuned transformers, uses a common winding, so the number of turns is greatly reduced compared to the conventional type, realizing a compact and lightweight double-tuned transformer.

【0027】図8〜10に、本発明の複同調回路の変形
例を示す。図8の複同調回路は、タップb、b′付き2
次同調巻線N5と出力同調巻線N41を変成器結合し、
タップa、b′を介して1次同調巻線N2と2次同調巻
線N5を接続する。そして、タップb′は付加容量素子
C2を介して出力同調巻線N41の一端に接続すると共
に、タップbを出力同調巻線N41の他端に接続し、2
次同調巻線N5と並列に可変容量素子Cを接続して二次
共振回路を形成したものである。
8 to 10 show modified examples of the double tuning circuit of the present invention. The double tuning circuit of FIG. 8 has two taps b and b '.
The next tuning winding N5 and the output tuning winding N41 are transformer-coupled,
The primary tuning winding N2 and the secondary tuning winding N5 are connected via taps a and b '. The tap b 'is connected to one end of the output tuning winding N41 via the additional capacitance element C2, and the tap b is connected to the other end of the output tuning winding N41.
A secondary resonance circuit is formed by connecting a variable capacitance element C in parallel with the next tuning winding N5.

【0028】図9の複同調回路は、図1の回路の可変容
量素子Cと並列にトラッキング補正用の容量素子C0を
接続したものである。
The double-tuned circuit shown in FIG. 9 is obtained by connecting a capacitance element C0 for tracking correction in parallel with the variable capacitance element C of the circuit shown in FIG.

【0029】図10の複同調回路は、図1の回路の巻線
N21を単独に巻き、タップaを省いて結合巻線N3に
直結したものである。
The double-tuned circuit shown in FIG. 10 is a circuit in which the winding N21 of the circuit shown in FIG. 1 is independently wound, and the tap a is omitted, and the winding is directly connected to the coupling winding N3.

【0030】[0030]

【発明の効果】以上説明したように、本発明の複同調ト
ランスは、タップa付き1次同調巻線と並列に可変容量
素子を接続して成るアンテナ同調トランスと、タップb
付き結合巻線とタップc付き2次同調巻線を共用巻線す
ると共に、タップbは直接2次同調巻線の巻き始めに、
タップcはインピーダンス補正用の付加容量素子を介し
て結合巻線の巻き始めにそれぞれ接続し、これと並列に
可変容量素子を接続して成る負荷同調トランスと、を入
力側と出力側にそれぞれ配置し、1次同調巻線のタップ
aを前記結合巻線の巻き始めに接続し、2次同調巻線の
タップcを直流遮断用の付加容量素子を介して増幅器に
接続する。従って、本発明によれば、負荷同調トランス
の共用巻線の相互誘導による相互インダクタンスMとL
Cによるトラップ回路を形成するので、可変容量素子を
変化させると受信周波数に連動してトラップ回路の共振
周波数も変化し、受信周波数に応じて変化するイメージ
周波数を抑圧することができる。さらに、付加容量素子
が同調回路のインピーダンスを補正するので、トラップ
の減衰帯域をよりイメージ周波数に近付けることができ
る。また、負荷同調トランスを共用巻線してそれぞれ相
互インダクタンスMを引き出すので、トラップのための
新たな部品を必要とせず、経済的と信頼性が向上する。
As described above, the double-tuned transformer according to the present invention comprises an antenna-tuned transformer having a variable capacitance element connected in parallel with a primary tuning winding having a tap a, and a tap b.
And a secondary tuning winding with a tap c is used as a common winding, and a tap b is directly provided at the beginning of the secondary tuning winding.
The tap c is connected to the beginning of the winding of the coupling winding via an additional capacitance element for impedance correction, and a load tuning transformer formed by connecting a variable capacitance element in parallel with this is arranged on the input side and the output side, respectively. Then, the tap a of the primary tuning winding is connected to the beginning of winding of the coupling winding, and the tap c of the secondary tuning winding is connected to the amplifier via an additional capacitive element for blocking DC current. Therefore, according to the present invention, the mutual inductances M and L due to the mutual induction of the common winding of the load tuning transformer.
Since the trap circuit is formed by C, when the variable capacitance element is changed, the resonance frequency of the trap circuit also changes in conjunction with the reception frequency, and the image frequency that changes according to the reception frequency can be suppressed. Further, since the additional capacitance element corrects the impedance of the tuning circuit, the attenuation band of the trap can be made closer to the image frequency. Further, since the load tuning transformer is commonly wound and the mutual inductance M is drawn out, no new components for trapping are required, and the economy and reliability are improved.

【0031】また、本発明の複同調トランスは、負荷同
調トランスの結合巻線と2次同調巻線を、その巻数と結
合係数をアレンジしながら2以上の巻溝を有する複数枚
つばのドラム型フェライトコアに巻回する。さらに、結
合巻線のタップbを介して直列接続する巻き始め側の巻
線と2次同調巻線は、それぞれの巻き始めを同極性にし
て磁束が加わり合う接続の相互誘導回路を形成する。従
って、本発明によれば、負荷同調トランスの共用巻線の
巻数と結合係数によってトラップの共振周波数が変化す
るので、インピーダンス補正用の付加容量素子と共に巻
数と結合係数をアレンジしてトラップの共振周波数を適
切にイメージ周波数付近に合わせることができる。
Further, the double-tuned transformer according to the present invention comprises a plurality of brim drum types having two or more winding grooves, while arranging the number of turns and the coupling coefficient of the coupling winding and the secondary tuning winding of the load tuning transformer. Wrap around a ferrite core. Further, the winding on the winding start side and the secondary tuning winding, which are connected in series via the tap b of the coupling winding, form a mutual induction circuit in which the magnetic fluxes are applied with the respective winding starts having the same polarity. Therefore, according to the present invention, the resonance frequency of the trap changes depending on the number of windings and the coupling coefficient of the common winding of the load tuning transformer, and the number of windings and the coupling coefficient are arranged together with the additional capacitance element for impedance correction to adjust the resonance frequency of the trap. Can be appropriately adjusted to the vicinity of the image frequency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した複同調回路の回路図である。FIG. 1 is a circuit diagram of a double tuning circuit embodying the present invention.

【図2】本発明を実施した同調コイルの巻線図である。FIG. 2 is a winding diagram of a tuning coil embodying the present invention.

【図3】本発明を実施した複同調回路の周波数特性図で
ある。
FIG. 3 is a frequency characteristic diagram of a double tuning circuit embodying the present invention.

【図4】図1の簡略回路図である。FIG. 4 is a simplified circuit diagram of FIG.

【図5】図4の等価回路図である。FIG. 5 is an equivalent circuit diagram of FIG.

【図6】従来の複同調回路の回路図である。FIG. 6 is a circuit diagram of a conventional double tuning circuit.

【図7】本発明を実施した複同調回路と従来回路の特性
を比較した図である。
FIG. 7 is a diagram comparing characteristics of a double-tuned circuit embodying the present invention and a conventional circuit.

【図8】本発明を実施した複同調回路の変形例である。FIG. 8 is a modified example of the double tuning circuit embodying the present invention.

【図9】本発明を実施した複同調回路のその他の変形例
である。
FIG. 9 is another modified example of the double tuning circuit embodying the present invention.

【図10】本発明を実施した複同調回路のその他の変形
例である。
FIG. 10 is another modified example of the double-tuned circuit embodying the present invention.

【符号の説明】[Explanation of symbols]

1〜2 端子 C 可変容量素子 C′、C1、C2 付加容量素子 C0 トラッキング補正用容量素子 D ドラムコア D1 第一溝 D2 第二溝 CA キャップコア L 自己インダクタンス M 相互インダクタンス N1 1次入力巻線 N2 1次同調巻線 N3 結合巻線 N4 2次同調巻線 N41 出力同調巻線 N5 2次同調巻線 a、b、b′、c タップ T1 アンテナ同調トランス T2 負荷同調トランス 1-2 terminals C Variable capacitance elements C ', C1, C2 Additional capacitance elements C0 Tracking correction capacitance elements D Drum core D1 First groove D2 Second groove CA Cap core L Self-inductance M Mutual inductance N1 Primary input winding N2 1 Secondary tuning winding N3 Coupling winding N4 Secondary tuning winding N41 Output tuning winding N5 Secondary tuning winding a, b, b ', c Tap T1 Antenna tuning transformer T2 Load tuning transformer

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月6日(2000.10.
6)
[Submission date] October 6, 2000 (2000.10.
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】1次入力巻線N1は、一端をアンテナ(図
示しない)に連結する端子1に接続し、他端をアースす
る。
The primary input winding N1 has one end connected to a terminal 1 connected to an antenna (not shown) and the other end grounded.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】出力cは、2次同調巻線N4のタップcか
ら引き出し、直流遮断用の付加容量素子C′を介してI
C増幅器(図示しない)に連結する端子2に接続する。
また、付加容量素子C2を介して結合巻線N3の巻き始
めと1次同調巻線N2のタップaにも接続する。これに
より、巻線N31、N32、N41、N42、付加容量
素子C2、可変容量素子Cによるイメージ周波数に対す
るトラップ回路を形成する。付加容量素子C2は、図で
は一端をタップa(あるいは結合巻線N3の巻き始め)
と他端をタップcに接続しているが、一端を結合巻線N
3内の任意の一点と、他端を2次同調巻線N4内の任意
の一点に接続してもよい。また、図では巻線N41の巻
き始めをタップbに接続しているが、直接アースに落と
してもよい。
The output c is drawn from the tap c of the secondary tuning winding N4, and is output through the additional capacitive element C 'for blocking DC current.
Connect to terminal 2 which connects to a C amplifier (not shown).
Further, it is also connected to the winding start of the coupling winding N3 and the tap a of the primary tuning winding N2 via the additional capacitance element C2. Thereby, a trap circuit for the image frequency by the windings N31, N32, N41, N42, the additional capacitance element C2, and the variable capacitance element C is formed. In the figure, the additional capacitance element C2 has a tap a at one end (or the start of winding of the coupling winding N3).
And the other end are connected to the tap c, but one end is connected to the coupling winding N.
3 and the other end may be connected to an arbitrary point in the secondary tuning winding N4. Further, although the winding start of the winding N41 is connected to the tap b in the drawing, it may be directly grounded.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】図8〜10に、本発明の複同調回路の変形
例を示す。図8の複同調回路は、タップb、b′付き2
次同調巻線N5と出力巻線N41を変成器結合し、タッ
プa、b′を介して1次同調巻線N2と2次同調巻線N
5を接続する。そして、タップb′は付加容量素子C2
を介して出力巻線N41の一端に接続すると共に、タッ
プbを出力巻線N41の他端に接続し、2次同調巻線N
5と並列に可変容量素子Cを接続して二次共振回路を形
成したものである。
8 to 10 show modified examples of the double tuning circuit of the present invention. The double tuning circuit of FIG. 8 has two taps b and b '.
The transformer winding is coupled between the secondary tuning winding N5 and the output winding N41, and the primary tuning winding N2 and the secondary tuning winding N are connected via taps a and b '.
5 is connected. The tap b 'is connected to the additional capacitance element C2.
, And a tap b is connected to the other end of the output winding N41, and the secondary tuning winding N
5 and a variable capacitance element C is connected in parallel to form a secondary resonance circuit.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of sign

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【符号の説明】 1〜2 端子 C 可変容量素子 C′、C1、C2 付加容量素子 C0 トラッキング補正用容量素子 D ドラムコア D1 第一溝 D2 第二溝 CA キャップコア L42,L43 自己インダクタンス −M 相互インダクタンス N1 1次入力巻線 N2 1次同調巻線 N3 結合巻線 N4 2次同調巻線 N41 出力巻線 N5 2次同調巻線 a、b、b′、c タップ T1 アンテナ同調トランス T2 負荷同調トランス[Description of Signs] 1-2 terminals C Variable capacitance elements C ', C1, C2 Additional capacitance elements C0 Tracking correction capacitance elements D Drum core D1 First groove D2 Second groove CA Cap cores L42, L43 Self inductance -M Mutual inductance N1 primary input winding N2 primary tuning winding N3 coupling winding N4 secondary tuning winding N41 output winding N5 secondary tuning winding a, b, b ', c tap T1 antenna tuning transformer T2 load tuning transformer

【手続補正書】[Procedure amendment]

【提出日】平成12年10月16日(2000.10.
16)
[Date of submission] October 16, 2000 (2000.10.
16)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】出力は、2次同調巻線N4のタップcから
引き出し、直流遮断用の付加容量素子C′を介してIC
増幅器(図示しない)に連結する端子2に接続する。ま
た、付加容量素子C2を介して結合巻線N3の巻き始め
と1次同調巻線N2のタップaにも接続する。これによ
り、巻線N31、N32、N41、N42、付加容量素
子C2、可変容量素子Cによるイメージ周波数に対する
トラップ回路を形成する。付加容量素子C2は、図では
一端をタップa(あるいは結合巻線N3の巻き始め)と
他端をタップcに接続しているが、一端を結合巻線N3
内の任意の一点と、他端を2次同調巻線N4内の任意の
一点に接続してもよい。また、図では巻線N41の巻き
始めをタップbに接続しているが、直接アースに落とし
てもよい。
The output is drawn from the tap c of the secondary tuning winding N4, and is supplied to the IC via an additional capacitive element C 'for blocking DC current.
Connect to terminal 2 which connects to an amplifier (not shown). Further, it is also connected to the winding start of the coupling winding N3 and the tap a of the primary tuning winding N2 via the additional capacitance element C2. Thereby, a trap circuit for the image frequency by the windings N31, N32, N41, N42, the additional capacitance element C2, and the variable capacitance element C is formed. In the figure, the additional capacitance element C2 has one end connected to the tap a (or the start of winding of the coupling winding N3) and the other end connected to the tap c.
And the other end may be connected to an arbitrary point in the secondary tuning winding N4. Further, although the winding start of the winding N41 is connected to the tap b in the drawing, it may be directly grounded.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5K020 DD02 DD11 EE01 EE14 HH06 LL05 MM12 MM13 5K058 AA20 BA01 CA01 CA02 DA02 DA13 EA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5K020 DD02 DD11 EE01 EE14 HH06 LL05 MM12 MM13 5K058 AA20 BA01 CA01 CA02 DA02 DA13 EA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 タップa付き1次同調巻線と並列に可変
容量素子を接続して成るアンテナ同調トランスと、 タップb付き結合巻線とタップc付き2次同調巻線を共
用巻線すると共に、 タップbは直接2次同調巻線の巻き始めに、タップcは
インピーダンス補正用の付加容量素子を介して結合巻線
の巻き始めにそれぞれ接続し、 これと並列に可変容量素子を接続して成る負荷同調トラ
ンスと、を入力側と出力側にそれぞれ配置し、 1次同調巻線のタップaを前記結合巻線の巻き始めに接
続し、 2次同調巻線のタップcを直流遮断用の付加容量素子を
介して増幅器に接続することを特徴とするスーパヘテロ
ダイン受信機の複同調トランス。
1. An antenna tuning transformer having a variable capacitance element connected in parallel with a primary tuning winding having a tap a, a coupling winding having a tap b and a secondary tuning winding having a tap c are commonly used. The tap b is directly connected to the beginning of the winding of the secondary tuning winding, the tap c is connected to the beginning of the winding of the coupling winding via an additional capacitance element for impedance correction, and a variable capacitance element is connected in parallel with this. And a load tuning transformer comprising: a tap a of the primary tuning winding connected to the beginning of the coupling winding; and a tap c of the secondary tuning winding for direct current cutoff. A double-tuned transformer for a superheterodyne receiver, wherein the transformer is connected to an amplifier via an additional capacitance element.
【請求項2】 前記負荷同調トランスの結合巻線と2次
同調巻線を、その巻数と結合係数をアレンジしながら2
以上の巻溝を有する複数枚つばのドラム型フェライトコ
アに巻回することを特徴とする請求項1記載の複同調ト
ランス。
2. The method according to claim 1, wherein the coupling winding and the secondary tuning winding of the load tuning transformer are arranged by changing the number of windings and the coupling coefficient.
2. The double-tuned transformer according to claim 1, wherein said double-tuned transformer is wound around a plurality of brim drum type ferrite cores having said winding grooves.
【請求項3】 前記結合巻線のタップbを介して直列接
続する巻き始め側の巻線と2次同調巻線の結合係数を
0.1乃至0.7に設定することを特徴とする請求項1
記載の複同調トランス。
3. A coupling coefficient between a winding on a winding start side and a secondary tuning winding connected in series via a tap b of the coupling winding is set to 0.1 to 0.7. Item 1
Double tuning transformer as described.
【請求項4】 前記2次同調巻線のタップcを介して直
列接続する巻線の結合係数を0.85乃至1.0に設定
することを特徴とする請求項1記載の複同調トランス。
4. The double-tuned transformer according to claim 1, wherein a coupling coefficient of a winding connected in series via a tap c of the secondary tuning winding is set to 0.85 to 1.0.
【請求項5】 前記結合巻線のタップbを介して直列接
続する巻き始め側の巻線と2次同調巻線は、それぞれの
巻き始めを同極性にして磁束が加わり合う接続の相互誘
導回路を形成することを特徴とする請求項1記載の複同
調トランス。
5. A mutual induction circuit in which the winding on the winding start side and the secondary tuning winding connected in series via the tap b of the coupling winding have the same polarity at the winding start and are applied with a magnetic flux. 2. The double-tuned transformer according to claim 1, wherein the transformer is formed.
JP29254899A 1999-10-14 1999-10-14 Double-tuned transformer Expired - Fee Related JP3517166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29254899A JP3517166B2 (en) 1999-10-14 1999-10-14 Double-tuned transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29254899A JP3517166B2 (en) 1999-10-14 1999-10-14 Double-tuned transformer

Publications (2)

Publication Number Publication Date
JP2001111388A true JP2001111388A (en) 2001-04-20
JP3517166B2 JP3517166B2 (en) 2004-04-05

Family

ID=17783205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29254899A Expired - Fee Related JP3517166B2 (en) 1999-10-14 1999-10-14 Double-tuned transformer

Country Status (1)

Country Link
JP (1) JP3517166B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093594B2 (en) 2013-02-27 2017-03-08 パナソニック株式会社 Variable matching circuit and amplifier

Also Published As

Publication number Publication date
JP3517166B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
CN107408918B (en) Radio frequency oscillator
CN104733452B (en) A kind of transformer and preparation method thereof and chip
US3942119A (en) Multiple-transmission-channel active antenna arrangement
JP2001111388A (en) Multiple-tuned transformer
US11716056B2 (en) Power amplifier with series transformer combiners and harmonic tuning
JP2000315961A (en) Dual tuning transformer
EP1615292B1 (en) AM antenna noise reduction
JP3517160B2 (en) Double-tuned transformer
JP2000357977A (en) Double-tuned transformer
CA1246735A (en) Antenna circuit
US20120001718A1 (en) Transformer
JP2001126928A (en) Antenna-tuning transformer
US1730903A (en) Elimination of disturbing oscillations in high-frequency systems
JP2000324010A (en) Antenna tuning transformer
JP3107512B2 (en) High frequency tuning circuit
US11770103B2 (en) Passive mixer, operating method thereof, and devices including the same
JP3084221B2 (en) High frequency tuning circuit
JP3332798B2 (en) Tuner input tuning circuit
US2062956A (en) Image suppression system
JP2001024462A (en) Noise filter
US2301324A (en) Radio frequency coupling system
JP2001094377A (en) High frequency device
JP2953991B2 (en) Antenna tuning coil for AM receiver
JPH0314843Y2 (en)
US1637283A (en) Means for frequency multiplication

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040122

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees