JP2001111376A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JP2001111376A
JP2001111376A JP28356199A JP28356199A JP2001111376A JP 2001111376 A JP2001111376 A JP 2001111376A JP 28356199 A JP28356199 A JP 28356199A JP 28356199 A JP28356199 A JP 28356199A JP 2001111376 A JP2001111376 A JP 2001111376A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
electrode finger
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28356199A
Other languages
Japanese (ja)
Other versions
JP4058859B2 (en
Inventor
Hiroharu Hasegawa
弘治 長谷川
Akihiro Bungo
明裕 豊後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28356199A priority Critical patent/JP4058859B2/en
Publication of JP2001111376A publication Critical patent/JP2001111376A/en
Application granted granted Critical
Publication of JP4058859B2 publication Critical patent/JP4058859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute a transmission type surface acoustic wave filter with a low loss. SOLUTION: This surface acoustic wave element has a surface acoustic wave converter constituted of a positive electrode finger 102 and a negative electrode finger 204 and a floating electrode 300 arranged between them which are formed on the surface of langisite single crystal substrate whose substrate azimuth and surface acoustic wave propagating direction are selected so that natural uni-directivity can be obtained. When the wavelength of the surface acoustic wave is defined as λ, the width of the positive electrode finger and the negative electrode finger is set so as to be about λ/8, and the central interval of the both electrode fingers is set so as to be about 6/8λ, and a distance (g) between the center of the positive electrode finger and the center of the floating electrode 300 is set so as to be 13/40λ<=g<=14/40λ. In this case, each electrode is formed along the propagating direction of the surface acoustic wave so that width W of the floating electrode can be set so as to be 11/40λ<=W<=13/40λ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動体通信機器等
に用いられる表面弾性波素子に関する。
The present invention relates to a surface acoustic wave device used for mobile communication equipment and the like.

【0002】[0002]

【従来の技術】近年、携帯電話・携帯端末等の移動体通
信機器が飛躍的に普及しているが、これら端末に用いら
れるフィルタには低損失、広帯域、小型等の特性が求め
られ、これらの特性を満たすデバイスとして単相一方向
性変換器をもつ伝送型表面弾性波(SAW)フィルタが
実用化されている。単相一方向性フィルタにおいては、
励振波と反射波との位相差が、前方(順方向)には同相
となり2つの波が強め合い、反対方向(逆方向)では2つ
の波が打ち消しあうため前方方向のみに表面弾性波が強
く励振される。これにより、送信電極と受信電極の一方
向性の向きを向かい合わせる事により、理論的には1dB
以下の低損失フィルタを実現する事が可能となる。
2. Description of the Related Art In recent years, mobile communication devices such as mobile phones and mobile terminals have been widely used. Filters used in these terminals are required to have characteristics such as low loss, wide band, and small size. As a device satisfying the above characteristics, a transmission type surface acoustic wave (SAW) filter having a single-phase unidirectional converter has been put to practical use. In a single-phase unidirectional filter,
The phase difference between the excitation wave and the reflected wave is in phase in the forward direction (forward direction), and the two waves strengthen each other. In the opposite direction (reverse direction), the two waves cancel each other out, so the surface acoustic wave is strong only in the forward direction. Excited. This allows the transmission electrode and the reception electrode to face each other in one direction, theoretically 1 dB.
The following low-loss filter can be realized.

【0003】一方向性変換器を実現する手法としては、
非対称な電極構造を用いたEWC-SPUDT、DART−SPUDTが考
案されている。電極構造の非対称性を利用したこれらの
フィルタのほかに、自然一方向性フィルタ(NSPUDT:N
atural Single Phase Unidirecitonal Transduce
r)というものがある。自然一方向性フィルタは、基板
結晶の非対称性を利用し一方向性を実現する。このた
め、正規型インターディジタルトランスジューサ(ID
T)構造と呼ばれる、電極幅及び電極間隔がともにλ/
4となる正負電極指が周期的に複数連続的に配置された
構造の変換器で一方向性が実現できる。
[0003] As a technique for realizing a unidirectional converter,
EWC-SPUDT and DART-SPUDT using an asymmetric electrode structure have been devised. In addition to these filters using the asymmetry of the electrode structure, a natural unidirectional filter (NSPUDT: N
atural Single Phase Uni d irecitonal Transduce
r). The natural one-way filter realizes one-way by utilizing the asymmetry of the substrate crystal. For this reason, a regular interdigital transducer (ID
T) The electrode width and the electrode interval are both λ /
Unidirectionality can be realized with a converter having a structure in which a plurality of positive and negative electrode fingers 4 are periodically and continuously arranged.

【0004】ST−X水晶基板上に、正規型IDTを形
成しても正規型IDTを励振駆動することにより発生す
る弾性表面波はST−X水晶基板上において正規型ID
Tの双方向に伝搬してしまい、一方向性を実現できな
い。つまり、自然一方向性とは、圧電基板表面に正規型
IDTを形成したときに一方向に弾性表面波が強く励振
される基板の特性を示すものである。この自然一方向性
基板を用いる弾性表面波変換器では、基板自体の異方性
を利用しているため送信側変換器と受信側変換器の順方
向を向かい合わせる事が出来ない。送受信電極間で一方
向性を向かい合わせる事ができなけれは低損失なフィル
タを作製することは不可能である。
[0004] Even when a regular IDT is formed on an ST-X quartz substrate, surface acoustic waves generated by driving the regular IDT are excited by the regular IDT on the ST-X quartz substrate.
It propagates in both directions of T and cannot realize one-way. That is, the natural one-way characteristic indicates a characteristic of a substrate in which a surface acoustic wave is strongly excited in one direction when a regular type IDT is formed on the surface of a piezoelectric substrate. In the surface acoustic wave converter using the natural unidirectional substrate, since the anisotropy of the substrate itself is used, it is not possible to face the forward direction of the transmitting converter and the receiving converter. Unless the transmitting and receiving electrodes can face each other in one direction, it is impossible to produce a low-loss filter.

【0005】この問題を解決する手段として、竹内氏ら
によって自然一方向性の方向を反転させる電極構造とし
て、特開平8−125484号公報において、幅がほぼ
λ/8でλのピッチで配列された正および負の電極指
と、この電極指の間にほぼλ/8のエッジ間隔で配置さ
れた電極幅が3/8λの浮き電極によって構成された表
面弾性波変換器が提案されている。
As a means for solving this problem, an electrode structure for reversing the natural unidirectional direction by Takeuchi et al. Is disclosed in Japanese Unexamined Patent Publication No. 8-125484. There has been proposed a surface acoustic wave converter composed of positive and negative electrode fingers and floating electrodes having an electrode width of 3 / 8λ arranged between the electrode fingers at an edge interval of approximately λ / 8.

【0006】[0006]

【発明が解決しようとする課題】表面弾性波デバイスの
特性は、基板として用いられる圧電結晶の特性に依存し
ている。この圧電結晶の特性として電気機械結合係数が
大きいということと、周波数温度特性が良好であること
が重要となる。現在、この2つの特性を同時に満足する
結晶としてランガサイトが注目されている。オイラー角
表示で(φ,θ,ψ)とした時に−5°≦φ≦5°,1
35°≦θ≦145°,20°≦ψ≦30°の範囲内に
あるランガサイトは電気機械結合係数が0.3%〜0.
4%であり、周波数温度特性は2次の依存性を示し、室温
付近に頂点温度が存在する。電気機械結合係数はST水
晶の約3倍であり、周波数温度特性における2次温度係数
は水晶の2倍程度と非常に良好な特性をもち、低損失な
表面弾性波フィルタへの応用が期待される結晶である。
The characteristics of a surface acoustic wave device depend on the characteristics of a piezoelectric crystal used as a substrate. It is important for the piezoelectric crystal to have a large electromechanical coupling coefficient and good frequency temperature characteristics. At present, langasite is attracting attention as a crystal that satisfies these two characteristics simultaneously. −5 ° ≦ φ ≦ 5 °, 1 when Euler angle is expressed as (φ, θ, ψ)
Langasite within the range of 35 ° ≦ θ ≦ 145 ° and 20 ° ≦ ψ ≦ 30 ° has an electromechanical coupling coefficient of 0.3% to 0.1%.
4%, the frequency-temperature characteristic shows second-order dependence, and a peak temperature exists near room temperature. The electromechanical coupling coefficient is about three times that of ST quartz, and the second-order temperature coefficient in frequency temperature characteristics is about twice that of quartz, which is very good, and is expected to be applied to low-loss surface acoustic wave filters. Crystal.

【0007】オイラー角表示で前記範囲内にあるランガ
サイト単結晶はNSPUDT特性をもち、この基板を用いて低
損失フィルタを実現するには、送受信電極で一方向性の
向きが対向するような電極構造を構成しなければならな
い。そのために、送信電極に電極幅及び電極間隔がとも
にλ/4となる正負電極指が周期的に複数連続的に配置さ
れた正規型IDTを用いた場合には、受信電極には一方
向性が反転した構造を用いなければならないが、竹内氏
らより提案されている電極構造では、フィルタの低損失
化という要求にこたえることが出来ない。本発明はこの
ような事情に鑑みてなされたものであり、より低損失な
伝送型表面弾性波(SAW)フィルタを構成することを
可能とした、表面弾性波素子を提供することを目的とす
る。
The langasite single crystal within the above range in the Euler angle display has NSPUDT characteristics. To realize a low-loss filter using this substrate, it is necessary to use an electrode in which the transmitting and receiving electrodes are unidirectionally opposed. The structure must be constructed. Therefore, when a normal type IDT in which a plurality of positive and negative electrode fingers whose electrode width and electrode interval are both λ / 4 is periodically and continuously arranged is used for the transmitting electrode, the receiving electrode has a unidirectionality. Although an inverted structure must be used, the electrode structure proposed by Takeuchi et al. Cannot meet the demand for lower loss of the filter. The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a surface acoustic wave device capable of forming a transmission-type surface acoustic wave (SAW) filter with lower loss. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、自然一方向性を有するよ
うに基板方位及び表面弾性波伝搬方向が選択されたラン
ガサイト単結晶基板表面に形成される、正電極指と負電
極指とその間に配置される浮き電極からなる表面弾性波
変換器を有する表面弾性波素子であって、前記表面弾性
波変換器は自然一方向性が反転するように表面弾性波の
伝搬方向に沿って、前記各電極が形成されていることを
特徴とする。
In order to achieve the above object, the present invention is directed to a langasite single crystal having a substrate orientation and a surface acoustic wave propagation direction selected to have a natural unidirectionality. A surface acoustic wave device having a surface acoustic wave converter formed on a substrate surface and including a positive electrode finger, a negative electrode finger, and a floating electrode disposed therebetween, wherein the surface acoustic wave converter is naturally unidirectional. Each of the electrodes is formed along the propagation direction of the surface acoustic wave so that is inverted.

【0009】また請求項2に記載の発明は、請求項1に
記載の表面弾性波素子において、前記ランガサイト単結
晶基板は、基板方位および基板方位及び表面弾性波伝搬
方向をオイラー角表示で(φ,θ,ψ)とした時に−5
°≦φ≦5°,135°≦θ≦145°,20°≦ψ≦
30°の範囲内にあること、またはこれと結晶学的に等
価な方位であることを特徴とする。
According to a second aspect of the present invention, in the surface acoustic wave device according to the first aspect, the langasite single crystal substrate has a substrate orientation, a substrate orientation, and a surface acoustic wave propagation direction expressed in Euler angles ( −5 when φ, θ, ψ)
° ≦ φ ≦ 5 °, 135 ° ≦ θ ≦ 145 °, 20 ° ≦ ψ ≦
It is characterized by being in the range of 30 ° or a crystallographically equivalent orientation.

【0010】また請求項3に記載の発明は、請求項2に
記載の表面弾性波素子において、前記表面弾性波変換器
における前記正電極指、負電極指および浮き電極の距離
関係は、表面弾性波の波長をλとしたときに、前記正電
極指および負電極指の幅がおよそλ/8で両者の電極指
の中心間隔がおよそ6/8λとなり、正電極指の中心と
浮き電極の中心間距離gが13/40λ≦g≦14/4
0λとなり、且つ浮き電極の幅Wが11/40λ≦W≦
13/40λとなることを特徴とする。
According to a third aspect of the present invention, in the surface acoustic wave device according to the second aspect, the distance relationship between the positive electrode finger, the negative electrode finger, and the floating electrode in the surface acoustic wave converter is a surface elastic wave element. Assuming that the wavelength of the wave is λ, the width of the positive electrode finger and the negative electrode finger is approximately λ / 8, the center interval between the two electrode fingers is approximately 6 / 8λ, and the center of the positive electrode finger and the center of the floating electrode are set. The distance g is 13 / 40λ ≦ g ≦ 14/4
0λ, and the width W of the floating electrode is 11 / 40λ ≦ W ≦
13 / 40λ.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。まずランガサイト圧
電基板上に、電極幅及び電極間隔がともにλ/4となる正
負電極指が周期的に複数連続的に配置された、いわゆる
正規型電極(正規型IDT)を形成し、これを励振駆動
したときに、自然一方向性を有する原理について図1を
参照して説明する。図1に正規型電極の模式図を示す。
同図において、この正規型電極は、正電極1および負電
極2からなり、正電極1を構成する正電極指1Aと、こ
の正電極指1Aの左右に配置された負電極2を構成する
負電極指2A及び2Bとの間に電界が発生する。このと
きに、この電界によって励振されることによりランガサ
イト圧電基板に発生した弾性表面波の励振中心は正電極
指1Aのほぼ中心Aとなる。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, on a langasite piezoelectric substrate, a so-called regular electrode (regular IDT) in which a plurality of positive and negative electrode fingers whose electrode width and electrode interval are both λ / 4 are periodically and continuously arranged, is formed. The principle of having a natural one-way property when the excitation drive is performed will be described with reference to FIG. FIG. 1 shows a schematic diagram of a regular electrode.
In FIG. 1, the normal electrode includes a positive electrode 1 and a negative electrode 2, and a positive electrode finger 1A constituting the positive electrode 1 and a negative electrode 2 constituting left and right sides of the positive electrode finger 1A. An electric field is generated between the electrode fingers 2A and 2B. At this time, the excitation center of the surface acoustic wave generated on the langasite piezoelectric substrate by being excited by this electric field becomes substantially the center A of the positive electrode finger 1A.

【0012】また、この電極構造において、周期的に配
置されている電極幅λ/4の電極指が表面弾性波の反射
源となる。反射は音響インピーダンスの不連続に起因す
ることから、それぞれの電極指の端部で表面弾性波が反
射する。このように電極指の両端部の2箇所で表面弾性
波が反射するだが、等価的に電極指の中心で反射すると
考えて支障がない。このとき、反射波の位相が変化す
る。この変化量は、圧電基板の種類とその切断面と表面
弾性波の伝搬方向、さらに電極材料とその厚さに依存す
る。例えば圧電基板にSTカットX伝搬水晶、金属材料
としてAlを用いたときには反射波の位相が90°遅れ
る、すなわち位相変化量が90°となる。
In this electrode structure, periodically arranged electrode fingers having an electrode width of λ / 4 serve as a reflection source of surface acoustic waves. Since the reflection is caused by the discontinuity of the acoustic impedance, the surface acoustic wave is reflected at the end of each electrode finger. As described above, the surface acoustic waves are reflected at the two positions at both ends of the electrode finger, but there is no problem in that the surface acoustic wave is equivalently reflected at the center of the electrode finger. At this time, the phase of the reflected wave changes. The amount of change depends on the type of the piezoelectric substrate, the cut surface thereof, the propagation direction of the surface acoustic wave, and the electrode material and its thickness. For example, when ST-cut X-propagating quartz crystal is used for the piezoelectric substrate and Al is used as the metal material, the phase of the reflected wave is delayed by 90 °, that is, the amount of phase change is 90 °.

【0013】これに対して圧電結晶として基板方位及び
表面弾性波伝搬方向をオイラー角表示で(φ,θ,ψ)
とした時に−5°≦φ≦5°,135°≦θ≦145
°,20°≦ψ≦30°の範囲内にある、またはこれと
結晶学的に等価な方位であるランガサイト単結晶を基板
として用い、更に電極材料としてAlを用いて正規型IDT
を形成したときに、電極指によって反射される表面弾性
波の位相変化量は−90+2αとなる。この2αを反射
時の位相ずれと考えたときに、この2αに相当する分だ
け反射中心が電極指の中心からずれたとして反射中心を
定義すると、反射中心のずれδは
On the other hand, as a piezoelectric crystal, the substrate direction and the surface acoustic wave propagation direction are expressed in Euler angles (φ, θ, ψ).
-5 ° ≦ φ ≦ 5 °, 135 ° ≦ θ ≦ 145
°, 20 ° ≤ ψ ≤ 30 °, or a langasite single crystal having a crystallographically equivalent orientation as a substrate, and using Al as an electrode material to form a normal type IDT.
Is formed, the phase change amount of the surface acoustic wave reflected by the electrode finger is -90 + 2α. When this 2α is considered as a phase shift at the time of reflection, if the reflection center is defined as being shifted from the center of the electrode finger by an amount corresponding to 2α, the shift δ of the reflection center becomes

【数1】 となる。δが正のときには電極指の中心から右側に、負
のときは左側に反射中心がずれる。
(Equation 1) Becomes When δ is positive, the reflection center is shifted to the right from the center of the electrode finger, and when δ is negative, the reflection center is shifted to the left.

【0014】反射中心と電極指の中心のずれの大きさが
λ/8のときに、正電極指1Aで励振された波と、隣接
する負電極指2Aの反射中心B、正電極指1Aの端部Cで
反射された波の点Aでの位相を図1を用いて考えると、
A→B→Aの経路で反射する波のA点での位相は、
When the magnitude of deviation between the reflection center and the center of the electrode finger is λ / 8, the wave excited by the positive electrode finger 1A and the reflection center B of the adjacent negative electrode finger 2A and the reflection center B of the positive electrode finger 1A Considering the phase at the point A of the wave reflected at the end C with reference to FIG.
The phase at point A of the wave reflected on the path A → B → A is

【数2】 となり、励振波と同位相である。これに対して、A→C
→Aの経路で反射する波のA点での位相は
(Equation 2) And are in phase with the excitation wave. On the other hand, A → C
→ The phase at point A of the wave reflected on the path of A is

【数3】 となり、励振波と逆位相である。このために、図1の右
方向に表面弾性波が強く励振されることになり、一方向
性が実現される。
(Equation 3) Which is in antiphase with the excitation wave. For this reason, the surface acoustic wave is strongly excited in the right direction in FIG. 1, and the unidirectionality is realized.

【0015】以上のことから、図2に示すように励振中
心と反射中心の距離が、
From the above, as shown in FIG. 2, the distance between the excitation center and the reflection center is

【数4】 となったときに、励振中心から反射中心の向きに一方向
性を実現することが可能となる。つまり、任意の結晶
に、表面弾性波が励振可能な周期電極構造(IDT)を
形成したときに、その表面弾性波変換器が一方性を有す
るか否かは、励振中心と反射中心の位置が特定できれば
断定できる。この励振中心と反射中心の位置はモード結
合理論を用いたときのモード結合パラメータによって記
述される。
(Equation 4) Then, it becomes possible to realize unidirectionality in the direction from the excitation center to the reflection center. That is, when a periodic electrode structure (IDT) capable of exciting surface acoustic waves is formed on an arbitrary crystal, whether the surface acoustic wave converter has one-sidedness depends on the positions of the excitation center and the reflection center. If it can be identified, it can be determined. The positions of the excitation center and the reflection center are described by mode coupling parameters when the mode coupling theory is used.

【0016】モード結合パラメータは自己結合係数、モ
ード間結合係数、励振係数、静電容量Cからなる。ここ
で、モード間結合係数は
The mode coupling parameters include a self-coupling coefficient, an inter-mode coupling coefficient, an excitation coefficient, and a capacitance C. Here, the coupling coefficient between modes is

【数5】 と表現され、の位相分が基準面からの反射中心のずれに
相当し、そのずれの大きさが(1)式で表される。また、
励振係数ζは
(Equation 5) Where the phase component corresponds to the shift of the reflection center from the reference plane, and the magnitude of the shift is expressed by equation (1). Also,
The excitation coefficient ζ

【数6】 となり、基準面から(Equation 6) And from the reference plane

【数7】 だけ、離れたところに励振中心があると考えてよい。よ
って、反射中心と励振中心の差が(4)式を満たすために
は、モード間結合係数と励振係数ζとの位相の間に
(Equation 7) However, it can be considered that there is an excitation center at a distance. Therefore, in order for the difference between the reflection center and the excitation center to satisfy Equation (4), the phase between the inter-mode coupling coefficient and the excitation coefficient ζ

【数8】 という関係があればよい。(Equation 8) It is only necessary that there be a relationship.

【0017】ここで、竹内氏より特開平8−12548
4号公報において提案された一方向性反転電極構造(TCS
-RDT:Tranduction Center Shift type Reversal of Di
rectivity Transducer 構造と呼ぶ)と本発明の実施の形
態に係る表面弾性波素子の電極構造における励振中心と
反射中心の位置について、モード結合理論より解析した
結果を示す。ここで示すランガサイト基板の切断面・伝
搬方向はオイラー角表示で(0°,140°,24°)
である。また、電極材料としてAlを用いている。図3にT
CS-RDT構造を、図4に本発明の実施の形態に係る表面弾
性波素子の電極構造を示す。
Here, Takeuchi discloses a technique disclosed in Japanese Unexamined Patent Publication No.
No. 4 publication discloses a unidirectional inversion electrode structure (TCS
-RDT: Translation Center Shift type Reversal of Di
A result obtained by analyzing the positions of the excitation center and the reflection center in the electrode structure of the surface acoustic wave device according to the embodiment of the present invention by the mode coupling theory is shown. The cut surface and propagation direction of the Langasite substrate shown here are represented by Euler angles (0 °, 140 °, 24 °)
It is. In addition, Al is used as an electrode material. Figure 3 shows T
FIG. 4 shows a CS-RDT structure and an electrode structure of a surface acoustic wave device according to an embodiment of the present invention.

【0018】図3においてTCS-RDT構造の電極は、正電
極10と、負電極20とからなり、正電極10を構成す
る正電極指12、14と、負電極20を構成する負電極
指22、24は、共に電極幅がλ/8であり、正電極指
12と負電極指24との中心間隔は6λ/8である。ま
た正電極指12と負電極指24との間に設けられた浮き
電極30は、電極幅が3λ/8であり、正電極指12と
浮き電極30との中心間隔gは3λ/8である。
In FIG. 3, the electrodes of the TCS-RDT structure include a positive electrode 10 and a negative electrode 20, and the positive electrode fingers 12 and 14 constituting the positive electrode 10 and the negative electrode fingers 22 constituting the negative electrode 20. , 24 have an electrode width of λ / 8, and the center distance between the positive electrode finger 12 and the negative electrode finger 24 is 6λ / 8. The floating electrode 30 provided between the positive electrode finger 12 and the negative electrode finger 24 has an electrode width of 3λ / 8, and the center distance g between the positive electrode finger 12 and the floating electrode 30 is 3λ / 8. .

【0019】これに対し、本発明の実施の形態に係る表
面弾性波素子に用いられる表面弾性波変換器の電極は、
図4に示すように正電極100と、負電極200とから
なり、正電極100を構成する正電極指102、104
と、負電極200を構成する負電極指202、204
は、共に電極幅がλ/8であり、正電極指102と負電
極指204との中心間隔は6λ/8である。また正電極
指102と負電極指204との間に設けられた浮き電極
300は、電極幅が11λ/40であり、正電極指10
2と浮き電極300との中心間隔gは13λ/40であ
る。また図3、図4において励振係数ζとモード間結合
係数の位相の基準面はともに、λ/8幅の負電極指2
4、204の中心である。
On the other hand, the electrodes of the surface acoustic wave converter used in the surface acoustic wave device according to the embodiment of the present invention are:
As shown in FIG. 4, the positive electrode fingers 102 and 104, which include the positive electrode 100 and the negative electrode 200 and constitute the positive electrode 100.
And negative electrode fingers 202 and 204 constituting the negative electrode 200
Have an electrode width of λ / 8, and the center distance between the positive electrode finger 102 and the negative electrode finger 204 is 6λ / 8. The floating electrode 300 provided between the positive electrode finger 102 and the negative electrode finger 204 has an electrode width of 11λ / 40,
The center distance g between the floating electrode 2 and the floating electrode 300 is 13λ / 40. 3 and 4, both the excitation coefficient ζ and the reference plane of the phase of the inter-mode coupling coefficient are negative electrode fingers 2 having a λ / 8 width.
4, 204, the center.

【0020】また、図5にTCS-RDT構造及び本発明の実施
の形態に係る表面弾性波素子に用いられる表面弾性波変
換器の電極構造のモード間結合係数の位相項2αの電極
膜厚依存性を、図6にTCS-RDT構造及び本発明の電極構
造の励振係数ζの位相項βの電極膜厚依存性を、それぞ
れ示す。図7に、励振係数とモード間結合係数の位相差
(α−β)の電極膜厚依存性を示す。位相差(α−β)
の符号が負となるのは、TCS-RDT構造の一方向性の向き
が自然一方向性の向きと逆になることを意味する。この
結果から、TCS-RDT構造では規格化電極膜厚H/λ(H
は電極膜厚)が0から0.05の間で、の大きさが、0
°付近から−30°の間で推移し、式(8)から明らか
なように一方向性を最適化する角度である45°まで
達しない。これに対し、本発明の実施の形態に係る電極
構造を用いることにより、規格化膜厚が約0.013の
ときに位相差(α−β)の値が、一方向性を最適化する
45°となることが判る。
FIG. 5 shows the dependence of the phase term 2α on the phase term 2α of the inter-mode coupling coefficient of the TCS-RDT structure and the electrode structure of the surface acoustic wave converter used in the surface acoustic wave device according to the embodiment of the present invention. FIG. 6 shows the electrode thickness dependence of the phase term β of the excitation coefficient の of the TCS-RDT structure and the electrode structure of the present invention, respectively. FIG. 7 shows the electrode thickness dependence of the phase difference (α-β) between the excitation coefficient and the inter-mode coupling coefficient. Phase difference (α-β)
A negative sign means that the unidirectional direction of the TCS-RDT structure is opposite to the natural unidirectional direction. From this result, in the TCS-RDT structure, the normalized electrode thickness H / λ (H
Is the electrode thickness) between 0 and 0.05, and the size of the
° remained between -30 ° from the vicinity, it is at an angle to optimize the unidirectional As is apparent from equation (8) - does not reach 45 °. In contrast, by using the electrode structure according to the embodiment of the present invention, when the normalized film thickness is about 0.013, the value of the phase difference (α-β) optimizes the unidirectionality.
- It can be seen that the 45 °.

【0021】図3及び図4の結果をもとにTCS-RDT構造
(図3)に対して励振中心と反射中心の位置についての
電極膜厚依存性を図8に、本発明の実施の形態に係る表
面弾性波素子に用いられる表面弾性波変換器の電極構造
(図4)に対して励振中心と反射中心の位置についての
電極膜厚依存性を図9に示す。図8、図9の各図におい
て上部には電極構造の平面図が、下部のグラフ中には表
面弾性波の伝搬方向の位置関係を明確にするために電極
構造の断面図を示してある。またこれらの図において、
反射中心は○で、励振中心は×で示してある。
FIG. 8 shows the dependence of the positions of the excitation center and the reflection center on the electrode film thickness for the TCS-RDT structure (FIG. 3) based on the results of FIGS. 3 and 4, and FIG. FIG. 9 shows the electrode thickness dependence of the positions of the excitation center and the reflection center with respect to the electrode structure (FIG. 4) of the surface acoustic wave converter used in the surface acoustic wave device according to the first embodiment. 8 and 9, a plan view of the electrode structure is shown in the upper part, and a cross-sectional view of the electrode structure is shown in the lower graph in order to clarify the positional relationship in the propagation direction of the surface acoustic wave. Also in these figures,
The center of reflection is indicated by ○, and the center of excitation is indicated by ×.

【0022】図9に示すように、本発明の実施の形態に
係る表面弾性波素子に用いられる表面弾性波変換器の電
極構造では、反射中心は励振中心に対して左側に存在
し、両者の距離の差は、およそλ/8になるとなるため
に一方向性の向きは紙面左側となり、自然一方向性の向
きに対して一方向性が反転することが分かる。なお、弾
性表面波変換器における前記正電極指、負電極指および
浮き電極の距離関係は、弾性表面波の波長をλとしたと
きに、前記正電極指および負電極指の幅がおよそλ/8
で両者の電極指の中心間隔がおよそ6/8λとなり、正
電極指の中心と浮き電極の中心間距離gが13/40λ
≦g≦14/40λとなり、且つ浮き電極の幅Wが11
/40λ≦W≦13/40λであれば自然一方向性の向
きに対して一方向性を反転させることができる。
As shown in FIG. 9, in the electrode structure of the surface acoustic wave transducer used in the surface acoustic wave device according to the embodiment of the present invention, the reflection center exists on the left side with respect to the excitation center, Since the difference between the distances is approximately λ / 8, the one-way direction is on the left side of the paper, and it can be seen that the one-way direction is reversed with respect to the natural one-way direction. Note that the distance relationship between the positive electrode finger, the negative electrode finger, and the floating electrode in the surface acoustic wave converter is such that when the wavelength of the surface acoustic wave is λ, the width of the positive electrode finger and the negative electrode finger is approximately λ / 8
Thus, the center distance between the two electrode fingers is approximately 6 / 8λ, and the distance g between the center of the positive electrode finger and the center of the floating electrode is 13 / 40λ.
≦ g ≦ 14 / 40λ, and the width W of the floating electrode is 11
If / 40λ ≦ W ≦ 13 / 40λ, the unidirectionality can be reversed with respect to the natural unidirectional direction.

【0023】次に、本発明の実施の形態に係る表面弾性
波素子に用いられる表面弾性波変換器の電極構造を用い
て構成した伝送型表面弾性波フィルタを2種類試作し、
その特性を評価した結果を示す。用いたランガサイト基
板の切断面・伝搬方向はオイラー角表示で(0°,14
0°,24°)である。また、電極材料として、Alを用
いた。供試品としての第1の伝送型表面弾性波フィルタ
(フィルタ#1と記す。)の構成を図10に示す。同図
において、ランガサイト基板300上には表面弾性波の
伝搬方向(+X方向)に沿って、送信電極としての正規
型IDT310と、受信電極としてのIDT320とが
設けられている。正規型IDT310は、正電極312
と負電極314からなり、電極幅及び電極間隔がともに
λ/4となる正電極指313と負電極指315が周期的
に複数連続的に配置されるように形成され、NPUDT特性
を利用して一方向性を実現している。
Next, two types of transmission type surface acoustic wave filters constructed using the electrode structure of the surface acoustic wave converter used in the surface acoustic wave device according to the embodiment of the present invention were prototyped,
The results of evaluating the characteristics are shown. The cut surface and propagation direction of the used Langasite substrate are represented by Euler angles (0 °, 14 °).
0 °, 24 °). In addition, Al was used as an electrode material. FIG. 10 shows the configuration of a first transmission type surface acoustic wave filter (referred to as filter # 1) as a sample under test. In the figure, a normal type IDT 310 as a transmission electrode and an IDT 320 as a reception electrode are provided on the langasite substrate 300 along the propagation direction (+ X direction) of the surface acoustic wave. The regular type IDT 310 has a positive electrode 312.
And the negative electrode 314 are formed so that a plurality of positive electrode fingers 313 and a plurality of negative electrode fingers 315 whose electrode width and electrode interval are both λ / 4 are periodically and continuously arranged, and utilizing the NPUDT characteristic. It is one-way.

【0024】また受信電極としてのIDT320は本発
明の電極構造を用いており、正電極322、負電極32
4及び浮き電極330からなる。ここで正電極指323
及び負電極指325の電極幅がλ/8で両者の電極指3
23、325の中心間隔が6λ/8となり、正電極指3
23の中心と浮き電極330の中心間距離gが13λ/
40となり、且つ浮き電極330の幅Wが11λ/40
である。この受信電極の構造は図4に示す構造と同一で
ある。
The IDT 320 as a receiving electrode uses the electrode structure of the present invention, and includes a positive electrode 322 and a negative electrode 32.
4 and the floating electrode 330. Here, the positive electrode finger 323
And the electrode width of the negative electrode finger 325 is λ / 8 and both electrode fingers 3
23, 325 becomes 6λ / 8, and the positive electrode finger 3
23 and the distance g between the centers of the floating electrodes 330 is 13λ /
40, and the width W of the floating electrode 330 is 11λ / 40.
It is. The structure of this receiving electrode is the same as the structure shown in FIG.

【0025】供試品としての第2の伝送型表面弾性波フ
ィルタ(フィルタ#2と記す。)は、送信電極には前記
第1の伝送型表面弾性波フィルタと同じ正規型IDTを
用い、受信電極には図4に示したTCS-RDT構造のIDT
を用いた。両フィルタは、図10に示されるように送受
信電極の一方向性が対向するように配置されている。ま
たランガサイト基板300の両端には、端部での弾性表
面波の反射を吸収するためのダンパー剤340が塗布さ
れている。フィルタ#1、2の電極指の周期長λは、3
2.15μmで電極Al膜厚は5000Åである。送受信
電極には間引き重み付けを施している。
The second transmission type surface acoustic wave filter (hereinafter referred to as filter # 2) as a test sample uses the same normal type IDT as the first transmission type surface acoustic wave filter for the transmission electrode and receives the same. The electrode has an IDT of the TCS-RDT structure shown in FIG.
Was used. As shown in FIG. 10, both filters are arranged so that the one-way characteristics of the transmitting and receiving electrodes are opposed to each other. A damper agent 340 for absorbing the reflection of the surface acoustic wave at the end is applied to both ends of the langasite substrate 300. The cycle length λ of the electrode fingers of the filters # 1 and 2 is 3
The electrode Al film thickness is 5000 ° at 2.15 μm. The transmitting and receiving electrodes are weighted by thinning.

【0026】フィルタ#1及びフィルタ#2の周波数特
性の測定結果を図11および図12に示す。図12は図
11に示す周波数特性おいてフィルタの通過域付近を、
拡大した図である。図11及び図12から本発明フィル
タの通過帯域挿入損失、帯域内リップル、帯域内遅延リ
ップルともに改善されていることが判る。具体的には表
1に示すように、通過帯域挿入損失はフィルタ#1が−
8.0dBであるのに対して、フィルタ#2は−9.0
dBであり、帯域内リップルはフィルタ#1が0.24
dBであるのに対して、フィルタ#2では0.58であ
る。また帯域内遅延リップルはフィルタ#1が69.5
nsecであるのに対して、フィルタ#2では80.0nsec
である。
FIGS. 11 and 12 show the measurement results of the frequency characteristics of the filters # 1 and # 2. FIG. 12 shows the frequency characteristic shown in FIG.
It is the figure which expanded. It can be seen from FIGS. 11 and 12 that the pass band insertion loss, in-band ripple, and in-band delay ripple of the filter of the present invention are improved. Specifically, as shown in Table 1, the passband insertion loss of the filter # 1 is-
Whereas the filter # 2 is 8.0 dB, the filter # 2 is -9.0.
and the in-band ripple was 0.24 for filter # 1.
In contrast to dB, it is 0.58 in the filter # 2. The filter # 1 has 69.5 in-band delay ripples.
80.0 nsec for filter # 2
It is.

【0027】[0027]

【発明の効果】以上に説明したように、本発明によれ
ば、自然一方向性を有するように基板方位及び表面弾性
波伝搬方向が選択されたランガサイト単結晶基板表面に
形成される、正電極指と負電極指とその間に配置される
浮き電極からなる表面弾性波変換器を有する表面弾性波
素子であって、前記弾性表面波変換器は自然一方向性が
反転するように表面弾性波の伝搬方向に沿って、前記各
電極を形成するようにしたので、電極構造を特定するた
めのパラメータ、すなわち前記正電極指と負電極指の
幅、前記正電極指と負電極指の中心間隔、前記正電極指
と浮き電極の中心間隔、前記浮き電極の幅を適切に選択
することにより、低損失の伝送型表面弾性波フィルタを
構成することが可能となる。
As described above, according to the present invention, according to the present invention, it is possible to form a positive electrode on a langasite single crystal substrate whose substrate orientation and surface acoustic wave propagation direction are selected so as to have a natural unidirectionality. A surface acoustic wave device having a surface acoustic wave converter comprising an electrode finger, a negative electrode finger, and a floating electrode disposed therebetween, wherein the surface acoustic wave converter has a surface acoustic wave such that a natural unidirectionality is reversed. The respective electrodes are formed along the propagation direction, so parameters for specifying the electrode structure, that is, the width of the positive electrode finger and the negative electrode finger, the center distance between the positive electrode finger and the negative electrode finger, By appropriately selecting the center distance between the positive electrode finger and the floating electrode and the width of the floating electrode, a low-loss transmission type surface acoustic wave filter can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正規型IDTの電極構造を示す平面図。FIG. 1 is a plan view showing an electrode structure of a regular type IDT.

【図2】 図1に示す正規型IDTにより一方向性を実
現するための励振中心と反射中心の位置関係を示す説明
図。
FIG. 2 is an explanatory diagram showing a positional relationship between an excitation center and a reflection center for realizing unidirectionality by the normal type IDT shown in FIG.

【図3】 従来のTCS-RDT 構造のIDTを示す平面図。FIG. 3 is a plan view showing an IDT having a conventional TCS-RDT structure.

【図4】 本発明の実施の形態に係る表面弾性波素子に
用いられるIDTの電極構造を示す平面図。
FIG. 4 is a plan view showing an electrode structure of the IDT used in the surface acoustic wave device according to the embodiment of the present invention.

【図5】 モード間結合係数κ12の位相項の電極膜厚依
存性を示す特性図。
[5] intermodal coupling coefficient kappa 12 characteristic diagram showing the electrode film thickness dependency of the phase term.

【図6】 励振係数ζの位相項の電極膜厚依存性を示す
特性図。
FIG. 6 is a characteristic diagram showing the dependence of the phase term of the excitation coefficient 電極 on the electrode film thickness.

【図7】 モード間結合係数と励振係数の位相差(α−
β)の電極膜厚依存性を示す特性図。
FIG. 7 shows the phase difference (α−
FIG. 6 is a characteristic diagram showing the dependence of β) on the electrode film thickness.

【図8】 TCS-RDT 構造のIDTにおける励振中心と反
射中心の位置の電極膜厚依存性を示す特性図。
FIG. 8 is a characteristic diagram showing the electrode thickness dependence of the positions of the excitation center and the reflection center in the IDT of the TCS-RDT structure.

【図9】 本発明の実施の形態に係る表面弾性波素子に
用いられるIDTにおける励振中心と反射中心の位置の
電極膜厚依存性を示す特性図。
FIG. 9 is a characteristic diagram showing the electrode thickness dependence of the positions of the excitation center and the reflection center in the IDT used in the surface acoustic wave device according to the embodiment of the present invention.

【図10】 本発明を適用した伝送型表面弾性波フィル
タの構成を示す平面図。
FIG. 10 is a plan view showing a configuration of a transmission type surface acoustic wave filter to which the present invention is applied.

【図11】 本発明を適用した伝送型表面弾性波フィル
タと、TCS-RDT 構造のIDTを受信電極とした伝送型表
面弾性波フィルタの周波数特性を示す特性図。
FIG. 11 is a characteristic diagram showing frequency characteristics of a transmission type surface acoustic wave filter to which the present invention is applied and a transmission type surface acoustic wave filter using an IDT having a TCS-RDT structure as a reception electrode.

【図12】 図11に示す周波数特性おいてフィルタの
通過域付近を、拡大した特性図。
FIG. 12 is an enlarged characteristic diagram of the vicinity of the pass band of the filter in the frequency characteristics shown in FIG. 11;

【符号の説明】[Explanation of symbols]

1、 10、100 正電極 1A 、12、14、102、104 正電極指 2、20、200 負電極 2A、2B、22、24、202,204 負電極指 1, 10, 100 Positive electrode 1A, 12, 14, 102, 104 Positive electrode finger 2, 20, 200 Negative electrode 2A, 2B, 22, 24, 202, 204 Negative electrode finger

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J097 AA01 AA15 BB11 CC15 DD04 DD05 DD10 DD28 FF01 GG01 GG05 KK04 KK05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5J097 AA01 AA15 BB11 CC15 DD04 DD05 DD10 DD28 FF01 GG01 GG05 KK04 KK05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自然一方向性を有するように基板方位及
び表面弾性波伝搬方向が選択されたランガサイト単結晶
基板表面に形成される、正電極指と負電極指とその間に
配置される浮き電極からなる表面弾性波変換器を有する
表面弾性波素子であって、前記弾性表面波変換器は自然
一方向性が反転するように表面弾性波の伝搬方向に沿っ
て、前記各電極が形成されていることを特徴とする表面
弾性波素子。
1. A positive electrode finger, a negative electrode finger, and a float disposed between the positive electrode finger and the negative electrode finger formed on the surface of a langasite single crystal substrate having a substrate orientation and a surface acoustic wave propagation direction selected to have a natural unidirectionality. A surface acoustic wave device having a surface acoustic wave converter composed of electrodes, wherein each of the electrodes is formed along the propagation direction of the surface acoustic wave such that the natural surface acoustic wave converter reverses its natural unidirectionality. A surface acoustic wave device comprising:
【請求項2】 前記ランガサイト単結晶基板は、基板方
位および基板方位及び弾性表面波伝搬方向をオイラー角
表示で(φ,θ,ψ)とした時に−5°≦φ≦5°,1
35°≦θ≦145°,20°≦ψ≦30°の範囲内に
あること、またはこれと等価な方位であることを特徴と
する請求項1に記載の表面弾性波素子。
2. The langasite single-crystal substrate has a substrate orientation, a substrate orientation, and a surface acoustic wave propagation direction expressed by Euler angles (φ, θ, ψ), −5 ° ≦ φ ≦ 5 °, 1
2. The surface acoustic wave device according to claim 1, wherein the angle is in a range of 35 ° ≦ θ ≦ 145 ° and 20 ° ≦ ψ ≦ 30 °, or an equivalent direction.
【請求項3】 前記弾性表面波変換器における前記正電
極指、負電極指および浮き電極の距離関係は、弾性表面
波の波長をλとしたときに、前記正電極指および負電極
指の幅がおよそλ/8で両者の電極指の中心間隔がおよ
そ6/8λとなり、正電極指の中心と浮き電極の中心間
距離gが13/40λ≦g≦14/40λとなり、且つ
浮き電極の幅Wが11/40λ≦W≦13/40λとな
ることを特徴とする請求項2に記載の表面弾性波素子。
3. The distance relationship between the positive electrode finger, the negative electrode finger, and the floating electrode in the surface acoustic wave converter is represented by the width of the positive electrode finger and the negative electrode finger when the wavelength of the surface acoustic wave is λ. Is approximately λ / 8, the center distance between both electrode fingers is approximately 6 / 8λ, the distance g between the center of the positive electrode finger and the center of the floating electrode is 13 / 40λ ≦ g ≦ 14 / 40λ, and the width of the floating electrode 3. The surface acoustic wave device according to claim 2, wherein W is 11 / 40λ ≦ W ≦ 13 / 40λ. 4.
JP28356199A 1999-10-04 1999-10-04 Surface acoustic wave device Expired - Fee Related JP4058859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28356199A JP4058859B2 (en) 1999-10-04 1999-10-04 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28356199A JP4058859B2 (en) 1999-10-04 1999-10-04 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2001111376A true JP2001111376A (en) 2001-04-20
JP4058859B2 JP4058859B2 (en) 2008-03-12

Family

ID=17667133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28356199A Expired - Fee Related JP4058859B2 (en) 1999-10-04 1999-10-04 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4058859B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449620B1 (en) * 2001-10-05 2004-09-22 삼성전기주식회사 Unidirectional surface acoustic wave transducer
JP2007508752A (en) * 2003-10-08 2007-04-05 アールエフ ソウ コンポーネンツ,インコーポレーテッド Single-phase unidirectional surface acoustic wave transducer and improved reflector
KR20200061409A (en) * 2017-12-27 2020-06-02 가부시키가이샤 무라타 세이사쿠쇼 Seismic filter
CN112653413A (en) * 2020-12-16 2021-04-13 武汉大学 System and method for adjusting effective electromechanical coupling coefficient of ultrahigh frequency bulk acoustic wave resonator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449620B1 (en) * 2001-10-05 2004-09-22 삼성전기주식회사 Unidirectional surface acoustic wave transducer
JP2007508752A (en) * 2003-10-08 2007-04-05 アールエフ ソウ コンポーネンツ,インコーポレーテッド Single-phase unidirectional surface acoustic wave transducer and improved reflector
KR20200061409A (en) * 2017-12-27 2020-06-02 가부시키가이샤 무라타 세이사쿠쇼 Seismic filter
KR102205186B1 (en) 2017-12-27 2021-01-20 가부시키가이샤 무라타 세이사쿠쇼 Acoustic wave filter
CN112653413A (en) * 2020-12-16 2021-04-13 武汉大学 System and method for adjusting effective electromechanical coupling coefficient of ultrahigh frequency bulk acoustic wave resonator

Also Published As

Publication number Publication date
JP4058859B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
US7489065B2 (en) Boundary acoustic wave device
US20030080831A1 (en) Surface acoustic wave devices using optimized cuts of lithium niobate (LiNbO3)
US7135805B2 (en) Surface acoustic wave transducer
JPWO2004070946A1 (en) Boundary acoustic wave device
KR101913933B1 (en) Acoustic wave device
JP3391309B2 (en) Surface wave device and communication device
JP2019140456A (en) Acoustic wave device, high frequency front end circuit, and communication device
JPH10224172A (en) Surface-wave device
KR100326620B1 (en) Elastic surface wave device
JP2002111429A (en) Elastic surface wave apparatus
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
EP1229645B1 (en) Surface acoustic wave device
JP2013168864A (en) Elastic surface wave element and electronic component
JP2005012736A (en) Surface acoustic wave converter and electronic device using same
US6534897B2 (en) Surface acoustic wave device
KR20000005736A (en) Surface acoustic wave device
US5714830A (en) Free edge reflective-type surface acoustic wave device
JP2000101383A (en) Surface acoustic wave device
JP4058859B2 (en) Surface acoustic wave device
JP3818195B2 (en) Surface acoustic wave device
JP4158289B2 (en) Method for manufacturing surface acoustic wave device
JP3014930B2 (en) Surface acoustic wave device
JP2002314363A (en) Surface acoustic wave element
JP4310928B2 (en) Surface acoustic wave device
JP2001144573A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101228

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101228

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees