JP2001108663A - Method for analyzing low molecular compound - Google Patents

Method for analyzing low molecular compound

Info

Publication number
JP2001108663A
JP2001108663A JP28401499A JP28401499A JP2001108663A JP 2001108663 A JP2001108663 A JP 2001108663A JP 28401499 A JP28401499 A JP 28401499A JP 28401499 A JP28401499 A JP 28401499A JP 2001108663 A JP2001108663 A JP 2001108663A
Authority
JP
Japan
Prior art keywords
sample
column
molecular compound
low
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28401499A
Other languages
Japanese (ja)
Inventor
Shinya Kobayashi
信弥 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28401499A priority Critical patent/JP2001108663A/en
Publication of JP2001108663A publication Critical patent/JP2001108663A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample
    • G01N2030/127PTV evaporation

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze a low molecular compound without necessity of complicated pretreatment by off-line. SOLUTION: First, switching valves V1, V2 are set to a solid line state, and a sample is filled from a sample filling unit 3. The sample is separated in a GPC column 4, and introduced into a loop 7 for a trap. When a predetermined substance component flows to a UV detector 5, the valves V1, V2 are switched from a solid line to a dotted line after a predetermined time from this time point, and an eluate in the loop 7 is filled in a PTV injector 17. When the filling is finished, the valves V1, V2 are switched from the dotted line to the solid line, the predetermined component is vaporized, and sent to a GC column 17 with carrier gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、農作物等食品に含
まれる農薬、添加物、環境ホルモンなどの低分子化合物
の分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing low molecular compounds such as pesticides, additives, and environmental hormones contained in foods such as agricultural products.

【0002】[0002]

【従来の技術】野菜などの農作物に農薬が残留している
場合には人の健康を徐々に損ねるおそれがあるとして、
残留農薬に対する消費者の関心が高まっている。これを
受けて厚生省は、農薬の残留基準を設定している。この
ような背景の下、安全性が保証された農作物を供給する
ために、農作物が収穫されてから出荷されるまでの限定
された時間内に、残留農薬の濃度が許容値以下か否かを
精度よく判別することが要求されている。
2. Description of the Related Art If pesticides remain in agricultural products such as vegetables, there is a possibility that human health may be impaired gradually.
Consumer interest in pesticide residues is growing. In response, the Ministry of Health and Welfare has set pesticide residue standards. Against this background, in order to supply crops that are guaranteed to be safe, it is necessary to determine whether the concentration of pesticide residues is below an acceptable level within a limited time from when the crop is harvested until it is shipped. Accurate determination is required.

【0003】従来、農作物などの食品に含まれる農薬等
を分析する場合、前処理として溶剤による抽出・濃縮又
はゲルパーミェーションクロマトグラフィー(GPC)
クリーンアップ法による分離およびオフラインでの濃縮
を行った後、液体クロマトグラフ(LC)、ガスクロマト
グラフ(GC)、ガスクロマトグラフ−質量分析計(GC
−MS)などで分析している。
Conventionally, when analyzing pesticides and the like contained in foods such as agricultural products, extraction and concentration with a solvent or gel permeation chromatography (GPC) are performed as pretreatment.
After separation by the cleanup method and off-line concentration, a liquid chromatograph (LC), a gas chromatograph (GC), a gas chromatograph-mass spectrometer (GC
-MS).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
分析法では、前処理がオフラインであるため、操作が煩
雑で時間がかかり、また前処理中に低濃度の目的成分が
消失することがある。特に溶剤による抽出・濃縮の前処
理では、食品を対象とした場合などは脂質、色素等の夾
雑物が除去できないため、分析に用いるクロマトグラフ
ィー用カラム、検出器にダメージを与える。
However, in the conventional analysis method, since the pre-processing is off-line, the operation is complicated and time-consuming, and the low-concentration target component may be lost during the pre-processing. In particular, in the pretreatment of extraction and concentration with a solvent, impurities such as lipids and dyes cannot be removed when food is used, so that chromatography columns and detectors used for analysis are damaged.

【0005】そこで、本発明は、農作物等食品に含まれ
る農薬、添加物、環境ホルモンなどの低分子化合物の分
析の際、前処理操作の煩雑さを解消する新規な分析法を
提供することを目的とする。
Accordingly, the present invention provides a novel analytical method which eliminates the complexity of the pretreatment operation when analyzing low molecular compounds such as pesticides, additives, and environmental hormones contained in foods such as agricultural products. Aim.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、試料中の低分子化合物と夾雑物とを液体ク
ロマトグラフ(LC)用カラムで分離した後、低分子化合
物を含む溶出液分画の一部又は全部をガスクロマトグラ
フ(GC)用試料気化室に導入し、気化した後GC用カラ
ムで分析することを特徴とする低分子化合物の分析法で
ある。
In order to solve the above-mentioned problems, the present invention separates a low-molecular compound in a sample from contaminants using a column for liquid chromatography (LC), and then elutes the low-molecular compound containing the low-molecular compound. This is a method for analyzing low molecular weight compounds, in which a part or all of a liquid fraction is introduced into a sample vaporization chamber for gas chromatography (GC), vaporized, and then analyzed by a GC column.

【0007】ここで、低分子化合物とは、例えば農薬、
添加物、環境ホルモンなどをいい、一般的にいうポリマ
ーなどの高分子化合物と反する概念である。農薬は、散
布前の農薬そのもののみならず、農作物などの食品に含
まれる残留農薬をも含む概念である。また、添加剤は、
例えば食品中に含まれる各種色素などの添加剤、安息香
酸、ソルビン酸などの保存料、BHT、BHAなどの抗
酸化剤などをいう。環境ホルモンは、内分泌撹乱物質と
言われるもので、ダイオキシンなどが代表的なものであ
る。
Here, the low-molecular compound is, for example, a pesticide,
It refers to additives, environmental hormones, etc., and is a concept that is contrary to the general term of high molecular compounds such as polymers. The pesticide is a concept including not only the pesticide itself before spraying but also the residual pesticide contained in foods such as agricultural products. Also, the additive
For example, it refers to additives such as various dyes contained in food, preservatives such as benzoic acid and sorbic acid, and antioxidants such as BHT and BHA. Environmental hormones are called endocrine disrupting substances, and dioxins and the like are typical.

【0008】LC用カラムとしては、例えばポリスチレ
ンゲル、ポリビニルアルコールゲルなどを充填したGP
C用カラム、オクタデシル基を有する逆相クロマトグラ
フ用カラム、シリカゲルを充填した順相クロマトグラフ
用カラムなどを用いることができるが、これらに限定さ
れない。溶離液(移動相)は、カラム及び分析対象物質に
応じて選択される。例えば、食品中の残留農薬を分析す
る場合は、カラムとしてポリスチレン系ハードゲルを充
填したshodex CLNpak EVを用い、溶離液としては、アセ
トンとシクロへキサンの混合液を用いる。また、BHTやB
HA等の食品中の添加剤を分析する場合は、カラムとして
Shim-pack GPCを用い、溶離液としては、テトラヒドロ
フランを用いる。さらに、フタル酸エステル等の環境ホ
ルモンを分析する場合は、カラムとしてポリビニルアル
コールゲルを充填したshodex CLNpak PAEを用い、溶離
液としては、アセトンまたはアセトニトリルを用いる。
なお、LC用の検出器としては、示差屈折計、紫外可視
吸光光度計などを用いることができる。
As an LC column, for example, GP filled with polystyrene gel, polyvinyl alcohol gel or the like is used.
A column for C, a column for reverse phase chromatography having an octadecyl group, a column for normal phase chromatography filled with silica gel, and the like can be used, but are not limited thereto. The eluent (mobile phase) is selected according to the column and the substance to be analyzed. For example, when analyzing pesticide residues in food, a shodex CLNpak EV filled with polystyrene hard gel is used as a column, and a mixed solution of acetone and cyclohexane is used as an eluent. Also, BHT and B
When analyzing additives in foods such as HA, use a column
Shim-pack GPC is used, and tetrahydrofuran is used as an eluent. Furthermore, when analyzing environmental hormones such as phthalate esters, shodex CLNpak PAE packed with polyvinyl alcohol gel is used as a column, and acetone or acetonitrile is used as an eluent.
In addition, as a detector for LC, a differential refractometer, an ultraviolet-visible absorptiometer, etc. can be used.

【0009】LC用カラムからの低分子化合物を含む溶
出液分画はGC用試料気化室に導入するが、その際、低
分子化合物を含む溶出液分画をスプリットして、任意の
幅と量に調整することが好ましい。ここで、「幅」とは、
クロマトグラムの横軸、すなわち溶出時間を意味する。
したがって、スプリットにより任意の時間又は任意の量
だけLC用カラムからの溶出液をGC用試料気化室に導
入する。なお、スプリットは、LC用カラム出口に出口
流路から分岐させて抵抗管を設け、抵抗比を調整するこ
とにより行う。
The eluate fraction containing the low-molecular compound from the LC column is introduced into the sample vaporization chamber for GC. At this time, the eluate fraction containing the low-molecular compound is split to obtain an arbitrary width and amount. It is preferable to adjust to. Here, "width" means
The horizontal axis of the chromatogram, that is, the elution time.
Therefore, the eluate from the LC column is introduced into the GC sample vaporization chamber for an arbitrary time or an arbitrary amount by splitting. The splitting is performed by providing a resistance tube branched from the outlet channel to the LC column outlet and adjusting the resistance ratio.

【0010】GC用試料気化室は、LC用カラムからの
溶出液を保持して気化するもので、PTV(Programmed
Temperature Vaporizer)インジェクタが好ましい。P
TVは、試料を液体のままで、試料気化室に導入するも
のであり、スプリット/スプリットレス注入のようにサ
ンプルを気化室内で一瞬のうちに気化するようなことが
なく、そのためカラムへの試料注入量をスプリット/ス
プリットレス注入よりはるかに多くすることができる注
入法である。PTVインジェクタでは、試料を気化室の
ガラスインサート内で保持するため、インサート内に充
填剤やシリカウールを収容しておく。充填剤としてはT
ENAX GCなどを用いる。
The GC sample vaporization chamber holds and evaporates the eluate from the LC column, and is provided with a PTV (Programmed
Temperature Vaporizer) injectors are preferred. P
TV is a method in which a sample is introduced into a sample vaporization chamber in a liquid state, and the sample is not instantaneously vaporized in the vaporization chamber as in the case of split / splitless injection. This is an injection method that allows the injection amount to be much larger than the split / splitless injection. In the PTV injector, a filler or silica wool is stored in the insert in order to hold the sample in the glass insert in the vaporization chamber. T as filler
ENAX GC or the like is used.

【0011】GC用カラムは、キャピラリーカラム、パ
ックドカラムのいずれを用いてもよく、液相は分析対象
成分により適宜選択される。例えばフタル酸エステルを
分析する場合は、メチルシリコンを用いる。また、GC
用検出器としては、熱伝導度検出器、水素炎イオン化検
出器、電子捕獲型検出器などのあらゆる検出器を用いる
ことができる。
As the GC column, any of a capillary column and a packed column may be used, and the liquid phase is appropriately selected depending on the component to be analyzed. For example, when analyzing a phthalate, methyl silicon is used. Also, GC
As the detector for use, any detector such as a thermal conductivity detector, a flame ionization detector, and an electron capture detector can be used.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は本発明の装置概略図であり、4が
GPCカラムで、カラム恒温槽41にて一定温度に調整
される。GPCカラム4の一端には試料注入器3が接続
され、注入された試料は、送液ポンプ2により、移動相
溜1の移動相とともにGPCカラム4に導入される。な
お、移動相溜1と送液ポンプ2との間には脱気装置6が
設けられており、移動相中の気泡が除去される。GPC
カラム4の溶出端には、UV検出器5が接続されてお
り、UV検出器5の出口側流路10は、流路切換バルブ
V1に接続される。また、流路10の一部は分岐してお
り、その分岐流路11には一端が大気に開放された抵抗
管R1が接続されている。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of the apparatus of the present invention. Reference numeral 4 denotes a GPC column, which is adjusted to a constant temperature in a column thermostat 41. A sample injector 3 is connected to one end of the GPC column 4, and the injected sample is introduced into the GPC column 4 by the liquid sending pump 2 together with the mobile phase in the mobile phase reservoir 1. Note that a deaerator 6 is provided between the mobile phase reservoir 1 and the liquid sending pump 2 to remove bubbles in the mobile phase. GPC
The UV detector 5 is connected to the elution end of the column 4, and the outlet side flow path 10 of the UV detector 5 is connected to the flow path switching valve V1. Further, a part of the flow path 10 is branched, and a resistance pipe R1 whose one end is open to the atmosphere is connected to the branched flow path 11.

【0013】流路切換バルブV1の各ポートには、前述
した流路10、トラップ用ループ7、抵抗管R2、試料
注入流路12、GC接続流路13が接続されており、流
路10、トラップ用ループ7、抵抗管R2からなる第1
流路と、試料注入流路12、GC接続流路13とからな
る第2流路とが切換え可能になっている。なお、抵抗管
R2の抵抗は、抵抗管R1との関係で決められており、
抵抗管R1とR2の抵抗比(スプリット比)により、トラ
ップ用ループ7に入る溶出液の幅、量を調節できる。な
お、試料注入流路12には、試料注入液溜8、脱気装置
14、試料注入ポンプ9、抵抗管R3が配設されてお
り、トラップ用ループ7に入った試料は、試料注入液溜
8の試料注入液により押し出され、GC接続流路13に
送られる。試料の押し出し速度は、試料注入ポンプの送
液流量を調整することにより、制御できる。
The above-described flow path 10, trap loop 7, resistance tube R2, sample injection flow path 12, and GC connection flow path 13 are connected to each port of the flow path switching valve V1, respectively. A first loop composed of a trap loop 7 and a resistance tube R2
The flow path and the second flow path including the sample injection flow path 12 and the GC connection flow path 13 can be switched. Note that the resistance of the resistance tube R2 is determined in relation to the resistance tube R1.
The width and amount of the eluate entering the trap loop 7 can be adjusted by the resistance ratio (split ratio) between the resistance tubes R1 and R2. The sample injection flow path 12 is provided with a sample injection liquid reservoir 8, a deaerator 14, a sample injection pump 9, and a resistance tube R3. 8 and is sent to the GC connection channel 13. The extrusion speed of the sample can be controlled by adjusting the flow rate of the sample injection pump.

【0014】17はPTVインジェクタであり、その内
部に試料を保持するためのガラスインサート(図示せず)
が収容されており、PTVインジェクタ17の外周には
同じく図示しない加熱ヒータが設置されている。PTV
インジェクタ17内の温度は、図示しない制御装置を使
って加熱ヒータを制御し、所定のプログラム温度になる
ようになっている。更に16はセプタムであり、セプタ
ム16を貫通して、試料導入流路15が挿入される。試
料導入流路15の先端は、ガラスインサート内に位置し
ている。
Reference numeral 17 denotes a PTV injector, and a glass insert (not shown) for holding a sample therein.
And a heater (not shown) is provided on the outer periphery of the PTV injector 17. PTV
The temperature inside the injector 17 is controlled to a predetermined program temperature by controlling the heater using a controller (not shown). Further, reference numeral 16 denotes a septum, through which the sample introduction channel 15 is inserted. The tip of the sample introduction channel 15 is located in the glass insert.

【0015】また、PTVインジェクタ17には、キャ
リアガス供給口22が設けられており、キャリアガス流
路20が接続している。このキャリアガス流路20は、
流路切換バルブV2により、試料導入流路15、キャリ
アガス導入流路21と切り換え接続される。
The PTV injector 17 is provided with a carrier gas supply port 22 to which a carrier gas flow path 20 is connected. This carrier gas flow path 20
The sample switching channel 15 and the carrier gas introducing channel 21 are switched and connected by the channel switching valve V2.

【0016】また、18はPTVインジェクタ17に接
続されるGC用カラム(キャピラリカラム)であり、キ
ャピラリカラム18の溶出端にはGC用検出器(例えば
FPD)19が接続される。キャピラリカラム18は、
図示しない恒温槽に収容されており、所定の温度プログ
ラムに従って制御される。
Reference numeral 18 denotes a GC column (capillary column) connected to the PTV injector 17, and a GC detector (for example, FPD) 19 is connected to the elution end of the capillary column 18. The capillary column 18
It is housed in a thermostat (not shown) and controlled according to a predetermined temperature program.

【0017】以上の構成で、試料の分析は次の様に行
う。先ず、流路切換バルブV1、V2を図中実線状態に
設定して、試料注入器3より試料を注入する。試料は、
例えば食品抽出物であり、マニュアル又はオートインジ
ェクタで注入される。試料は、移動相溜1から供給され
る移動相とともにGPCカラム4に流入して、分子量の
大きさおよび充填剤への吸着作用に基づいて分離され、
例えば農薬と脂質・色素とのグループになってUV検出
器5に入る。
With the above configuration, the analysis of the sample is performed as follows. First, the sample is injected from the sample injector 3 by setting the flow path switching valves V1 and V2 to the solid line state in the figure. The sample is
For example, it is a food extract and is injected with a manual or auto injector. The sample flows into the GPC column 4 together with the mobile phase supplied from the mobile phase reservoir 1, and is separated based on the molecular weight and the adsorption action on the packing material,
For example, it enters the UV detector 5 as a group of a pesticide and a lipid / dye.

【0018】GPCカラム4から溶出した溶出液は、抵
抗管R1の流路抵抗と抵抗管R2の流路抵抗により定ま
る比率(スプリット比率)でもってトラップ用ループ7に
流れ込み、残りの分は抵抗管R1を介して系外に排出さ
れる。
The eluate eluted from the GPC column 4 flows into the trapping loop 7 at a ratio (split ratio) determined by the flow path resistance of the resistance tube R1 and the flow path resistance of the resistance tube R2, and the remainder is the resistance tube. It is discharged out of the system via R1.

【0019】溶出液がUV検出器5を通過して、所定成
分(例えば農薬成分)がUV検出器5に流入すると、この
時点から所定の時間、つまり農薬成分がトラップ用ルー
プ7に流入するまでの時間が経過した後、流路切換バル
ブV1を実線から点線に切り換える。なお、例えば農薬
の濃度が十分に高い場合は抵抗管R1、R2の作用によ
り一部をスプリットするが、濃度が低い場合は抵抗管R
1の端にメクラ栓をして全量をトラップ用ループ7にト
ラップし、注入してもよい。
When the eluate passes through the UV detector 5 and a predetermined component (for example, a pesticide component) flows into the UV detector 5, a predetermined time from this time, that is, until the pesticide component flows into the trapping loop 7, After the time elapses, the flow path switching valve V1 is switched from the solid line to the dotted line. For example, when the concentration of the pesticide is sufficiently high, a part is split by the action of the resistance tubes R1 and R2.
One end may be covered with a black plug and the whole amount may be trapped in the trap loop 7 and injected.

【0020】流路切換バルブV1を実線から点線に切り
換えると同時に流路切換バルブV2も実線から点線に切
り換え、試料注入液によりトラップ用ループ7内の溶出
液をPTVインジェクタ17のガラスインサート内に注
入する。なお、注入前のPTVインジェクタ17内の温
度は、GPC移動相として用いる溶媒の沸点付近にして
おく。
When the flow path switching valve V1 is switched from the solid line to the dotted line, the flow path switching valve V2 is also switched from the solid line to the dotted line, and the eluate in the trap loop 7 is injected into the glass insert of the PTV injector 17 by the sample injection liquid. I do. The temperature inside the PTV injector 17 before the injection is set near the boiling point of the solvent used as the GPC mobile phase.

【0021】注入が終了した時点で、流路切換バルブV
1及びV2を点線から実線に切り換え、そして、PTV
インジェクタ17内の温度を所定のプログラムに沿って
上げ、例えば農薬成分毎に気化させて、キャリアガスに
よりキャピラカラム18に送る。キャピラリカラム18
に入った農薬成分は分離されて、GC用検出器(FP
D)19で検出される。ここで、キャピラリカラム18
の温度は、PTVインジェクタ16内の温度制御と同様
に所定の温度プログラムに沿って温度が上げられる。
At the end of the injection, the flow path switching valve V
1 and V2 are switched from the dotted line to the solid line, and the PTV
The temperature in the injector 17 is increased according to a predetermined program, and is vaporized for each pesticide component, for example, and sent to the capillary column 18 by a carrier gas. Capillary column 18
The pesticide components that have entered are separated and used for GC detectors (FP
D) Detected at 19. Here, the capillary column 18
Is increased in accordance with a predetermined temperature program in the same manner as the temperature control in the PTV injector 16.

【0022】なお、以上の説明において、流路切換バル
ブV1及びV2の切換制御は、UV検出器5等の信号を
モニタしながら、自動的に切り換えられる。
In the above description, the switching control of the flow path switching valves V1 and V2 is automatically switched while monitoring signals from the UV detector 5 and the like.

【0023】[0023]

【実施例】表1の分析条件によって、コーン油、β−カ
ロチン、りん系農薬を分析した。この分析では、GPC
カラムでコーン油、β−カロチンとりん系農薬を分離
後、農薬分画をPTVインジェクタに導入して農薬成分
を分析している。なお、農薬分画はスプリット比1/6
で分画してPTVインジェクタに導入したものとスプリ
ットせずにPTVインジェクタに導入したものを分析し
た。
EXAMPLES Corn oil, .beta.-carotene and phosphorus-based pesticides were analyzed under the analysis conditions shown in Table 1. In this analysis, GPC
After separating corn oil, β-carotene and phosphorus-based pesticides by a column, the pesticide fraction is introduced into a PTV injector to analyze the pesticide components. The pesticide fraction was split at 1/6
And those introduced into the PTV injector without splitting and those introduced into the PTV injector without splitting were analyzed.

【0024】[0024]

【表1】 [Table 1]

【0025】分析結果を図2〜図4に示す。図2は、G
PCカラムで分離後、UV検出器(SPD-10Avp)により検
出されたクロマトグラムであり、図中、横軸は溶出時
間、縦軸は信号強度を示している。このクロマトグラム
から明らかなようにGPCカラムではりん系農薬とコー
ン油、β−カロチンが分離されている。また、図3はG
PCカラムの溶出液のうち農薬分画をスプリットしてP
TVインジェクタに注入したときのクロマトグラム(図
中、横軸は溶出時間、縦軸は信号強度)、図4は農薬分
画をスプリットせず、全量PTVインジェクタに注入し
たときのクロマトグラム(図中、横軸は溶出時間、縦軸
は信号強度)である。いずれの手段でも農薬成分が分析
できていることがわかる。
The analysis results are shown in FIGS. FIG.
This is a chromatogram detected by a UV detector (SPD-10Avp) after separation by a PC column. In the figure, the horizontal axis indicates elution time, and the vertical axis indicates signal intensity. As is clear from this chromatogram, the phosphorus-based pesticide, corn oil and β-carotene are separated on the GPC column. FIG.
Split the pesticide fraction from the eluate of the PC column to P
The chromatogram when injected into the TV injector (the horizontal axis is the elution time, the vertical axis is the signal intensity in the figure), and FIG. 4 is the chromatogram when the whole amount was injected into the PTV injector without splitting the pesticide fraction (in the figure , The horizontal axis is the elution time, and the vertical axis is the signal intensity). It can be seen that the pesticide components can be analyzed by any means.

【0026】[0026]

【発明の効果】本発明によれば、オフラインでの煩わし
い前処理操作が不要となり、1回の試料注入で、例えば
農薬と他の成分の分析が可能となる。
According to the present invention, troublesome off-line pretreatment operations are not required, and for example, pesticides and other components can be analyzed by one sample injection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の概略図FIG. 1 is a schematic diagram of the apparatus of the present invention.

【図2】GPCカラムで分離後のクロマトグラムFIG. 2 Chromatogram after separation by GPC column

【図3】GPCカラムの溶出液のうち農薬分画をスプリ
ットしてPTVインジェクタに注入したときのクロマト
グラム
FIG. 3 is a chromatogram obtained when the pesticide fraction of the eluate of the GPC column is split and injected into the PTV injector

【図4】GPCカラムの溶出液のうち農薬分画をスプリ
ットせず、全量PTVインジェクタに注入したときのク
ロマトグラム
FIG. 4 is a chromatogram obtained when the entire amount of the eluate of the GPC column was injected into the PTV injector without splitting the pesticide fraction.

【符号の説明】[Explanation of symbols]

3:試料注入器 4:GPCカラム 7:トラップ用ループ V1、V2:流路切換バルブ 17:PTVインジェクタ 18:キャピラリカラム 3: Sample injector 4: GPC column 7: Loop for trap V1, V2: Channel switching valve 17: PTV injector 18: Capillary column

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】試料中の低分子化合物と夾雑物とを液体ク
ロマトグラフ用カラムで分離した後、低分子化合物を含
む溶出液分画の一部又は全部をガスクロマトグラフ用試
料気化室に導入し、気化した後ガスクロマトグラフ用カ
ラムで分析することを特徴とする低分子化合物の分析
法。
After separating a low-molecular compound and a contaminant in a sample by a liquid chromatography column, a part or all of an eluate fraction containing the low-molecular compound is introduced into a gas chromatography sample vaporization chamber. A method for analyzing low molecular weight compounds, wherein the analysis is performed by a gas chromatography column after vaporization.
【請求項2】低分子化合物が農薬、添加物、環境ホルモ
ンである請求項1記載の低分子化合物の分析法。
2. The method for analyzing low molecular compounds according to claim 1, wherein the low molecular compounds are pesticides, additives and environmental hormones.
【請求項3】ガスクロマトグラフ用試料気化室に導入す
る低分子化合物を含む溶出液分画をスプリットして、任
意の幅と量でガスクロマトグラフ用試料気化室に導入す
ることを特徴とする請求項1又は2記載の低分子化合物
の分析法。
3. The method according to claim 1, wherein the eluate fraction containing the low-molecular compound to be introduced into the sample vaporization chamber for gas chromatography is split and introduced into the gas vaporization sample vaporization chamber in an arbitrary width and quantity. 3. The method for analyzing a low-molecular compound according to 1 or 2.
JP28401499A 1999-10-05 1999-10-05 Method for analyzing low molecular compound Pending JP2001108663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28401499A JP2001108663A (en) 1999-10-05 1999-10-05 Method for analyzing low molecular compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28401499A JP2001108663A (en) 1999-10-05 1999-10-05 Method for analyzing low molecular compound

Publications (1)

Publication Number Publication Date
JP2001108663A true JP2001108663A (en) 2001-04-20

Family

ID=17673190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28401499A Pending JP2001108663A (en) 1999-10-05 1999-10-05 Method for analyzing low molecular compound

Country Status (1)

Country Link
JP (1) JP2001108663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022391A1 (en) * 2001-09-05 2003-03-20 Showa Denko K.K. Method and apparatus for analyzing endocrine-disrupting substances in vital sample
CN106546687A (en) * 2016-12-08 2017-03-29 北京莱伯泰科仪器股份有限公司 For the miniaturization device and its using method of GPC cleanup system system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022391A1 (en) * 2001-09-05 2003-03-20 Showa Denko K.K. Method and apparatus for analyzing endocrine-disrupting substances in vital sample
CN106546687A (en) * 2016-12-08 2017-03-29 北京莱伯泰科仪器股份有限公司 For the miniaturization device and its using method of GPC cleanup system system
CN106546687B (en) * 2016-12-08 2023-04-07 北京莱伯泰科仪器股份有限公司 Miniaturized device for gel chromatography purification system and use method thereof

Similar Documents

Publication Publication Date Title
JP6646057B2 (en) Systems and methods for two-dimensional RPLC-SFC chromatography
US4962042A (en) Method for on-column injection gas chromatography
Engewald et al. Programmed temperature vaporisers-based large volume injection in capillary gas chromatography
Louter et al. Fully automated water analyzer based on on‐line solid phase extraction‐gas chromatography
Grob Jr et al. Coupled reversed-phase liquid chromatography—capillary gas chromatography for the determination of atrazine in water
Insa et al. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography–mass spectrometric analysis of TCA and TBA in wines
Pinto et al. Coupling of microextraction by packed sorbents with gas chromatography with ionic liquid stationary phases for the determination of haloanisoles in wines
Munari et al. Automated on‐line HPLC‐HRGC with gradient elution and multiple GC transfer applied to the characterization of citrus essential oils
JP2001108663A (en) Method for analyzing low molecular compound
Goosens et al. Reversed‐phase liquid chromatography coupled on‐line with capillary gas chromatography II. Use of a solvent vapor exit to increase introduction volumes and introduction rates into the gas chromatograph
CN112394129A (en) Chemical component analysis pretreatment method of extract essence perfume
US20090000358A1 (en) Method of Analysis Using Chromatographic Pre-Separation
Bernal et al. Determination of the fungicide vinclozolin in honey and bee larvae by solid-phase and solvent extraction with gas chromatography and electron-capture and mass spectrometric detection
Van Ysacker et al. The use of non‐splitting injection techniques for trace analysis in narrow‐bore capillary gas chromatography
Seidel et al. Sandwich-type extraction column with on-line sulphuric acid treatment for the determination of organochlorine compounds in vegetable oil or oil seeds by gas chromatography with electron-capture detection
JPH11352120A (en) Analytical device for polymer material
Kallio Method of sensitive analysis of wine headspace volatiles based on selective capillary column trapping
Th. Tuinstra et al. Fully automated column‐switching HPLC determination of aflatoxin M1 in milk using dialysis as sample preparation
Glazkov et al. Supercritical fluid extraction of water samples containing ultratrace amounts of organic micropollutants
Ramalho et al. Large‐volume on‐column injections for gas chromatography
Moulder et al. Coupled microcolumn size-exclusion liquid chromatography–capillary supercritical fluid chromatography
Fiselier et al. Injector‐internal thermal desorption from edible oils. Part 2: Chromatographic optimization for the analysis of migrants from food packaging material
Nitz et al. Thermal desorption-and sniffing-mass spectrometric monitoring of enriched trace compounds by means of a “live total transfer system”
Purcaro Classical and comprehensive 2D LC-GC
Moret et al. On‐line solvent evaporator for coupled normal phase‐reversed phase high‐performance liquid chromatography systems: Heavy polycyclic aromatic hydrocarbons analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725