JP2001110627A - Refrigerator cooled superconducting magnet - Google Patents

Refrigerator cooled superconducting magnet

Info

Publication number
JP2001110627A
JP2001110627A JP28237999A JP28237999A JP2001110627A JP 2001110627 A JP2001110627 A JP 2001110627A JP 28237999 A JP28237999 A JP 28237999A JP 28237999 A JP28237999 A JP 28237999A JP 2001110627 A JP2001110627 A JP 2001110627A
Authority
JP
Japan
Prior art keywords
coil
cooling
refrigerator
superconducting magnet
lower coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28237999A
Other languages
Japanese (ja)
Inventor
Tsuginori Hasebe
次教 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP28237999A priority Critical patent/JP2001110627A/en
Publication of JP2001110627A publication Critical patent/JP2001110627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize a refrigeration cooled superconducting magnet using a Helmholtz-type coil, for uniformly cooling the coil in upper and lower stages, and to provide a uniform and stable magnetic field space. SOLUTION: The upper and lower coils of a superconducting magnet are interlocked to the upper and lower coil-cooling flanges, respectively, the cooling stages of a refrigerator are interlocked to a heat transfer bussbar for interlocking both the cooling flanges, and the low-temperature side electrode part of an oxide superconducting current lead for energizing the upper and lower coils is provided at the outer-side part of the gap of the upper and lower coils.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機冷却型超電
導マグネットに関するもので、詳しくはヘルムホルツタ
イプのコイルを用いた冷凍機冷却型の超電導マグネット
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator-cooled superconducting magnet, and more particularly to a refrigerator-cooled superconducting magnet using Helmholtz type coils.

【0002】[0002]

【従来の技術】ヘルムホルツタイプのコイルを用いた超
電導マグネットは磁場の空間的精度が高いので、均一な
磁場空間を有する磁場が必要なときに利用されることが
多い。図3はヘルムホルツタイプの超電導コイル2を真
空容器1内において2段式GM冷凍機3からの固体熱伝
導のみで冷却するタイプの従来から公知の冷凍機冷却型
超電導マグネットの説明図である。
2. Description of the Related Art A superconducting magnet using a Helmholtz type coil has a high spatial accuracy of a magnetic field, and is often used when a magnetic field having a uniform magnetic field space is required. FIG. 3 is an explanatory view of a conventionally known refrigerator-cooled superconducting magnet of a type in which a Helmholtz-type superconducting coil 2 is cooled only in a vacuum vessel 1 by solid-state heat conduction from a two-stage GM refrigerator 3.

【0003】真空容器1内に設置されるヘルムホルツタ
イプの超電導コイル2は、上下2段に間隔を空けて一体
的に形成されたコイル巻枠4の上コイル巻枠41に上コ
イル21が、下コイル巻枠42に下コイル22が巻回され
ており、これら上コイル21と下コイル22は以下に述べ
る如く直列に接続されている。即ち、51は下コイル22
の巻始め電極、52は下コイル22の巻終り電極、61は
上コイル21の巻始め電極、62は上コイル21の巻終り
電極で、下コイル22の巻終り電極52と上コイル21の
巻始め電極61とはブスバー(上下接続リード)7で接
続されている。
A Helmholtz-type superconducting coil 2 installed in a vacuum vessel 1 has an upper coil winding 41, an upper coil 21 and a lower coil winding 4 integrally formed with a two-step upper and lower spacing. A lower coil 22 is wound around a coil winding frame 42, and the upper coil 21 and the lower coil 22 are connected in series as described below. That is, 51 is the lower coil 22
The winding start electrode 52, the winding end electrode of the lower coil 22; the winding start electrode 61 of the upper coil 21; the winding end electrode 62 of the upper coil 21; the winding end electrode 52 of the lower coil 22 and the winding end of the upper coil 21; The first electrode 61 is connected to a bus bar (upper and lower connection leads) 7.

【0004】上記の超電導コイル2は、図示していない
支柱に連結されている第2熱負荷フランジ8上に下コイ
ル巻枠42が載置固定されており、該第2熱負荷フラン
ジ8は、GM冷凍機3の第2段冷却ステージ32に伝熱
体9で連結されている。したがって、下コイル22は第
2熱負荷フランジ8上に載置されている下コイル巻枠4
2からの伝熱で冷却され、上コイル21は下コイル巻枠4
2を介して下コイル巻枠42と一体的に連結されている上
コイル巻枠41からの伝熱で冷却される。上コイル21の
巻終り電極62および下コイル22の巻始め電極51は酸
化物超電導電流リード10を介してそれぞれ電源に接続
されている。
In the above-described superconducting coil 2, a lower coil bobbin 42 is mounted and fixed on a second heat load flange 8 connected to a support (not shown). The GM refrigerator 3 is connected to a second cooling stage 32 of the GM refrigerator 3 by a heat transfer body 9. Therefore, the lower coil 22 is mounted on the lower coil form 4 placed on the second heat load flange 8.
The upper coil 21 is cooled by the heat transfer from
The cooling is performed by the heat transfer from the upper coil winding 41 that is integrally connected to the lower coil winding 42 via the second coil winding 42. The end-of-winding electrode 62 of the upper coil 21 and the start-of-winding electrode 51 of the lower coil 22 are connected to a power source via an oxide superconducting current lead 10, respectively.

【0005】101は酸化物超電導電流リードの低温側
電極で、前記第2熱負荷フランジ8に電気的には絶縁さ
れているが、伝熱可能に接続されており、ブスバー7を
介して上コイル21の巻終り電極62に接続されている。
102は高温側電極で、第1熱負荷フランジ11に銅網
線12、銅製電流リード13、絶縁板14を介して電気
的には絶縁されているが伝熱可能に接続されている。T
は冷凍機3の第1段冷却ステージ31と前記第1熱負荷
負フランジ11との伝熱体である。16は真空シール電
流導入端子である。
[0005] Reference numeral 101 denotes a low-temperature side electrode of an oxide superconducting current lead, which is electrically insulated from the second heat load flange 8 but is connected so as to be able to conduct heat. 21 is connected to the end-of-winding electrode 62.
Reference numeral 102 denotes a high-temperature-side electrode, which is electrically insulated but electrically connected to the first heat load flange 11 via a copper mesh wire 12, a copper current lead 13, and an insulating plate 14. T
Is a heat transfer body between the first cooling stage 31 of the refrigerator 3 and the first heat load negative flange 11. Reference numeral 16 denotes a vacuum sealing current introduction terminal.

【0006】なお、図示していないが下コイル22の巻
始め電極51にも上記酸化物超電導電流リード10を介
して上記接続手段と同様な手段で電源に接続されてい
る。図中17は熱シールド板、18は真空容器主フラン
ジ、19は架台、20は磁場空間である。
Although not shown, the winding start electrode 51 of the lower coil 22 is also connected to a power source via the oxide superconducting current lead 10 by means similar to the connection means. In the figure, 17 is a heat shield plate, 18 is a main flange of a vacuum vessel, 19 is a gantry, and 20 is a magnetic field space.

【0007】上記従来のヘルムホルツタイプの超電導マ
グネットは、上下2段のコイルの下コイル22を第2熱
負荷フランジ8上に載置しているため、装置の高さが高
くなるとともに上下のコイルを一様に冷却できないとい
う問題点があった。
In the above-mentioned conventional Helmholtz type superconducting magnet, the lower coil 22 of the upper and lower two-stage coils is mounted on the second heat load flange 8, so that the height of the device is increased and the upper and lower coils are connected. There was a problem that cooling was not uniform.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、装置を小型化でき、しかも、上下
2段のコイルを一様に冷却し、均一で安定した磁場空間
を形成できるヘルムホルツタイプのコイルを用いた冷凍
機冷却型超電導マグネットを提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, can reduce the size of the apparatus, and uniformly cools the upper and lower two-stage coils to form a uniform and stable magnetic field space. It is an object of the present invention to provide a refrigerator-cooled superconducting magnet using a Helmholtz type coil that can be formed.

【0009】[0009]

【課題を解決するための手段】ヘルムホルツタイプのコ
イルを用いた冷凍機冷却型超電導マグネットにおいて、
前記超電導マグネットの上コイルと下コイルを夫々上コ
イル冷却フランジおよび下コイル冷却フランジに連結
し、これら両冷却フランジを連結する伝熱ブスバーに冷
凍機の冷却ステージを連結したことを特徴とする。
SUMMARY OF THE INVENTION In a refrigerator cooled superconducting magnet using a Helmholtz type coil,
An upper coil and a lower coil of the superconducting magnet are connected to an upper coil cooling flange and a lower coil cooling flange, respectively, and a cooling stage of a refrigerator is connected to a heat transfer busbar connecting the two cooling flanges.

【0010】上コイルと下コイルに通電する酸化物超電
導電流リードの低温側電極部を上コイルと下コイルのギ
ャップ外側部に配設したことを特徴とする。
The low-temperature side electrode portion of the oxide superconducting current lead for energizing the upper coil and the lower coil is arranged outside the gap between the upper coil and the lower coil.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態につい
て図1を参照して説明する。図1は本発明にかかるヘル
ムホルツタイプのコイルを用いた冷凍機冷却型超電導マ
グネットの説明図である。なお、図3に示す従来装置と
同一部品には同一番号を付している。
Embodiments of the present invention will be described below with reference to FIG. FIG. 1 is an explanatory view of a refrigerator-cooled superconducting magnet using a Helmholtz type coil according to the present invention. The same parts as those of the conventional device shown in FIG. 3 are denoted by the same reference numerals.

【0012】本発明は、ヘルムホルツタイプの超電導コ
イルの上コイルと下コイルのギャップ部の側方部は上下
各コイルの外側端面部に比べて超電導コイルからの漏洩
磁場が低いことに着目し、(例えば、マグネットの中心
において20,000ガウスの磁場を発生したとき、上
コイルの直上および、下コイルの直下では10,000
ガウス以上の磁場を発生しているが上下コイルのギャッ
プ部の側方部は5,000ガウス程度になる箇所があ
る。)
The present invention focuses on the fact that the side of the gap between the upper coil and the lower coil of the Helmholtz type superconducting coil has a lower leakage magnetic field from the superconducting coil than the outer end surfaces of the upper and lower coils. For example, when a magnetic field of 20,000 gauss is generated at the center of the magnet, 10,000 is generated just above the upper coil and 10,000 directly below the lower coil.
Although a magnetic field of more than Gauss is generated, there is a portion on the side of the gap between the upper and lower coils at about 5,000 Gauss. )

【0013】上コイル21の上端面(下端面)に上コイ
ル巻枠41を介して上コイル冷却フランジ81を密着さ
せ、下コイル22の下端面(上端面)に下コイル巻枠42
を介して下コイル冷却フランジ82を密着させており、
これらの冷却フランジ81、82は伝熱ブスバー83で連
結し、該伝熱ブスバー83は冷凍機3の第2段冷却ステ
ージ32に、ボルト付等により接続されている伝熱体9
に連結されている。したがって、上コイル21は上コイ
ル巻枠41を介して冷却フランジ81で冷却され、下コイ
ル22は下コイル巻枠42を介して下コイル冷却フランジ
82で夫々冷却される。
The upper coil cooling flange 81 is brought into close contact with the upper end surface (lower end surface) of the upper coil 21 via the upper coil former 41, and the lower coil former 42 is attached to the lower end surface (upper end surface) of the lower coil 22.
The lower coil cooling flange 82 is brought into close contact with the
These cooling flanges 81 and 82 are connected by a heat transfer bus bar 83, and the heat transfer bus bar 83 is connected to a second cooling stage 32 of the refrigerator 3 by bolts or the like.
It is connected to. Therefore, the upper coil 21 is cooled by the cooling flange 81 via the upper coil winding frame 41, and the lower coil 22 is cooled by the lower coil cooling flange 82 via the lower coil winding frame 42, respectively.

【0014】51は下コイル22の巻始め電極、52は下
コイル22の巻終り電極でこれらの電極は上コイル21と
のギャップ側に突設させている。なおこれらの電極は下
コイル枠42とは当然に電気的に絶縁されている。61は
上コイル21の巻始め電極、62は上コイル21の巻終り
電極でこれらの電極は下コイル22とのギャップ側に突
設させている。なおこれらの電極も上コイル枠41とは
当然に電気的に絶縁されている。
Numeral 51 is a winding start electrode of the lower coil 22 and 52 is a winding end electrode of the lower coil 22. These electrodes protrude from the gap side with the upper coil 21. These electrodes are naturally electrically insulated from the lower coil frame 42. 61 is a winding start electrode of the upper coil 21 and 62 is a winding end electrode of the upper coil 21. These electrodes protrude from the gap side with the lower coil 22. These electrodes are naturally electrically insulated from the upper coil frame 41.

【0015】酸化物超電導電流リード10の低温側電極
101は上コイル21と下コイル22とのギャップ部の側
方部に配設し、上コイル21の巻終り電極62と接続され
ており、一方、酸化物超電導電流リード10の高温側電
極102は銅網線12、銅製電流リード13を介して電
源にに接続されている。15は電流リード熱アンカー
で、一端は電気的絶縁板14を介して第1段冷却フラン
ジ11に固着されており、他端は銅網線12を固定して
いる。なお、図示していないが下コイル22の巻始め電
極51にも上記酸化物超電導電流リード10を介して上
記接続手段と同様な手段で電源に接続されている。
The low-temperature side electrode 101 of the oxide superconducting current lead 10 is disposed on the side of the gap between the upper coil 21 and the lower coil 22 and is connected to the winding end electrode 62 of the upper coil 21. The high-temperature side electrode 102 of the oxide superconducting current lead 10 is connected to a power supply via a copper wire 12 and a copper current lead 13. Reference numeral 15 denotes a current lead thermal anchor, one end of which is fixed to the first stage cooling flange 11 via an electrical insulating plate 14, and the other end of which fixes the copper mesh wire 12. Although not shown, the winding start electrode 51 of the lower coil 22 is also connected to a power source via the oxide superconducting current lead 10 by means similar to the above-mentioned connecting means.

【0016】なお、酸化物超電導電流リードの低温側電
極101は、酸化物超電導コイルと同じ温度レベルに冷
却するために、ガラス繊維強化樹脂シートや窒化アルミ
ニュウム等の絶縁体を挟んで、コイル巻枠に取り付けら
れた銅製ブスバー101’に接続されている。21はス
テンレス鋼等非磁性体の剛性材料からなるスペーサで、
上下のコイル21、22間に設置されて上下のコイル2
1、22を保持している。
The low-temperature side electrode 101 of the oxide superconducting current lead is wound around a coil winding frame with an insulator such as a glass fiber reinforced resin sheet or aluminum nitride in order to cool it to the same temperature level as the oxide superconducting coil. Is connected to a copper busbar 101 'attached to the busbar. Reference numeral 21 denotes a spacer made of a nonmagnetic rigid material such as stainless steel.
Upper and lower coils 2 installed between upper and lower coils 21 and 22
Holds 1, 22.

【0017】図1に示す実施態様の上下の各超電導コイ
ルは夫々NbTi単独の通常のコイルを使用した例であ
るが、図2に示す実施態様は、上下の各超電導コイル2
1、22を夫々Nb3SnとNbTiのハイブリッド型の
酸化物超電導コイル21a、21b、22a、22bを使用し、
他の構成は図1の実施態様のものと同一である。
The upper and lower superconducting coils of the embodiment shown in FIG. 1 are examples using ordinary coils of NbTi alone, but the embodiment shown in FIG.
The hybrid superconducting coils 21a, 21b, 22a, 22b of Nb3Sn and NbTi are used for 1, 22 respectively.
Other configurations are the same as those of the embodiment of FIG.

【0018】[0018]

【発明の効果】本発明では、ヘルムホルツタイプの上下
2段のコイルを夫々上コイル冷却フランジと下コイル冷
却フランジと連結し、これら両冷却フランジを連結する
伝熱ブスバーに伝熱体を介して冷凍機の冷却ステージと
連結したため、装置を小型化でき、しかも、上下2段の
コイルを一様に冷却し、均一で安定した磁場空間を提供
できる効果を奏する。さらに、酸化物超電導電流リード
の低温側電極部を上下2段のコイルのギャップ外側部の
漏洩磁場が低い箇所に設置したことにより、酸化物超電
導電流リードが超電導コイルからの強力な漏洩磁場から
回避できるという効果をも奏する。
According to the present invention, the upper and lower two-stage Helmholtz type coils are connected to the upper coil cooling flange and the lower coil cooling flange, respectively. Since the apparatus is connected to the cooling stage of the machine, it is possible to reduce the size of the apparatus, and to uniformly cool the upper and lower two-stage coils to provide a uniform and stable magnetic field space. Furthermore, the low-temperature side electrode part of the oxide superconducting current lead is installed at a place where the leakage magnetic field is low outside the gap between the upper and lower two-stage coils, so that the oxide superconducting current lead is prevented from a strong leakage magnetic field from the superconducting coil. It also has the effect of being able to do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる冷凍機冷却型超電導マグネット
の実施態様を示す縦断面図。
FIG. 1 is a longitudinal sectional view showing an embodiment of a refrigerator-cooled superconducting magnet according to the present invention.

【図2】本発明にかかる冷凍機冷却型超電導マグネット
の他の実施態様を示す縦断面図。
FIG. 2 is a longitudinal sectional view showing another embodiment of a refrigerator cooled superconducting magnet according to the present invention.

【図3】従来から公知の冷凍機冷却型超電導マグネット
の縦断面図。
FIG. 3 is a longitudinal sectional view of a conventionally known refrigerator cooled superconducting magnet.

【符号の説明】[Explanation of symbols]

1 真空容器 2 超電導コイル 21 上コイル 22 下コイル 21a、21b ハイブリッド型上コイル 22a、22b ハイブリッド型下コイル 3 GM冷凍機 31 第1段冷却ステ
ージ 32 第2段冷却ステージ 4 コイル巻枠 41 上コイル巻枠 42 下コイル巻枠 51 下コイルの巻始め電極 52 下コイルの巻終
り電極 61 上コイルの巻始め電極 62 上コイルの巻終
り電極 7 ブスバー 8 第2熱負荷フラ
ンジ 81 上コイル冷却フランジ 82 下コイル冷却フ
ランジ 83 伝熱ブスバー 9 伝熱体 10 酸化物超電導電流リード101 酸化物超電導
電流リードの低温側電極 101’ 銅製ブスバー 102 酸化物超電導
電流リードの高温側電極 11 第1熱負荷フランジ 12 銅網線 13 銅製電流リード 14 絶縁板 15 電流リード熱アンカー 16 真空シール電
流導入端子 17 熱シールド板 18 真空容器主フ
ランジ 19 架台 20 磁場空間 T 伝熱体
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Superconducting coil 21 Upper coil 22 Lower coil 21a, 21b Hybrid upper coil 22a, 22b Hybrid lower coil 3 GM refrigerator 31 First cooling stage 32 Second cooling stage 4 Coil frame 41 Upper coil winding Frame 42 Lower coil winding frame 51 Lower coil winding start electrode 52 Lower coil end winding electrode 61 Upper coil winding start electrode 62 Upper coil end winding electrode 7 Busbar 8 Second heat load flange 81 Upper coil cooling flange 82 Lower coil Cooling flange 83 Heat transfer bus bar 9 Heat conductor 10 Oxide superconducting current lead 101 Low temperature electrode of oxide superconducting current lead 10 'Copper bus bar 102 High temperature electrode of oxide superconducting current lead 11 First heat load flange 12 Copper mesh wire 13 Current Lead Made of Copper 14 Insulating Plate 15 Heat Anchor for Current Lead 16 Vacuum Seal Current Introduction Terminal 17 Heat shield plate 18 Main flange of vacuum vessel 19 Mount 20 Magnetic field space T Heat transfer body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ヘルムホルツタイプのコイルを用いた冷凍
機冷却型超電導マグネットにおいて、前記超電導マグネ
ットの上コイルと下コイルを夫々上コイル冷却フランジ
および下コイル冷却フランジに連結し、これら両冷却フ
ランジを連結する伝熱ブスバーに冷凍機の冷却ステージ
を連結したことを特徴とする冷凍機冷却型超電導マグネ
ット。
1. A refrigerator-cooled superconducting magnet using a Helmholtz type coil, wherein an upper coil and a lower coil of the superconducting magnet are connected to an upper coil cooling flange and a lower coil cooling flange, respectively, and these two cooling flanges are connected. A refrigerator-cooled superconducting magnet characterized in that a cooling stage of a refrigerator is connected to a heat transfer busbar.
【請求項2】上コイルと下コイルに通電する酸化物超電
導電流リードの低温側電極部を上コイルと下コイルのギ
ャップ外側部に配設したことを特徴とする請求項1記載
の冷凍機冷却型超電導マグネット。
2. The refrigerator cooling device according to claim 1, wherein the low-temperature side electrode portion of the oxide superconducting current lead for energizing the upper coil and the lower coil is disposed outside the gap between the upper coil and the lower coil. Type superconducting magnet.
JP28237999A 1999-10-04 1999-10-04 Refrigerator cooled superconducting magnet Pending JP2001110627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28237999A JP2001110627A (en) 1999-10-04 1999-10-04 Refrigerator cooled superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28237999A JP2001110627A (en) 1999-10-04 1999-10-04 Refrigerator cooled superconducting magnet

Publications (1)

Publication Number Publication Date
JP2001110627A true JP2001110627A (en) 2001-04-20

Family

ID=17651641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28237999A Pending JP2001110627A (en) 1999-10-04 1999-10-04 Refrigerator cooled superconducting magnet

Country Status (1)

Country Link
JP (1) JP2001110627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270736A (en) * 2008-04-30 2009-11-19 Chubu Electric Power Co Inc Cryogenic device
JP2016516257A (en) * 2013-02-27 2016-06-02 エコール ポリテクニック Apparatus for magnetizing laser plasma with a pulsed magnetic field
GB2578315A (en) * 2018-10-22 2020-05-06 Siemens Healthcare Ltd Thermal buses for cryogenic applications

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270736A (en) * 2008-04-30 2009-11-19 Chubu Electric Power Co Inc Cryogenic device
JP2016516257A (en) * 2013-02-27 2016-06-02 エコール ポリテクニック Apparatus for magnetizing laser plasma with a pulsed magnetic field
GB2578315A (en) * 2018-10-22 2020-05-06 Siemens Healthcare Ltd Thermal buses for cryogenic applications
GB2578315B (en) * 2018-10-22 2021-01-06 Siemens Healthcare Ltd Thermal buses for cryogenic applications
US11551841B2 (en) 2018-10-22 2023-01-10 Siemens Healthcare Limited Thermal buses for cryogenic applications

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
KR20110083045A (en) Coil bobbin for superconducting magnetic energy storage
JP2001110627A (en) Refrigerator cooled superconducting magnet
JP2756551B2 (en) Conduction-cooled superconducting magnet device
US6667676B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP3833382B2 (en) Refrigerator-cooled superconducting magnet device for single crystal pulling device
JPH0586053B2 (en)
JP2004335160A (en) Current lead for superconductive device
JPH09102413A (en) Superconductive magnetic device
JP2756552B2 (en) Conduction-cooled superconducting magnet device
JPH0511647B2 (en)
JP2569466Y2 (en) Conduction-cooled superconducting magnet device
JP2003347115A (en) Superconductive current lead device
JP3178119B2 (en) Gas-cooled current leads for superconducting coils
JP2607661Y2 (en) Cryogenic container
JPH11329526A (en) Connecting device of superconducting wire for low temperature equipment
JPH0786643A (en) Conduction cooling superconducting magnet device
JP2000114029A (en) Refrigerator-cooled superconducting magnet
JP6392028B2 (en) Superconducting electromagnet
JP2002209869A (en) Superconducting magnet device and its production method
JP2000150224A (en) Excitation control method of superconducting coil
JP4562947B2 (en) Superconducting magnet
JPH0786642A (en) Conduction cooling superconduction magnet device
CN216980253U (en) Cold head magnetic shielding structure for superconducting iron remover
JPH11144940A (en) Superconducting magnet device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210