JP2001108720A - Method and circuit for measuring cn - Google Patents
Method and circuit for measuring cnInfo
- Publication number
- JP2001108720A JP2001108720A JP28379899A JP28379899A JP2001108720A JP 2001108720 A JP2001108720 A JP 2001108720A JP 28379899 A JP28379899 A JP 28379899A JP 28379899 A JP28379899 A JP 28379899A JP 2001108720 A JP2001108720 A JP 2001108720A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- value
- output
- signal
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は受信電力対雑音電力
比(CN比)計測回路に係わり、特にディジタル無線用受
信機に適用して精度良くかつ簡便に測定が可能なCN比測
定回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reception power to noise power ratio (CN ratio) measuring circuit, and more particularly to a CN ratio measuring circuit which can be applied to a digital radio receiver and can measure accurately and easily.
【0002】[0002]
【従来の技術】無線通信では、受信機入力信号強度が復
調するデータの品質に影響するため、入力信号のCN比を
測定することは重要である。そのため、RSSI(Received
Signal Strength Indicator)回路や、AGC(Automatic
Gain Control:自動利得調整)回路の制御信号などで
受信信号電力を測定する。これらはアナログ回路による
実現が主流であるが、ディジタル回路で行う従来例を図
2に示す。図2は従来の受信信号電力測定回路の構成を
示すブロック図である。20-1と20-2は入力端子、21は出
力端子、22は平均化回路、25-1と25-2は乗算器、26は加
算器である。2. Description of the Related Art In wireless communication, it is important to measure the CN ratio of an input signal because the input signal strength of a receiver affects the quality of demodulated data. Therefore, RSSI (Received
Signal Strength Indicator (AGC) circuit, AGC (Automatic
Gain Control (automatic gain adjustment) Measures the received signal power with the control signal of the circuit. These are mainly realized by analog circuits, but FIG. 2 shows a conventional example in which digital circuits are used. FIG. 2 is a block diagram showing a configuration of a conventional received signal power measuring circuit. 20-1 and 20-2 are input terminals, 21 is an output terminal, 22 is an averaging circuit, 25-1 and 25-2 are multipliers, and 26 is an adder.
【0003】ディジタル回路では扱える信号周波数がア
ナログに較べて低いので、通常、信号を検波して基底帯
域で信号処理を行う。図2において、受信信号は既に検
波されて同相信号成分と直交信号成分に分離されてお
り、同相成分信号は入力端子20-1に入力し、直交成分信
号は入力端子20-2に入力する。この同相信号成分と直交
信号成分は、乗算器25-1と25-2にそれぞれ入力する。乗
算器25-1は同相成分信号を自乗して加算器26に送り、乗
算器25-2もまた直交成分信号を自乗して加算器26に送
る。加算器26が入力した同相成分信号の自乗と直交成分
信号の自乗とを加算合成することによって瞬時信号電力
が計算される。この計算された瞬時信号電力(受信信号
電力)は平均化回路22に入力し、平均化回路22によって
平均化されて、平均電力が求められ、出力端子21から出
力される。[0003] Since the signal frequency that can be handled by a digital circuit is lower than that of an analog circuit, a signal is usually detected and signal processing is performed in a base band. In FIG. 2, the received signal has already been detected and separated into an in-phase signal component and a quadrature signal component. The in-phase component signal is input to an input terminal 20-1, and the quadrature component signal is input to an input terminal 20-2. . The in-phase signal component and the quadrature signal component are input to multipliers 25-1 and 25-2, respectively. The multiplier 25-1 squares the in-phase component signal and sends it to the adder 26, and the multiplier 25-2 also squares the quadrature component signal and sends it to the adder 26. The instantaneous signal power is calculated by adding and combining the square of the in-phase component signal and the square of the quadrature component signal input to the adder 26. The calculated instantaneous signal power (received signal power) is input to the averaging circuit 22 and averaged by the averaging circuit 22 to obtain an average power, which is output from the output terminal 21.
【0004】以上述べた方法で求められた平均電力は、
信号Cと雑音Nを分離せずに計測しているので、出力端子
21から出力される受信信号電力の平均電力(C+N)もま
た信号Cと雑音Nとが分離されていない。従って、ディジ
タル無線機で実際に測定したい信号電力と雑音電力の比
を求めるためには、信号と雑音を分離する必要がある
が、有効な手段がなく、信号がないときの雑音レベルを
記憶しておく等の方法が採られており、精度の良いCN比
の測定は不可能であった。[0004] The average power obtained by the method described above is:
Since signal C and noise N are measured without separation, the output terminal
The average power (C + N) of the received signal power output from 21 is also not separated from signal C and noise N. Therefore, it is necessary to separate the signal and noise in order to obtain the ratio between the signal power and the noise power that the digital radio actually wants to measure, but there is no effective means and the noise level when there is no signal is stored. In this case, accurate measurement of the CN ratio was impossible.
【0005】[0005]
【発明が解決しようとする課題】前述の従来技術には、
受信信号電力測定値は信号と雑音を分離せずに計測され
ており、信号と雑音を分離する必要があるが、有効な手
段はなく、精度の良い測定は不可能な欠点があった。The above-mentioned prior art includes the following:
The measured value of the received signal power is measured without separating the signal and the noise, and it is necessary to separate the signal and the noise. However, there is no effective means, and there is a drawback that accurate measurement is impossible.
【0006】本発明の目的は、上記のような欠点を除去
し、精度のよいCN比測定方法を提供することにある。An object of the present invention is to provide a method for measuring the CN ratio with high accuracy by eliminating the above-mentioned disadvantages.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
め、本発明のCN測定方法は、直交変調波信号の受信振幅
値の同相成分と直交成分についてそれぞれ絶対値の平均
値を自乗し、自乗したそれらを加算した値を受信信号電
力Cとし、受信振幅値の同相成分と直交成分から、これ
らを識別した振幅値を差引いて同相成分と直交成分の各
雑音を求め、各雑音をそれぞれ自乗し、自乗したそれら
を加算した瞬時雑音電力の平均値を平均雑音電力Nと
し、受信信号電力Cと平均雑音電力Nの比(C/N)によっ
て信号電力対雑音電力比CNを求めるたものである。Means for Solving the Problems To achieve the above object, the CN measuring method of the present invention squares the average value of the absolute value of each of the in-phase component and the quadrature component of the received amplitude value of the quadrature modulated wave signal, The sum of the squared values is defined as the received signal power C, and the in-phase component and the quadrature component are subtracted from the in-phase component and the quadrature component of the received amplitude value to obtain respective noises of the in-phase component and the quadrature component. Then, the average value of the instantaneous noise power obtained by adding the squared values is defined as the average noise power N, and the signal power-to-noise power ratio CN is obtained from the ratio (C / N) of the received signal power C and the average noise power N. is there.
【0008】また本発明のCN測定方法は、受信信号を識
別する振幅値を、受信信号電力Cに応じて定めたもので
ある。In the CN measuring method of the present invention, an amplitude value for identifying a received signal is determined according to the received signal power C.
【0009】更にまた本発明のCN測定方法は、直交変調
波信号の受信振幅値(同相成分と直交成分)の各成分そ
れぞれの絶対値の平均値を自乗し、自乗したそれらを加
算した値を受信信号電力Cとし、受信振幅値の各々を自
乗加算した瞬時電力の平均値から受信信号電力Cを差引
いた値を平均雑音電力Nとして、受信信号電力Cと平均雑
音電力Nの比(C/N)によって信号電力対雑音電力比CNを
求めたものである。Furthermore, the CN measurement method of the present invention further comprises: squaring an average value of absolute values of respective components of a received amplitude value (in-phase component and quadrature component) of a quadrature modulated wave signal; The received signal power C, the value obtained by subtracting the received signal power C from the average value of the instantaneous power obtained by squarely adding each of the received amplitude values is defined as the average noise power N, and the ratio of the received signal power C to the average noise power N (C / N) is used to determine the signal power to noise power ratio CN.
【0010】また本発明のCN測定回路は、受信した直交
変調波信号の同相成分の絶対値を求める第1の絶対値回
路と、第1の絶対値回路の出力を平均する第1の平均値
回路と、第1の平均値回路の出力を自乗する第1の自乗
回路と、受信した直交変調波信号の直交成分の絶対値を
求める第2の絶対値回路と、第2の絶対値回路の出力を
平均する第2の平均値回路と、第2の平均値回路の出力
を自乗する第2の自乗回路と、第1の自乗回路の出力と
第2の自乗回路の出力とを加算する第1の加算器によっ
て構成される受信信号電力測定回路と、受信直交変調波
信号の同相成分を識別する第1の識別器と、第1の識別
器の出力を、受信直交変調波信号の同相成分から差引く
第1の減算器と、第1の減算器出力を自乗する第3の自
乗回路と、受信直交変調波信号の直交成分を識別する第
2の識別器と、第2の識別器の出力を、受信直交変調波
信号の同相成分から差引く第2の減算器と、第2の減算
器出力を自乗する第4の自乗回路と、第3の自乗回路の
出力と第4の自乗回路の出力を加算する第2の加算器
と、第2の加算器の出力を平均する第3の平均値回路に
よって構成される雑音電力測定回路と、雑音電力測定回
路の出力と、受信信号電力測定回路の出力との比を求め
る除算回路とから構成することによって、信号電力Cと
雑音電力Nとを分離して抽出しCNを測定したものであ
る。The CN measuring circuit according to the present invention comprises a first absolute value circuit for obtaining an absolute value of an in-phase component of a received quadrature modulated wave signal, and a first average value for averaging the output of the first absolute value circuit. A first squaring circuit for squaring the output of the first average value circuit, a second absolute value circuit for obtaining the absolute value of the quadrature component of the received quadrature modulated wave signal, and a second absolute value circuit. A second averaging circuit for averaging the outputs, a second squaring circuit for squaring the output of the second averaging circuit, and a second circuit for adding the output of the first squaring circuit and the output of the second squaring circuit. 1, a first signal discriminator for discriminating an in-phase component of the received quadrature modulated wave signal, an output of the first discriminator, and an in-phase component of the received quadrature modulated wave signal. Subtracter, a third squarer circuit for squaring the output of the first subtractor, A second discriminator for discriminating the quadrature component of the modulated wave signal, a second subtractor for subtracting the output of the second discriminator from the in-phase component of the received quadrature modulated wave signal, and a second subtractor output. A fourth squaring circuit for squaring, a second adder for adding the output of the third squaring circuit and the output of the fourth squaring circuit, and a third averaging circuit for averaging the output of the second adder The signal power C and the noise power N are separated by configuring a noise power measurement circuit configured by the following, and a division circuit that calculates the ratio of the output of the noise power measurement circuit to the output of the received signal power measurement circuit. Extracted and measured CN.
【0011】また本発明の他のCN測定回路は、受信した
直交変調波信号の同相成分の絶対値を求める第1の絶対
値回路と、第1の絶対値回路の出力を平均する第1の平
均値回路と、第1の平均値回路の出力を自乗する第1の
自乗回路と、受信直交変調波信号の直交成分の絶対値を
求める第2の絶対値回路と、第2の絶対値回路の出力を
平均する第2の平均値回路と、第2の平均値回路の出力
を自乗する第2の自乗回路と、第2の自乗回路の出力と
前記第1の自乗回路の出力を加算する第1の加算器によ
って構成される受信信号電力測定回路と、受信直交変調
波信号の同相成分を自乗する第3の自乗回路と、受信直
交変調波信号の直交成分を自乗する第4の自乗回路と、
第3の自乗回路の出力と第4の自乗回路の出力を加算す
る第2の加算器と、第2の加算器の出力を平均する第3
の平均値回路と、第3の平均値回路出力から、受信信号
電力測定回路出力を差引く減算器によって構成される雑
音電力測定回路と、雑音電力測定回路の出力と、受信信
号電力測定回路の出力との比を求める除算回路とから構
成することによって、信号電力Cと雑音電力Nとを分離し
て抽出しCNを測定したものである。Another CN measuring circuit of the present invention comprises a first absolute value circuit for obtaining an absolute value of an in-phase component of a received quadrature modulated wave signal, and a first absolute value circuit for averaging an output of the first absolute value circuit. An averaging circuit, a first squaring circuit for squaring the output of the first averaging circuit, a second absolute value circuit for obtaining the absolute value of the quadrature component of the received quadrature modulated wave signal, and a second absolute value circuit A second averaging circuit for averaging the output of the second averaging circuit, a second squaring circuit for squaring the output of the second averaging circuit, and adding the output of the second squaring circuit and the output of the first squaring circuit. A received signal power measuring circuit constituted by a first adder, a third squared circuit for squaring the in-phase component of the received quadrature modulated wave signal, and a fourth squared circuit for squaring the quadrature component of the received quadrature modulated wave signal When,
A second adder for adding the output of the third squarer circuit and the output of the fourth squarer circuit, and a third adder for averaging the output of the second adder
, A noise power measuring circuit composed of a subtracter for subtracting the output of the received signal power measuring circuit from the output of the third average value circuit, an output of the noise power measuring circuit, The signal power C and the noise power N are separated and extracted, and the CN is measured by using a divider circuit for calculating the ratio with respect to the output.
【0012】[0012]
【発明の実施の形態】本発明のCN比測定方法及び測定回
路は、ディジタル変調信号と雑音信号の性質の違いを利
用して信号を分離する。即ち、ディジタル無線における
変調信号と雑音信号とを直交検波し、それぞれ同相信号
成分、直交信号成分に分け、信号を2次元信号で扱い、
信号平面(同相成分を横軸、直交成分を縦軸とするベク
トル平面)で考える。BEST MODE FOR CARRYING OUT THE INVENTION A CN ratio measuring method and a measuring circuit of the present invention separate a signal by utilizing a difference between the properties of a digital modulation signal and a noise signal. That is, the modulation signal and the noise signal in digital radio are subjected to quadrature detection, divided into in-phase signal components and quadrature signal components, respectively, and the signals are treated as two-dimensional signals.
Consider a signal plane (a vector plane with the in-phase component on the horizontal axis and the quadrature component on the vertical axis).
【0013】ディジタル変調信号は通常、信号平面の原
点に対して、点対称に信号点が配置されるので、そのま
ま平均すると、平均値は0となる。そこで、同相成分と
直交成分の各々の絶対値を求めた後、平均する。する
と、信号平面上の各信号点はすべて、第1象限(同相成
分、直交成分とも正極性)に移され、平均値が求められ
る。そこで同相成分と直交成分を各々自乗してそれらを
加算すると、平均信号電力を求めることができる。Usually, the signal points of the digital modulation signal are arranged point-symmetrically with respect to the origin of the signal plane. Therefore, the absolute values of the in-phase component and the quadrature component are obtained, and then averaged. Then, all signal points on the signal plane are moved to the first quadrant (both in-phase and quadrature components have positive polarity), and an average value is obtained. Therefore, by squaring the in-phase component and the quadrature component and adding them together, the average signal power can be obtained.
【0014】次に、雑音信号は受信機の入力信号から、
変調信号成分を除いた部分であるから、受信信号を識別
した信号を変調信号成分とし、これを受信信号から減算
して、瞬時雑音信号を求める。そこで、これを自乗加算
して瞬時雑音電力とし、この平均値を雑音電力とする。Next, the noise signal is obtained from the input signal of the receiver.
Since the modulated signal component is excluded, the signal that identifies the received signal is used as the modulated signal component, and this is subtracted from the received signal to obtain an instantaneous noise signal. Therefore, this is square-added to obtain instantaneous noise power, and the average value is used as noise power.
【0015】本発明は、上記で述べた方法のように、振
幅で(2次元的に)平均すると、雑音成分の平均値が0
となってしまうことを利用している。通常、平均電力を
求めるときは、瞬時電力を平均するが、それでは雑音と
信号を分離することができない。そこで、信号振幅で平
均すると、雑音成分が0となり、平均振幅を自乗和する
ことで、平均電力が求められる。ところで、振幅の平均
値の自乗は振幅自乗の平均より常に小さい(平均する前
の振幅がすべて等しいときは一致する)ので、上述の電
力測定値は正しい値より小さい。しかしながら、変調信
号の信号点の配置は決まっているので、信号振幅の平均
値の自乗と、振幅の自乗値の平均との比は変調方式によ
って一定となり、平均電力値を求めることができる。た
だし、変調信号配置が振幅一定の方式では、この比は1
となり補正は不要である。According to the present invention, when the amplitude is averaged (two-dimensionally) as in the method described above, the average value of the noise component is zero.
I use that. Normally, when calculating the average power, the instantaneous power is averaged, but this cannot separate noise and signal. Therefore, when the signal amplitude is averaged, the noise component becomes 0, and the average power is obtained by sum of squares of the average amplitude. By the way, since the square of the average value of the amplitude is always smaller than the average of the square of the amplitude (they match when the amplitudes before averaging are all equal), the above-mentioned measured power value is smaller than the correct value. However, since the arrangement of the signal points of the modulated signal is fixed, the ratio of the square of the average value of the signal amplitude to the average of the square values of the amplitude becomes constant depending on the modulation method, and the average power value can be obtained. However, in a system where the modulation signal arrangement is constant in amplitude, this ratio is 1
And no correction is required.
【0016】また、受信信号振幅は、送受信機間の距
離、フェージングなどによって変動し、一定ではない。
このような場合には、信号の識別値を変える必要がある
が、これは、本発明で求めた信号電力測定値と、予め決
めた値とを比較することで容易に行うことができる。ま
た、AGCを用いれば、自動的に設定が可能である。The amplitude of the received signal varies depending on the distance between the transmitter and the receiver, fading, and the like, and is not constant.
In such a case, it is necessary to change the signal identification value. This can be easily performed by comparing the signal power measurement value obtained in the present invention with a predetermined value. If AGC is used, the settings can be made automatically.
【0017】以下、図面を用いて本発明の実施例を詳細
に説明する。図1は本発明のCN測定回路の一実施例の構
成を説明するブロック図である。20-1と20-2は入力端
子、1-1と1-2は絶対値回路、2-1,2-2,2-Nは平均化回
路、3-1と3-2は識別器、4-1と4-2は減算器、5C-1,5C-
2,5N-1,5N-2は乗算器、6-Cと6-Nは加算器、7は除算
器、21′は出力端子である。入力端子20-1は絶対値回路
1-1及び識別器3-1及び減算器4-1の減算入力(-入力)側
に接続する。絶対値回路1-1は平均化回路2-1に接続し、
平均化回路2-1は2つに分岐し、分岐した2つの経路は
それぞれ乗算器5C-1に接続し、乗算器5C-1の出力は加算
器6-Cに接続する。同様に、入力端子20-2は絶対値回路1
-2及び識別器3-2及び減算器4-2の減算入力(-入力)側
に接続する。絶対値回路1-2は平均化回路2-2に接続し、
平均化回路2-2は2つに分岐し、分岐した2つの経路は
それぞれ乗算器5C-2に接続し、乗算器5C-2の出力もまた
加算器6-Cに接続する。加算器6−Cの出力は除算器7
の被除算入力(分子)側に接続する。識別器3-1は減算
器4-1の被減算入力側に接続し、減算器4-1の出力は2つ
に分岐し、分岐した2つの経路はそれぞれ乗算器5N-1に
接続し、乗算器5N-1の出力は加算器6-Nに接続する。同
様に、識別器3-2は減算器4-2の被減算入力側に接続し、
減算器4-2の出力は2つに分岐し、分岐した2つの経路
はそれぞれ乗算器5N-2に接続し、乗算器5N-2の出力は加
算器6-Nに接続する。加算器6-Nの出力は平均化回路2-N
に接続し平均化回路2-Nの出力は除算器7の除算入力(分
母)側に接続する。除算器7の出力(分子÷分母)は出
力端子21′に接続する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of an embodiment of a CN measuring circuit according to the present invention. 20-1 and 20-2 are input terminals, 1-1 and 1-2 are absolute value circuits, 2-1, 2-2, 2-N are averaging circuits, 3-1 and 3-2 are discriminators, 4-1 and 4-2 are subtractors, 5C-1, 5C-
2, 5N-1, 5N-2 are multipliers, 6-C and 6-N are adders, 7 is a divider, and 21 'is an output terminal. Input terminal 20-1 is an absolute value circuit
Connect to the subtraction input (-input) side of 1-1, discriminator 3-1 and subtractor 4-1. The absolute value circuit 1-1 is connected to the averaging circuit 2-1.
The averaging circuit 2-1 branches into two, and the two branched paths are respectively connected to the multiplier 5C-1, and the output of the multiplier 5C-1 is connected to the adder 6-C. Similarly, input terminal 20-2 is an absolute value circuit 1.
-2 and to the subtraction input (-input) side of the discriminator 3-2 and the subtractor 4-2. The absolute value circuit 1-2 is connected to the averaging circuit 2-2,
The averaging circuit 2-2 branches into two, and the two branched paths are respectively connected to the multiplier 5C-2, and the output of the multiplier 5C-2 is also connected to the adder 6-C. The output of adder 6-C is divided by divider 7
Connected to the input (numerator) of the division. The discriminator 3-1 is connected to the subtracted input side of the subtractor 4-1, the output of the subtractor 4-1 is branched into two, and the two branched paths are respectively connected to the multiplier 5N-1, The output of the multiplier 5N-1 is connected to the adder 6-N. Similarly, the discriminator 3-2 is connected to the subtracted input side of the subtractor 4-2,
The output of the subtracter 4-2 is branched into two, and the two branched paths are respectively connected to the multiplier 5N-2, and the output of the multiplier 5N-2 is connected to the adder 6-N. The output of the adder 6-N is the averaging circuit 2-N
And the output of the averaging circuit 2-N is connected to the division input (denominator) side of the divider 7. The output of the divider 7 (numerator denominator) is connected to the output terminal 21 '.
【0018】図1において、受信信号は既に検波されて
同相信号成分と直交信号成分に分離されており、同相成
分信号(振幅値xi)は入力端子20-1に入力し、直交成分
信号(振幅値xq)は入力端子20-2に入力する。この同相
信号成分と直交信号成分は、絶対値回路1-1と1-2にそれ
ぞれ入力する。絶対値回路1-1と1-2は入力したそれぞれ
の信号成分の絶対値(|xi|と|xq|)を求める。求めた絶
対値信号はそれぞれ、平均化回路2-1と2-2に入力して、
それぞれのしんごうから雑音成分が除去される。平均化
回路2-1と2-2の出力は各々乗算器5C-1と5C-2に入力して
自乗され、自乗された2つの信号(xi2及びxq2)は加算
器6-Cに入力する。加算器6-Cで加算して、受信信号電力
Cを求める(式(1)参照)。 C=px=((Σ|xi|)/M)2+((Σ|xq|)/M)2 ‥‥‥式(1) ここで、Mは平均するデータの個数である。In FIG. 1, a received signal has already been detected and separated into an in-phase signal component and a quadrature signal component. The in-phase component signal (amplitude xi) is input to an input terminal 20-1, and the quadrature component signal (amplitude value xi) is input. The amplitude value xq) is input to the input terminal 20-2. The in-phase signal component and the quadrature signal component are input to absolute value circuits 1-1 and 1-2, respectively. The absolute value circuits 1-1 and 1-2 find the absolute values (| xi | and | xq |) of the input signal components. The obtained absolute value signals are input to averaging circuits 2-1 and 2-2, respectively.
Noise components are removed from each of the terminals. The outputs of the averaging circuits 2-1 and 2-2 are input to multipliers 5C-1 and 5C-2, respectively, and are squared. The two squared signals (xi2 and xq2) are input to an adder 6-C. . Addition by adder 6-C gives the received signal power
Find C (see equation (1)). C = px = ((Σ | xi |) / M) 2 + ((Σ | xq |) / M) 2 (1) where M is the number of data to be averaged.
【0019】一方、雑音電力を求めるため、同相信号成
分(振幅値xi)、直交信号成分(振幅値xq)を各々、識
別器3-1と3-2によって識別して、識別した値(di及びd
q)をそれぞれ出力し減算器4-1と4-2の減算入力側にそ
れぞれ送る。減算器4-1と4-2では被減算入力側から入力
した信号同相信号成分(振幅値xi)、直交信号成分(振
幅値xq)から識別した値(di及びdq)をそれぞれ差引
き、同相成分の瞬時雑音振幅値(ni=xi-di)と直交成分
の瞬時雑音振幅値(nq=xq-dq)を得る。雑音信号の同相
成分niと直交成分nqを各々乗算器5N-1と5N-2によって自
乗し、自乗した2つの値を加算器6-Nで加算して瞬時雑
音電力を求め、平均化回路2-Nによって平均して平均雑
音電力Nを求める(式(2)参照)。On the other hand, in order to obtain the noise power, the in-phase signal component (amplitude value xi) and the quadrature signal component (amplitude value xq) are identified by the discriminators 3-1 and 3-2, respectively, and the discriminated values ( di and d
q) are output and sent to the subtraction input sides of the subtracters 4-1 and 4-2, respectively. The subtracters 4-1 and 4-2 subtract the values (di and dq) identified from the in-phase signal component (amplitude value xi) and the quadrature signal component (amplitude value xq) input from the subtracted input side, respectively. The instantaneous noise amplitude value of the in-phase component (ni = xi-di) and the instantaneous noise amplitude value of the quadrature component (nq = xq-dq) are obtained. The in-phase component ni and the quadrature component nq of the noise signal are squared by multipliers 5N-1 and 5N-2, respectively, and the two squared values are added by an adder 6-N to obtain an instantaneous noise power. The average noise power N is obtained by averaging by -N (see equation (2)).
【0020】 N=(Σ(ni2+ nq2))/M ‥‥‥式(2) 最後に平均受信信号電力値Cと、平均雑音電力値Nを除算
器7に入力して比(C/N)を求めれば、信号電力対雑音
電力比(CN比)を求めることができる。N = ({(ni2 + nq2)) / M} (2) Finally, the average received signal power value C and the average noise power value N are input to the divider 7 and the ratio (C / N) , The signal power to noise power ratio (CN ratio) can be obtained.
【0021】上述したように、信号振幅が一定でないよ
うな信号点配置を持つ変調方式では、信号電力の平均値
と振幅平均値の自乗値で値が異なり、後者の方が小さ
い。しかしながら、信号点配置は一定であるから、前も
って両者の比を計算で求めることができる。従って求め
た両者の比を掛けることで、信号電力を求めることがで
きる。As described above, in a modulation method having a signal point arrangement in which the signal amplitude is not constant, the value differs between the average value of the signal power and the square of the amplitude average value, and the latter value is smaller. However, since the signal point arrangement is fixed, the ratio between the two can be obtained in advance by calculation. Therefore, the signal power can be obtained by multiplying the obtained ratio.
【0022】更に、受信信号振幅は一定ではなく、フェ
ージングなどによって変動する。この場合、図1の実施
例では識別器の基準振幅値を信号振幅に応じて、変えて
やる必要がある。このためには、図1の加算器6-Cで求
まる信号電力Cか、別途用意されたAGC回路などで求めら
れる信号レベル情報を用いて基準振幅値を可変してやれ
ばよい。図4は識別器の基準振幅値を信号振幅に応じて
変えてCN比を計測する回路の一実施例である。図4は図
1のCN測定回路において、識別器3-1の代りに、基準振
幅値を同相成分信号の振幅に応じて変更する制御端子27
-1を備えた識別器3-1′と、識別器3-2の代りに、基準振
幅値を直交成分信号の振幅に応じて変更する制御端子27
-2を備えた識別器3-2′とを備えたものである。Further, the amplitude of the received signal is not constant but fluctuates due to fading or the like. In this case, in the embodiment of FIG. 1, it is necessary to change the reference amplitude value of the discriminator according to the signal amplitude. For this purpose, the reference amplitude value may be varied using the signal power C obtained by the adder 6-C in FIG. 1 or the signal level information obtained by a separately prepared AGC circuit or the like. FIG. 4 shows an embodiment of a circuit for measuring the CN ratio by changing the reference amplitude value of the discriminator according to the signal amplitude. FIG. 4 shows a control terminal 27 for changing the reference amplitude value according to the amplitude of the in-phase component signal instead of the discriminator 3-1 in the CN measurement circuit of FIG.
A control terminal 27 for changing the reference amplitude value in accordance with the amplitude of the quadrature component signal instead of the classifier 3-1 ′ having the -1 and the classifier 3-2.
-2 with a discriminator 3-2 '.
【0023】図3によって本発明の第2の実施例を説明
する。前述の実施例は、16QAM(16 Qaudrature Amplitu
de Modulation)のように多値変調方式では、信号電力
値が一定(1つの)値ではないので識別器が必要であ
る。しかし、QPSK(Qaudrature Phase Shift Keying)
のように、識別点での信号電力値が一定であるような変
調方式の場合には、雑音電力を求めるのに識別をする必
要がない。このような場合には、図3に示すような方法
を適用する。図3は本発明のCN測定回路の一実施例の構
成を説明するブロック図である。図3では、図1と同一
の機能を有する構成要素には図1と同一の番号を付し
た、また、32は平均化回路、34は減算器、35-1と35-2は
乗算器、36は加算器、21″は出力端子である。Referring to FIG. 3, a second embodiment of the present invention will be described. In the above-described embodiment, 16QAM (16 Qaudrature Amplitu
In a multi-level modulation scheme such as de Modulation, a discriminator is required because the signal power value is not a fixed (single) value. However, QPSK (Qaudrature Phase Shift Keying)
In the case of a modulation method in which the signal power value at the discrimination point is constant as in the above, it is not necessary to discriminate the noise power. In such a case, a method as shown in FIG. 3 is applied. FIG. 3 is a block diagram illustrating the configuration of an embodiment of the CN measurement circuit according to the present invention. In FIG. 3, components having the same functions as those in FIG. 1 are given the same numbers as those in FIG. 1, and 32 is an averaging circuit, 34 is a subtractor, 35-1 and 35-2 are multipliers, 36 is an adder and 21 ″ is an output terminal.
【0024】図3の構成は、図1の構成から、識別器3-
1,3-2と減算器4-1,4-2を除去し、信号電力Cの出力を
分岐して雑音電力Nの出力側に追加した減算器の減算(-
入力)側に入力させる構成としたものである。その接続
は、入力端子20-1から絶対値回路1-1を通り加算器6-Cま
での接続と、入力端子20-2から絶対値回路1-2を通り加
算器6-Cまでの接続とは図1と同じである。加算器6-Cの
出力は除算器7の被除算入力(分子)側と減算器34の減
算(-入力)側に接続する。また、入力端子20-1は2つ
に分岐し、分岐した2つの経路はそれぞれ乗算器35-1に
接続し、乗算器35-1の出力は加算器36に接続する。同様
に、入力端子20-2もまた2つに分岐し、分岐した2つの
経路はそれぞれ乗算器35-2に接続し、乗算器35-2の出力
は加算器36に接続する。加算器36の出力は平均化回路32
に接続し平均化回路32の出力は減算器34の被減算側に接
続する。減算器34の出力は除算器7の除算入力(分母)
側に接続する。除算器7の出力(分子÷分母)は出力端
子21′に接続する。The configuration of FIG. 3 differs from the configuration of FIG.
1, 3-2 and the subtractors 4-1 and 4-2 are removed, the output of the signal power C is branched, and the subtraction of the subtractor added to the output side of the noise power N (-
(Input) side. The connection is from the input terminal 20-1 through the absolute value circuit 1-1 to the adder 6-C, and from the input terminal 20-2 through the absolute value circuit 1-2 to the adder 6-C. Is the same as FIG. The output of the adder 6-C is connected to the divided input (numerator) side of the divider 7 and the subtraction (-input) side of the subtractor 34. The input terminal 20-1 is branched into two, and the two branched paths are connected to the multiplier 35-1, respectively, and the output of the multiplier 35-1 is connected to the adder 36. Similarly, the input terminal 20-2 is also branched into two, and the two branched paths are respectively connected to the multiplier 35-2, and the output of the multiplier 35-2 is connected to the adder 36. The output of the adder 36 is the averaging circuit 32
And the output of the averaging circuit 32 is connected to the subtracted side of the subtractor 34. The output of the subtractor 34 is the division input (denominator) of the divider 7
To the side. The output of the divider 7 (numerator denominator) is connected to the output terminal 21 '.
【0025】受信信号電力に関しては、図3の実施例の
動作は図1の実施例と全く同様である。即ち、受信信号
電力Cは式(1)のように求められる。次に、雑音電力を求
めるため、同相信号成分、直交信号成分を各々、乗算器
35-1と35-2によって自乗する。そして、自乗した2つ
の値を加算器36で加算して瞬時信号(+雑音)電力を求
め、平均化回路32によって平均して平均信号(+雑音)
電力Nを求める(式(3)参照)。With respect to the received signal power, the operation of the embodiment of FIG. 3 is completely the same as that of the embodiment of FIG. That is, the received signal power C is obtained as in equation (1). Next, in order to obtain noise power, the in-phase signal component and the quadrature signal component are each multiplied by a multiplier.
Square with 35-1 and 35-2. Then, the two squared values are added by an adder 36 to obtain an instantaneous signal (+ noise) power, and averaged by an averaging circuit 32 to obtain an average signal (+ noise).
The power N is obtained (see equation (3)).
【0026】 N=〔Σ{(xi-xiav)2+(xq-xqav)2〕/M ={Σ(xi2+ xq2)}/M-C ‥‥‥式(3) ここで、xiavはxiの平均値、xqavはxqの平均値であ
る。N = [{(xi-xiav) 2+ (xq-xqav) 2] / M = {(xi2 + xq2)} / MC Formula (3) where xiv is the average value of xi , Xqav is the average value of xq.
【0027】次に減算器34により、信号電力を差引く
と、雑音電力が得られる。最後に除算器7で、信号電力
と雑音電力の比を求めれば、所期の目的が達せられる。Next, when the signal power is subtracted by the subtractor 34, noise power is obtained. Finally, if the ratio between the signal power and the noise power is obtained by the divider 7, the intended purpose can be achieved.
【0028】図3の実施例では、回路要素35-1から34
までの回路によって、信号の分散(瞬時信号振幅値と平
均振幅値との差の自乗の平均値)を求めている。信号識
別点の信号電力は一定であるから、信号の分散はすべ
て、雑音に起因するものであり、従って信号の分散値が
雑音電力と一致する。図3の実施例では適用可能な変調
方式に制限はあるものの、図1の実施例と較べて、識別
器が不要であり、回路構成が簡略化でき、信号振幅が変
動するような場合でも、識別値を変える必要もない。In the embodiment shown in FIG. 3, the circuit elements 35-1 to 34-1
, The variance of the signal (the average value of the square of the difference between the instantaneous signal amplitude value and the average amplitude value) is obtained. Since the signal power at the signal discriminating point is constant, all of the variance of the signal is due to noise, so that the variance of the signal matches the noise power. Although there is a limit to the applicable modulation scheme in the embodiment of FIG. 3, compared to the embodiment of FIG. 1, no discriminator is required, the circuit configuration can be simplified, and even if the signal amplitude fluctuates, There is no need to change the identification value.
【0029】[0029]
【発明の効果】本発明によれば、ディジタル無線機の受
信信号の信号電力対雑音電力比を簡便な回路で正確に求
めることができる。また、信号電力が変動する場合や、
様々な変調方式の受信機にも容易に適用することができ
る。According to the present invention, the signal power to noise power ratio of a received signal of a digital radio can be accurately obtained by a simple circuit. Also, when the signal power fluctuates,
It can be easily applied to receivers of various modulation schemes.
【0030】更に本発明の第2の効果は、全てディジタ
ル的に処理することが可能なので、LSI(Large Scale I
ntegrated Circuit)化により小型化、低消費電力化が
可能であり、ディジタル無線に本発明のCN測定回路を装
備することにより、容易に高性能化が図ることができ
る。Further, the second effect of the present invention is that all the signals can be processed digitally.
Integrated circuit) makes it possible to reduce the size and power consumption. By providing the CN measurement circuit of the present invention in digital radio, high performance can be easily achieved.
【図1】 本発明のCN測定回路の一実施例の構成を説明
するブロック図。FIG. 1 is a block diagram illustrating a configuration of an embodiment of a CN measurement circuit according to the present invention.
【図2】 従来の受信信号電力測定回路の構成を示すブ
ロック図。FIG. 2 is a block diagram showing a configuration of a conventional received signal power measurement circuit.
【図3】 本発明のCN測定回路の一実施例の構成を説明
するブロック図。FIG. 3 is a block diagram illustrating a configuration of an embodiment of a CN measurement circuit according to the present invention.
【図4】 本発明のCN測定回路の一実施例の構成を説明
するブロック図。FIG. 4 is a block diagram illustrating a configuration of an embodiment of a CN measurement circuit according to the present invention.
1-1,1-2:絶対値回路、 2-1,2-2,2-N:平均化回
路、 3-1,3-2,3-1′,3-2′:識別器、 4-1,4-2:
減算器、 5C-1,5C-2,5N-1,5N-2:乗算器、 6-C,6
-N:加算器、 7:除算器、 20-1,20-2:入力端子、
21,21′,21″:出力端子、 22:平均化回路、 25
-1,25-2:乗算器、 26:加算器、27-1,27-2:制御端
子、 32:平均化回路、 34:減算器、 35-1,35-2:
乗算器、 36:加算器。1-1, 1-2: absolute value circuit, 2-1, 2-2, 2-N: averaging circuit, 3-1, 3-2, 3-1 ', 3-2': discriminator, 4 -1, 4-2:
Subtractor, 5C-1, 5C-2, 5N-1, 5N-2: Multiplier, 6-C, 6
-N: Adder, 7: Divider, 20-1, 20-2: Input terminal,
21, 21 ', 21 ": output terminal, 22: averaging circuit, 25
-1, 25-2: multiplier, 26: adder, 27-1, 27-2: control terminal, 32: averaging circuit, 34: subtractor, 35-1, 35-2:
Multiplier, 36: adder.
Claims (5)
信振幅値と直交成分の受信振幅値のそれぞれについて絶
対値を求め、該絶対値の平均値を求め、該平均値を自乗
した後、前記同相成分の自乗値と前記直交成分の自乗値
とを加算した値を受信信号電力とし、 前記同相成分の受信振幅値と前記直交成分の受信振幅値
のそれぞれについて、前記直交変調波信号の識別値を求
め、前記受信振幅値から該識別値を引いた雑音振幅値を
求め、該雑音振幅値を自乗した自乗雑音振幅値を求め、
前記同相成分の自乗雑音振幅値と前記直交成分の自乗雑
音振幅値とを加算した値を瞬時雑音電力とし、 該瞬時雑音電力の平均値をもとめて平均雑音電力とし、
前記受信信号電力を前記平均雑音電力で除算した値を信
号電力対雑音電力比として求めることを特徴とするCN測
定方法。An absolute value is obtained for each of a received amplitude value of an in-phase component and a received amplitude value of a quadrature component of an input quadrature modulated wave signal, an average value of the absolute values is obtained, and the average value is squared. The received signal power is a value obtained by adding the square value of the in-phase component and the square value of the quadrature component, and for each of the reception amplitude value of the in-phase component and the reception amplitude value of the quadrature component, identification of the quadrature modulation wave signal Calculating a noise amplitude value by subtracting the identification value from the reception amplitude value, and obtaining a square noise amplitude value obtained by squaring the noise amplitude value;
The instantaneous noise power is a value obtained by adding the square noise amplitude value of the in-phase component and the square noise amplitude value of the quadrature component, and the average value of the instantaneous noise power is determined as the average noise power,
A CN measurement method, wherein a value obtained by dividing the received signal power by the average noise power is obtained as a signal power to noise power ratio.
記直交変調波信号の識別値を求めるための基準振幅値
を、前記受信信号電力に応じて変更することを特徴とす
るCN測定方法。2. The CN measurement method according to claim 1, wherein a reference amplitude value for obtaining an identification value of the quadrature modulated wave signal is changed according to the received signal power.
信振幅値と直交成分の受信振幅値のそれぞれについて絶
対値を求め、該絶対値の平均値を求め、該平均値を自乗
した後、前記同相成分の自乗値と前記直交成分の自乗値
とを加算した値を受信信号電力とし、 前記同相成分の受信振幅値と前記直交成分の受信振幅値
のそれぞれについて、前記受信振幅値を自乗した自乗振
幅値を求め、前記同相成分の自乗振幅値と前記直交成分
の自乗振幅値とを加算した瞬時電力値を求め、該瞬時電
力値の平均値をもとめて平均信号とし、該平均信号から
前記受信信号電力を引いた雑音電力を求め、 前記受信信号電力を前記雑音電力で除算した値を信号電
力対雑音電力比として求めることを特徴とするCN測定方
法。直交変調波信号の受信振幅値(同相成分xi、直交成
分xq)の各成分の絶対値の平均値を自乗加算した値を受
信信号電力Cとし、前記受信振幅値xi、xqの各々を自乗
加算した瞬時電力の平均値から、前記受信信号電力Cを
引いた値を平均雑音電力Nとし、前記受信信号電力Cとの
比(C/N)によって信号電力対雑音電力比CNを求めるこ
とを特徴とするCN測定方法。3. An absolute value is obtained for each of a received amplitude value of an in-phase component and a received amplitude value of a quadrature component of an input quadrature modulated wave signal, an average value of the absolute values is obtained, and the average value is squared. The received signal power is a value obtained by adding the square value of the in-phase component and the square value of the quadrature component.For each of the reception amplitude value of the in-phase component and the reception amplitude value of the quadrature component, the reception amplitude value is squared. A square amplitude value is obtained, an instantaneous power value obtained by adding the square amplitude value of the in-phase component and the square amplitude value of the quadrature component is obtained, an average value of the instantaneous power values is obtained as an average signal, and the average signal is calculated from the average signal. A CN measurement method comprising: obtaining noise power obtained by subtracting received signal power; and obtaining a value obtained by dividing the received signal power by the noise power as a signal power-to-noise power ratio. A value obtained by squaring the average value of the absolute values of the components of the received amplitude values (in-phase component xi and quadrature component xq) of the quadrature modulated wave signal is defined as a received signal power C, and each of the received amplitude values xi and xq is squared. A value obtained by subtracting the received signal power C from the average value of the instantaneous power obtained is defined as an average noise power N, and a signal power-to-noise power ratio CN is obtained by a ratio (C / N) to the received signal power C. CN measurement method.
対値を求める第1の絶対値回路と、該第1の絶対値回路
の出力を平均する第1の平均値回路と、該第1の平均値
回路の出力を自乗する第1の自乗回路と、前記受信直交
変調波信号の直交成分の絶対値を求める第2の絶対値回
路と、該第2の絶対値回路の出力を平均する第2の平均
値回路と、該第2の平均値回路の出力を自乗する第2の
自乗回路と、該第2の自乗回路の出力と前記第1の自乗
回路の出力を加算する第1の加算器によって構成される
受信信号電力測定回路と、 前記受信直交変調波信号の同相成分を識別する第1の識
別器と、該第1の識別器の出力を、前記受信直交変調波
信号の同相成分から引く第1の減算器と、該第1の減算
器出力を自乗する第3の自乗回路と、前記受信直交変調
波信号の直交成分を識別する第2の識別器と、該第2の
識別器の出力を、前記受信直交変調波信号の同相成分か
ら引く第2の減算器と、該第2の減算器出力を自乗する
第4の自乗回路と、該第4の自乗回路の出力と前記第3
の自乗回路の出力を加算する第2の加算器と、該第2の
加算器の出力を平均する第3の平均値回路によって構成
される雑音電力測定回路と、 該雑音電力測定回路の出力と、前記受信信号電力測定回
路の出力との比を求める除算回路とから構成することを
特徴とするCN測定回路。4. A first absolute value circuit for obtaining an absolute value of an in-phase component of an input quadrature modulated wave signal, a first average value circuit for averaging an output of the first absolute value circuit, A first squarer circuit for squaring the output of the average value circuit, a second absolute value circuit for obtaining the absolute value of the quadrature component of the received quadrature modulated wave signal, and averaging the output of the second absolute value circuit. A second averaging circuit, a second squaring circuit for squaring the output of the second averaging circuit, and a first for adding the output of the second squaring circuit and the output of the first squaring circuit. A received signal power measuring circuit constituted by an adder; a first discriminator for identifying an in-phase component of the received quadrature modulated wave signal; and an output of the first discriminator, the in-phase of the received quadrature modulated wave signal. A first subtractor for subtracting from the component, a third squaring circuit for squaring the output of the first subtractor, A second discriminator for discriminating the quadrature component of the intermodulated wave signal, a second subtractor for subtracting the output of the second discriminator from the in-phase component of the received quadrature modulated signal, and the second subtraction A fourth squaring circuit for squaring the device output, and an output of the fourth squaring circuit and the third
A second adder that adds the outputs of the squared circuits of the following, a noise power measurement circuit that includes a third average value circuit that averages the output of the second adder, and an output of the noise power measurement circuit. A divider circuit for calculating a ratio with respect to an output of the received signal power measuring circuit.
対値を求める第1の絶対値回路と、該第1の絶対値回路
の出力を平均する第1の平均値回路と、該第1の平均値
回路の出力を自乗する第1の自乗回路と、前記受信直交
変調波信号の直交成分の絶対値を求める第2の絶対値回
路と、該第2の絶対値回路の出力を平均する第2の平均
値回路と、該第2の平均値回路の出力を自乗する第2の
自乗回路と、該第2の自乗回路の出力と前記第1の自乗
回路の出力を加算する第1の加算器によって構成される
受信信号電力測定回路と、 前記受信直交変調波信号の同相成分を自乗する第3の自
乗回路と、前記受信直交変調波信号の直交成分を自乗す
る第4の自乗回路と、該第4の自乗回路の出力と前記第
3の自乗回路の出力を加算する第2の加算器と、該第2
の加算器の出力を平均する第3の平均値回路と、該第3
の平均値回路出力から、前記受信信号電力測定回路出力
を引く減算器によって構成される雑音電力測定回路と、 該雑音電力測定回路の出力と、前記受信信号電力測定回
路の出力との比を求める除算回路とから構成することを
特徴とするCN測定回路。5. A first absolute value circuit for obtaining an absolute value of an in-phase component of a received quadrature modulated wave signal, a first average value circuit for averaging an output of the first absolute value circuit, A first squarer circuit for squaring the output of the average value circuit, a second absolute value circuit for obtaining the absolute value of the quadrature component of the received quadrature modulated wave signal, and averaging the output of the second absolute value circuit. A second averaging circuit, a second squaring circuit for squaring the output of the second averaging circuit, and a first for adding the output of the second squaring circuit and the output of the first squaring circuit. A received signal power measurement circuit configured by an adder, a third squared circuit that squares the in-phase component of the received quadrature modulated wave signal, and a fourth squared circuit that squares the quadrature component of the received quadrature modulated wave signal. A second adder for adding the output of the fourth squared circuit and the output of the third squared circuit; Second
A third average value circuit for averaging the outputs of the adders
A noise power measurement circuit configured by a subtracter for subtracting the output of the reception signal power measurement circuit from the average value circuit output of the above, and obtaining a ratio between the output of the noise power measurement circuit and the output of the reception signal power measurement circuit. A CN measurement circuit comprising a division circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28379899A JP2001108720A (en) | 1999-10-05 | 1999-10-05 | Method and circuit for measuring cn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28379899A JP2001108720A (en) | 1999-10-05 | 1999-10-05 | Method and circuit for measuring cn |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001108720A true JP2001108720A (en) | 2001-04-20 |
Family
ID=17670290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28379899A Pending JP2001108720A (en) | 1999-10-05 | 1999-10-05 | Method and circuit for measuring cn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001108720A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012244296A (en) * | 2011-05-17 | 2012-12-10 | Nippon Hoso Kyokai <Nhk> | Ofdm signal receiver |
CN102944765A (en) * | 2012-11-30 | 2013-02-27 | 中国船舶重工集团公司第七二二研究所 | Low-frequency-stage magnetic sensor background noise measuring method |
WO2016121393A1 (en) * | 2015-01-28 | 2016-08-04 | パナソニックIpマネジメント株式会社 | C/n ratio detection circuit and signal receiving circuit |
CN107607795A (en) * | 2017-10-23 | 2018-01-19 | 北京经纬恒润科技有限公司 | A kind of measuring method and system of radio-frequency electromagnetic field phase |
-
1999
- 1999-10-05 JP JP28379899A patent/JP2001108720A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012244296A (en) * | 2011-05-17 | 2012-12-10 | Nippon Hoso Kyokai <Nhk> | Ofdm signal receiver |
CN102944765A (en) * | 2012-11-30 | 2013-02-27 | 中国船舶重工集团公司第七二二研究所 | Low-frequency-stage magnetic sensor background noise measuring method |
CN102944765B (en) * | 2012-11-30 | 2015-02-11 | 中国船舶重工集团公司第七二二研究所 | Low frequency magnetic sensor background noise measuring method |
WO2016121393A1 (en) * | 2015-01-28 | 2016-08-04 | パナソニックIpマネジメント株式会社 | C/n ratio detection circuit and signal receiving circuit |
CN107210768A (en) * | 2015-01-28 | 2017-09-26 | 松下知识产权经营株式会社 | Carrier-to-noise ratio detects circuit and receiving circuit |
US10393787B2 (en) | 2015-01-28 | 2019-08-27 | Panasonic Intellectual Property Management Co., Ltd. | C/N ratio detection circuit and signal receiving circuit |
CN107210768B (en) * | 2015-01-28 | 2019-12-17 | 松下知识产权经营株式会社 | Carrier-to-noise ratio detection circuit and reception circuit |
CN107607795A (en) * | 2017-10-23 | 2018-01-19 | 北京经纬恒润科技有限公司 | A kind of measuring method and system of radio-frequency electromagnetic field phase |
CN107607795B (en) * | 2017-10-23 | 2019-08-30 | 北京经纬恒润科技有限公司 | A kind of measurement method and system of radio-frequency electromagnetic field phase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2146416C1 (en) | Direct-detection digital-correction receiver | |
JP5474824B2 (en) | Communication system I / Q imbalance estimation and correction | |
JP2000514965A (en) | Variable of sampled signal C. Method and apparatus for compensating offset | |
US6707860B1 (en) | DC offset correction for direct-conversion receiver | |
EP1869779A1 (en) | Receiver for receipt and demodulation of a frequency modulated rf signal and method of operation therein | |
RU2241310C2 (en) | Homodyne receiver | |
EP3000182B1 (en) | Method and circuit for signal quality estimation and control | |
US12088442B2 (en) | Frequency modulation tracking for band rejection to reduce dynamic range | |
JP2001108720A (en) | Method and circuit for measuring cn | |
JP4330152B2 (en) | Rising detection method and apparatus for radio signal | |
JP3851143B2 (en) | MODULATION SYSTEM IDENTIFICATION CIRCUIT, RECEPTION DEVICE EQUIPPED WITH SAME, WIRELESS STATION, AND MODULATION SYSTEM IDENTIFICATION METHOD | |
JP3643364B2 (en) | Receiver | |
WO2005119901A1 (en) | Receiver and method for wireless communications terminal | |
JP4969518B2 (en) | Modulation method identification circuit and receiver | |
WO2006012245A1 (en) | Receiver for use in wireless communications and method and terminal using it | |
US7369812B2 (en) | Method and circuit arrangement for determining the signal strength in receivers with complex signal processing | |
JP5556409B2 (en) | Radio receiving apparatus and propagation path estimation method thereof | |
US20090206925A1 (en) | Receiving circuit and method for receiving an amplitude shift keying signal | |
JPH0575664A (en) | Agc circuit | |
JPH03177118A (en) | Method for removing interference beat noise | |
JPS592220B2 (en) | Interference elimination method | |
KR20120007867A (en) | Zero crossing demodulation based receiver and driving method thereof | |
JPH0678012A (en) | Receiver with demodulating circuit | |
MXPA97004753A (en) | Receiver of direct conversion, compensated digitalme | |
JPH11340887A (en) | Diversity receiver |