JP2001108602A - Scanning-type probe microscope - Google Patents

Scanning-type probe microscope

Info

Publication number
JP2001108602A
JP2001108602A JP29161999A JP29161999A JP2001108602A JP 2001108602 A JP2001108602 A JP 2001108602A JP 29161999 A JP29161999 A JP 29161999A JP 29161999 A JP29161999 A JP 29161999A JP 2001108602 A JP2001108602 A JP 2001108602A
Authority
JP
Japan
Prior art keywords
cantilever
sample
amplitude
probe microscope
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29161999A
Other languages
Japanese (ja)
Other versions
JP3877919B2 (en
Inventor
Kazunori Ando
和徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP29161999A priority Critical patent/JP3877919B2/en
Publication of JP2001108602A publication Critical patent/JP2001108602A/en
Application granted granted Critical
Publication of JP3877919B2 publication Critical patent/JP3877919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the difference in the physical properties of a sample surface from the uneven shape of the sample surface and time delay (phase) when a cantilever leaves by attenuating the cantilever easily for following the uneven sample surface easily. SOLUTION: By setting the vibration frequency of a cantilever to both the outsides of the frequency band of the half-value width of a Q curve, the lever is allowed to attenuate easily, thus improving a following property for the sample surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、先端に微小な探針
を有するカンチレバーとカンチレバ−のレ−ザ反射面に
照射するレ−ザとレ−ザの反射光の位置を検出する光位
置検出器と試料を移動させる試料移動手段とカンチレバ
−を振動させるレバ−加振手段からなりカンチレバ−の
探針が試料表面に接触したとき振幅量の減少分を光位置
検出器でとらえて減少した振幅量が一定になるように試
料移動手段の上下動作を制御することで上下動作の操作
量から試料表面の凹凸形状情報を測定する走査型プロー
ブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cantilever having a fine probe at its tip, a laser for irradiating a laser reflecting surface of a cantilever, and a light position detecting device for detecting a position of reflected light of the laser. It consists of a sample moving means for moving the sample and the sample, and a lever vibration means for oscillating the cantilever. When the probe of the cantilever comes into contact with the surface of the sample, the amount of decrease in the amplitude is detected by the optical position detector, and the reduced amplitude is used. The present invention relates to a scanning probe microscope that controls the vertical movement of a sample moving unit so that the amount becomes constant, thereby measuring information on the unevenness of the sample surface from the operation amount of the vertical movement.

【0002】[0002]

【従来の技術】従来の走査型プローブ顕微鏡は、先端に
微小な探針を有するカンチレバーとカンチレバ−のレ−
ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検
出する光位置検出器と試料を移動させる試料移動手段と
カンチレバ−を振動させるレバ−加振手段からなりカン
チレバ−の探針が試料表面に接触したとき振幅量の減少
分を光位置検出器でとらえて減少した振幅量が一定にな
るように試料移動手段の上下動作を制御することで上下
動作の操作量から試料表面の凹凸形状情報を測定する走
査型プローブ顕微鏡において、カンチレバ−の加振周波
数と振幅量の依存曲線(Qカ−ブ)の共振点近傍をカン
チレバ−の加振周波数とすることで試料表面の凹凸情報
が測定されている。また試料表面とカンチレバ−の探針
との相互作用でカンチレバ−の振動形態に時間的遅れ
(位相)が発生したときの信号をとらえる位相検出器を
有しカンチレバ−の加振周波数は表面凹凸情報の測定の
ときと同じくQカ−ブの共振点近傍として位相を検出す
ることで試料表面の物性の違いが測定されている。
2. Description of the Related Art A conventional scanning probe microscope employs a cantilever and a cantilever having a fine probe at the tip.
A cantilever comprising a laser for irradiating the laser reflecting surface, an optical position detector for detecting the position of the reflected light from the laser, a sample moving means for moving the sample, and a lever vibrating means for vibrating the cantilever. When the needle touches the sample surface, the amount of decrease in the amplitude is captured by the optical position detector, and the vertical movement of the sample moving means is controlled so that the reduced amplitude is constant. In the scanning probe microscope for measuring the unevenness information of the sample, the resonance frequency of the curve (Q curve) of the oscillation frequency and the amplitude of the cantilever is set as the oscillation frequency of the cantilever. Information is being measured. The cantilever has a phase detector that captures a signal when a time delay (phase) occurs in the vibration form of the cantilever due to the interaction between the sample surface and the probe of the cantilever. As in the case of the measurement, the difference in the physical properties of the sample surface is measured by detecting the phase near the resonance point of the Q curve.

【0003】[0003]

【発明が解決しようとする課題】従来の走査型プローブ
顕微鏡ではカンチレバ−の加振周波数と振幅量の依存曲
線(Qカ−ブ)の共振点近傍をレバ−加振周波数として
いたためカンチレバ−は振動しやすく減衰しにくい欠点
があった。探針が試料表面との相互作用を受けても減衰
しにくく振幅量の変化分がすぐ一定にならず試料移動手
段の制御が遅れ気味となり試料移動手段の上下動作の操
作量も遅れ気味となり操作量から得られる表面凹凸情報
は正しく測定できない欠点があった。また試料移動手段
の上下動作の制御速度を速める方法もあるが振幅量の変
化の方向と制御の上下方向が一致しない発振現象が発生
してしまう欠点があった。特に真空中測定においては空
気抵抗が無くなるためカンチレバ−が減衰しにくくなる
ため試料との相互作用による変化すべき振幅量にすぐな
らない。制御がますます遅れ気味になり表面凹凸情報が
測定できない欠点があった。
In the conventional scanning probe microscope, the vicinity of the resonance point of the curve (Q curve) of the oscillation frequency and the amplitude of the cantilever is used as the lever oscillation frequency. There was a disadvantage that it was easy to vibrate and was not easily damped. Even if the tip interacts with the sample surface, it is difficult to attenuate and the change in the amplitude does not become constant immediately, so the control of the sample moving means tends to be delayed, and the operation amount of the vertical movement of the sample moving means tends to be delayed. There is a disadvantage that the surface unevenness information obtained from the quantity cannot be measured correctly. There is also a method of increasing the control speed of the vertical movement of the sample moving means, but there is a drawback that an oscillation phenomenon occurs in which the direction of the change in the amplitude amount does not coincide with the vertical direction of the control. In particular, in a measurement in a vacuum, the cantilever is hardly attenuated because air resistance is lost, so that the amplitude amount to be changed due to the interaction with the sample is not good. There was a disadvantage that the control became more and more delayed and the surface unevenness information could not be measured.

【0004】また探針と試料表面との相互作用で生じる
位相信号(探針の時間的な遅れ具合)から試料表面の物
性の違いを測定する際にもカンチレバ−が減衰しにくい
ため位相信号もカンチレバ−の振動が減衰していく過渡
的な途中過程の情報になり物性の違いを正しく検出でき
ない欠点があった。そこで、この発明はカンチレバ−の
加振周波数と振幅量の依存曲線(Qカ−ブ)の半値幅と
なる周波数帯の両外側をレバ−加振周波数とすることで
カンチレバ−が減衰しにくい加振周波数領域(共振点近
傍)から離すことでカンチレバ−の探針が試料に接触し
た後の過渡振動変化の減衰を容易にし、特に空気抵抗の
無い真空中での測定を可能とすることを課題とする。さ
らに探針と試料表面との相互作用で生じる位相信号(探
針の時間的な遅れ具合)から試料表面の物性の違いを測
定する際にも加振周波数をカンチレバ−が減衰しやすい
領域にすることで位相信号も減衰の終わった安定時の信
号となり探針と試料表面との相互作用から生じる位相信
号(試料表面の物性の違い、分布)を正しく測定するこ
とを課題とする。
Also, when measuring the difference in physical properties of the sample surface from the phase signal (time delay of the probe) generated by the interaction between the probe and the sample surface, the phase signal is also difficult because the cantilever is hardly attenuated. There was a drawback that the difference in physical properties could not be detected correctly because the information of the transient process in which the vibration of the cantilever was attenuated. In view of this, the present invention provides a cantilever that is hardly attenuated by setting lever outside frequencies on both sides of a frequency band having a half-value width of a dependency curve (Q curve) of the oscillation frequency and amplitude of the cantilever. The problem is to make it easy to attenuate the transient vibration change after the probe of the cantilever comes into contact with the sample by moving it away from the vibration frequency region (near the resonance point), and to make it possible to perform measurement especially in a vacuum without air resistance. And Furthermore, when measuring the difference in the physical properties of the sample surface from the phase signal (the time delay of the probe) generated by the interaction between the probe and the sample surface, the excitation frequency is set to a region where the cantilever is easily attenuated. Accordingly, it is an object of the present invention to correctly measure a phase signal (difference and distribution of physical properties of the sample surface) resulting from the interaction between the probe and the sample surface, which also becomes a stable signal after the attenuation.

【0005】[0005]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明では、先端に微小な探針を有するカンチ
レバーとカンチレバ−のレ−ザ反射面に照射するレ−ザ
とレ−ザの反射光の位置を検出する光位置検出器と試料
を移動させる試料移動手段とカンチレバ−を振動させる
レバ−加振手段からなりカンチレバ−の探針が試料表面
に接触したとき振幅量の減少分を光位置検出器でとらえ
て減少した振幅量が一定になるように試料移動手段の上
下動作を制御することで上下動作の操作量から試料表面
の凹凸形状情報を測定する走査型プローブ顕微鏡におい
て、カンチレバ−の加振周波数と振幅量の依存曲線(Q
カ−ブ)の半値幅となる周波数帯の両外側をレバ−加振
周波数とすることでカンチレバ−の振動を減衰しやすく
した。
In order to solve the above-mentioned problems, the present invention provides a cantilever having a fine probe at its tip and a laser for irradiating a laser reflecting surface of a cantilever with a laser. It consists of an optical position detector for detecting the position of the reflected light of the laser, a sample moving means for moving the sample, and a lever vibrating means for oscillating the cantilever. The amplitude decreases when the probe of the cantilever comes into contact with the sample surface. In the scanning probe microscope, the vertical position of the sample moving means is controlled by controlling the vertical movement of the sample moving means so that the reduced amount of amplitude is kept constant by capturing the minute by the optical position detector. , Cantilever excitation frequency and amplitude dependence curve (Q
The vibration of the cantilever can be easily attenuated by setting the lever excitation frequencies on both sides of the frequency band having the half width of the curve.

【0006】[0006]

【発明の実施の形態】本発明は、先端に微小な探針を有
するカンチレバーと、カンチレバ−のレ−ザ反射面に照
射するレ−ザと、レ−ザの反射光の位置を検出する光位
置検出器と、試料を移動させる試料移動手段と、カンチ
レバ−を振動させるレバ−加振手段とからなり、カンチ
レバ−の探針が試料表面に接触したとき、振幅量の減少
分を光位置検出器でとらえて、減少した振幅量が一定に
なるように試料移動手段の上下動作を制御することで、
上下動作の操作量から試料表面の凹凸形状情報を測定す
る走査型プローブ顕微鏡において、カンチレバ−の加振
周波数と振幅量の依存曲線(Qカ−ブ)の半値幅となる
周波数帯の両外側をレバ−加振周波数とすることで、カ
ンチレバ−が減衰しやすくなり、試料表面の凹凸情報お
よび位相(物性)を安定して測定するするようにした。
特に空気抵抗の無い真空中での測定を可能にした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a cantilever having a fine probe at the tip, a laser for irradiating a laser reflecting surface of a cantilever, and a light for detecting the position of reflected light from the laser. It consists of a position detector, a sample moving means for moving the sample, and a lever vibrating means for oscillating the cantilever. When the probe of the cantilever comes into contact with the surface of the sample, the amount of decrease in the amplitude is detected. By controlling the vertical movement of the sample moving means so that the reduced amplitude becomes constant,
In a scanning probe microscope that measures the unevenness information of the sample surface from the operation amount of the up and down movement, the outer and outer sides of the frequency band that is the half width of the dependency curve (Q curve) of the vibration frequency and amplitude of the cantilever are measured. By setting the lever excitation frequency, the cantilever is easily attenuated, and the unevenness information and the phase (physical properties) of the sample surface are stably measured.
In particular, it enables measurement in a vacuum without air resistance.

【0007】[0007]

【実施例】実施例について図面を参照して説明すると、
図1(a),図1(b),図1(c)は走査型プローブ
顕微鏡の測定において本発明の方式の模式図である。測
定される情報として表面凹凸形状の場合を図1(a)で
説明する。探針1を有するカンチレバ−2はレバ−加振
手段3に取り付けられている。レ−ザ反射面4にはレ−
ザ5が照射されていて反射光7は光位置検出器8の位置
として検出される。探針1が上下動するようにカンチレ
バ−2はレバ−加振手段3により振動している。探針1
は試料9の表面凹部に接触したときレ−ザ反射光は光位
置検出器の位置Dに到達する。探針が試料の凹部より離
れ振動の上限になったときレ−ザ反射光は光位置検出器
の位置Bに到達する。探針が試料凹部にあたったり離れ
たりの振動をしているときはカンチレバ−の振幅量は位
置Dと位置Bの差として得られる。次に試料移動手段1
0のスキャン動作11により左へ移動させると探針は試
料の凸部上であたったり離れたりする。探針が凸部あた
っているときレ−ザ反射光は光位置検出器の位置Cへ到
達する。探針が凸部から離れ振動の上限になったときレ
−ザ反射光は光位置検出器の位置Bへ到達する。
Embodiments will be described with reference to the drawings.
1 (a), 1 (b) and 1 (c) are schematic diagrams of the method of the present invention in measurement with a scanning probe microscope. FIG. 1A illustrates a case where the information to be measured is a surface unevenness. The cantilever 2 having the probe 1 is attached to the lever vibrating means 3. Laser reflection surface 4
The light 5 is irradiated and the reflected light 7 is detected as the position of the light position detector 8. The cantilever 2 is vibrated by the lever vibration means 3 so that the probe 1 moves up and down. Tip 1
The laser reflected light reaches the position D of the optical position detector when it comes into contact with the concave portion on the surface of the sample 9. When the probe separates from the concave portion of the sample and reaches the upper limit of vibration, the laser reflected light reaches the position B of the optical position detector. When the probe vibrates in contact with or away from the concave portion of the sample, the amplitude of the cantilever is obtained as the difference between the position D and the position B. Next, sample moving means 1
When the probe is moved to the left by the scanning operation 11 of 0, the probe hits or separates from the convex portion of the sample. When the probe hits the convex portion, the laser reflected light reaches the position C of the optical position detector. When the probe separates from the projection and reaches the upper limit of the vibration, the laser reflected light reaches the position B of the optical position detector.

【0008】探針が試料凸部にあたったり離れたりの振
動をしているときはカンチレバ−の振幅量は位置Cと位
置Bの差として得られる。光位置検出器へのレ−ザ反射
光の到達位置の差を検出すれば試料の凹凸情報を測定す
ることができる。また光位置検出器へのレ−ザ反射光の
到達位置の差が一定になるように試料移動手段10の上
下動作12を制御し上下動作の操作量から試料の凹凸情
報としてもよい。探針の試料へのあたりかた(押し付け
具合)は小さく一定にしたほうが探針にも試料表面にも
ダメ−ジを与えにくいため通常は後者の方法が取られて
いる。
When the probe vibrates so as to hit or separate from the convex portion of the sample, the amplitude of the cantilever is obtained as the difference between the position C and the position B. By detecting the difference between the positions where the laser reflected light reaches the optical position detector, the unevenness information of the sample can be measured. Further, the vertical movement 12 of the sample moving means 10 may be controlled so that the difference between the arrival positions of the laser reflected light to the optical position detector becomes constant, and the unevenness information of the sample may be obtained from the operation amount of the vertical movement. The latter method is usually employed because the smaller the contact of the probe with the sample (the degree of pressing), the more difficult it is to damage the probe and the surface of the sample.

【0009】次に図1(b)にカンチレバ−が振動して
いるときの模式図を示す。カンチレバ−2はレバ−加振
手段3取り付けられている。レバ−加振手段3は圧電素
子が用いられていて圧電素子にある一定電圧がある一定
周期で印加される。圧電素子は上下方向の振動13を起
こし、カンチレバ−2を振動させる。カンチレバ−はあ
る振幅量Aで振動する。振幅量Aはレバ−加振手段3内
の圧電素子への印加電圧と振動周波数に依存する。印加
電圧を一定値に決めても加振させる周波数に大きく依存
する。
Next, FIG. 1B is a schematic diagram when the cantilever is vibrating. The cantilever-2 is attached to the lever vibration means 3. The lever vibration means 3 uses a piezoelectric element, and a certain voltage is applied to the piezoelectric element at a certain period. The piezoelectric element causes a vertical vibration 13 to vibrate the cantilever-2. The cantilever vibrates with a certain amplitude A. The amplitude A depends on the voltage applied to the piezoelectric element in the lever vibration means 3 and the vibration frequency. Even if the applied voltage is set to a constant value, it greatly depends on the frequency to be excited.

【0010】図1(c)に本発明のレバ−の加振周波数
領域を従来との違いとして示す。縦軸はカンチレバ−の
振幅量Aで横軸はレバ−の加振周波数である。加振周波
数fを低周波よりから増加させていくとある周波数のと
ころでカンチレバ−の振幅量Aは最大値Amaxとな
る。さらに加振周波数fを増加させると振幅量Aは小さ
くなっていく。どの周波数で最大になるかはカンチレバ
−の材質、長さ、厚み、幅で決まる。図に示すような振
幅量Aの加振周波数の依存曲線をQカ−ブという。Qカ
−ブのピ−クが共振点14となる。共振点のときの加振
周波数を共振周波数という。共振周波数前後の近傍でレ
バ−を加振させれば振動しやすく、減衰しにくい特性と
なる。共振する周波数近傍(共振点14近傍)で加振さ
せればカンチレバ−は同一印加電圧でも振幅量Aが大き
くなり、振動しやすく、逆に減衰しにくい。探針が試料
から作用を受けても減衰しにくいため変化すべき振幅量
にすぐならない。振動しやすい点を優先させて従来から
カンチレバ−の加振周波数は共振点近傍とされてきた。
FIG. 1C shows the vibration frequency range of the lever of the present invention as compared with the conventional one. The vertical axis represents the amplitude A of the cantilever, and the horizontal axis represents the vibration frequency of the lever. When the excitation frequency f is increased from a low frequency, the amplitude A of the cantilever reaches a maximum value Amax at a certain frequency. When the excitation frequency f is further increased, the amplitude amount A decreases. The maximum frequency is determined by the material, length, thickness and width of the cantilever. The dependency curve of the amplitude A on the excitation frequency as shown in the figure is called a Q curve. The peak of the Q curve becomes the resonance point 14. The excitation frequency at the resonance point is called a resonance frequency. If the lever is vibrated in the vicinity of the resonance frequency, the lever is easily vibrated and hardly attenuated. If the vibrator is vibrated in the vicinity of the resonating frequency (near the resonance point 14), the cantilever has a large amplitude A even with the same applied voltage, and is easily vibrated and hardly attenuated. Even when the probe is acted on by the sample, it is hard to attenuate. Conventionally, the vibration frequency of the cantilever has been set near the resonance point by giving priority to the point that the vibration is easy.

【0011】共振点14の高さ(振幅量)をAmaxと
しAmaxの1/2となる高さのQカ−ブ上の点の周波
数をf1とf2とするとf1からf2の間を半値幅の周
波数帯とする。半値幅の周波数帯のなかでは共振点14
に近いほどレバ−は振動しやすく減衰しにくい特性とな
る。本発明ではレバ−の加振周波数を半値幅の周波数帯
の両外側とした。半値幅の周波数帯の両外側ではレバ−
は振動しにくく、減衰しやすい特性となる。レバ−の減
衰しやすい加振周波数の領域とすることで試料の凹凸形
状に応じてレバ−の振幅量は変化があっても減衰しやす
く一定値になりやすく、試料移動手段の上下動作の操作
量をすぐ決めることができ試料表面の凹凸に応じて試料
移動手段の上下動作を追従できるため上下動作の操作量
から得られる情報は試料表面の凹凸形状となる。正しい
試料表面の凹凸情報が測定可能となる。
If the height (amplitude) of the resonance point 14 is Amax, and the frequencies of the points on the Q curve having a height of 1/2 of Amax are f1 and f2, the half width between f1 and f2 is Frequency band. In the half-width frequency band, the resonance point 14
, The lever is more likely to vibrate and hardly attenuate. In the present invention, the excitation frequency of the lever is set on both sides of the half-width frequency band. The lever is located outside the half-width frequency band.
Is less likely to vibrate and tends to attenuate. By setting the range of the excitation frequency where the lever is easily attenuated, the amplitude of the lever is easily attenuated even if it changes according to the uneven shape of the sample, and tends to become a constant value. Since the amount can be determined immediately and the vertical movement of the sample moving means can be followed in accordance with the unevenness of the sample surface, the information obtained from the operation amount of the vertical movement is the uneven shape of the sample surface. It is possible to measure correct irregularity information on the sample surface.

【0012】図2(a)にカンチレバ−の振幅量が一定
になるように真空中で試料の凹凸形状を測定するときカ
ンチレバ−の振動量と試料表面との関係を模式図で示
す。探針が試料表面にあたっていないときカンチレバ−
は振幅量A0で振動している。試料移動手段10のスキ
ャン動作11により試料が左方向へ移動してくると探針
が試料の凸面21にあたりカンチレバ−の振幅量がA1
になったとする。A1はA0よりも小さくなる。この時
点から説明上制御を始めるとする。
FIG. 2A is a schematic diagram showing the relationship between the amount of vibration of the cantilever and the surface of the sample when measuring the unevenness of the sample in a vacuum so that the amplitude of the cantilever becomes constant. Cantilever when the probe does not touch the sample surface
Vibrates with the amplitude A0. When the sample moves leftward by the scanning operation 11 of the sample moving means 10, the probe hits the convex surface 21 of the sample and the amplitude of the cantilever is A1.
Let's say A1 is smaller than A0. At this point, control is assumed to be started for the sake of explanation.

【0013】スキャンしながらカンチレバ−の振幅量が
A1と一定になるように試料移動手段10の上下動作1
2を制御する。上下動作の操作量から試料表面の凹凸形
状を測定するのは前述のとうりである。スキャン動作が
進んで試料がさらに左へ移動し探針が凸部21の右角よ
りさらに右にきた瞬間凸部と同一の高さの面が急になく
なるためカンチレバ−の振幅量はA1から変化すること
になるがレバ−が減衰しにくいためすぐには安定しな
い。このとき振幅量がすぐ一定になれば試料移動手段の
上下動作の操作量を決めることができ振幅量がA1とな
るまで試料移動手段により試料を探針に近づければ上下
動作の操作量から凸部の高さを決めることができる。し
かし、探針が凸部の右角から外れると探針のあたるもの
が急に無くなりカンチレバ−は別の振幅量で振れ始め
る。しかし、カンチレバ−の周囲に空気抵抗が無いた
め、減衰しにくいことで振幅量がすぐ一定に決まらな
い。実際の振幅量は、ある時間経過後に探針が試料表面
の凹部にあたりだし、A2に落ち着いて一定値になる。
The vertical movement 1 of the sample moving means 10 so that the amplitude of the cantilever becomes constant at A1 while scanning.
2 is controlled. As described above, the uneven shape of the sample surface is measured from the operation amount of the vertical movement. As the scanning operation proceeds, the sample moves further to the left, and when the probe comes to the further right of the right corner of the protrusion 21, the surface having the same height as the protrusion suddenly disappears, so that the amplitude of the cantilever changes from A1. However, since the lever is hardly attenuated, it is not immediately stable. At this time, if the amplitude amount becomes constant immediately, the operation amount of the vertical movement of the sample moving means can be determined. If the sample is brought closer to the probe by the sample moving means until the amplitude amount becomes A1, the operation amount of the vertical movement is raised. The height of the part can be determined. However, when the probe deviates from the right corner of the projection, the object hit by the probe suddenly disappears and the cantilever starts to swing with another amplitude. However, since there is no air resistance around the cantilever, it is difficult to attenuate, so that the amplitude amount is not immediately fixed. The actual amplitude amount becomes a constant value after the probe hits a concave portion on the surface of the sample after a certain time elapses, and calms down to A2.

【0014】一定値になったA2と目標値であるA1と
を比較し振幅A2がA1と同じになるように試料移動手
段の上下動作の操作量がはじめて決まることになる。し
かし実際には試料移動手段の上下動作の操作量を決める
制御は常時行なっているため振幅量がA2になっていく
途中の情報で操作量が決まることになる。つまり探針が
試料表面にあたっていないのに上下動作の操作量が決ま
ることになる。カンチレバ−の過渡的な振幅量から測定
される試料表面凹凸情報は試料表面本来の形状でなくカ
ンチレバ−の減衰のしにくさがはいってしまうことにな
る。たとえば試料の凹凸の段差立ち下がり部、立ち上が
り部ではカンチレバ−の振幅量は減衰のしにくさから試
料表面の凹凸に追従できず過渡的に遅れる形で上下動作
の操作量が決まるため測定される(得られる)凹凸情報
は図2(b)に示すように試料の凹凸情報と測定される
凹凸情報に違いが出ることになる。
A2, which has become a constant value, is compared with A1, which is a target value, and the operation amount of the vertical movement of the sample moving means is determined for the first time so that the amplitude A2 becomes the same as A1. However, in practice, control for determining the operation amount of the vertical movement of the sample moving means is always performed, so that the operation amount is determined by the information in the course of the amplitude amount becoming A2. That is, the operation amount of the vertical movement is determined even when the probe does not touch the sample surface. The sample surface unevenness information measured from the transient amplitude of the cantilever does not have the original shape of the sample surface, but is hard to attenuate the cantilever. For example, the amplitude of the cantilever is measured at the falling portion and the rising portion of the unevenness of the sample because the operation amount of the vertical movement is determined in such a manner that the amplitude of the cantilever cannot follow the unevenness of the sample surface due to the difficulty of attenuation and is transiently delayed. As shown in FIG. 2B, the unevenness information (obtained) has a difference between the unevenness information of the sample and the measured unevenness information.

【0015】真空中においても本発明では図1(c)に
示すようにカンチレバ−の加振周波数をQカ−ブの半値
幅の周波数帯の両外側とすることでカンチレバ−の振動
が減衰しやすくなり特に真空中ではカンチレバ−の周囲
の空気が無くなるためカンチレバ−が振動する際空気抵
抗を受けず大気中よりもさらに振動しやすく一度振動し
始めたら減衰しにくくなる。カンチレバ−の加振周波数
をQカ−ブの半値幅の周波数帯の両外側とすることで大
気中と同じく正しい試料表面の凹凸情報が測定可能とな
る。
According to the present invention, even in a vacuum, the vibration of the cantilever is attenuated by setting the excitation frequency of the cantilever to both outsides of the half bandwidth of the Q curve as shown in FIG. 1 (c). Especially, in a vacuum, the air around the cantilever is eliminated, so that the cantilever does not receive the air resistance when vibrating, and is more likely to vibrate than in the atmosphere, and hardly attenuates once it starts to vibrate. By setting the excitation frequency of the cantilever to both outsides of the frequency band of the half width of the Q curve, it is possible to measure the correct unevenness information on the sample surface as in the atmosphere.

【0016】図3にレバ−加振手段の印加電圧波形と光
位置検出器で検出される光位置出力信号の時間的関係を
示す。探針と試料表面が相互作用を受けなければ印加電
圧波形と光位置出力波形は時間的な遅れが無く同一とな
る。探針と試料表面は粘着力、静電気力、磁気力などに
より探針を試料表面から離そうとしても時間的に遅れて
離れることになる。探針が試料表面から離れようとする
ときの印加電圧をV1とし探針が試料表面に接触してい
るときの印加電圧を−V1とする。また探針が試料表面
に接触しているとき光位置出力信号をW1とし探針が試
料表面から離れたとき光位置出力信号をW2とする。探
針と試料表面に前述の相互作用により印加電圧波形がV
1になっても光位置出力信号は時間T秒後にW2にな
る。つまり試料表面に物性による作用力があると探針が
試料表面から離れるときに時間的遅れ(位相)が発生す
る。このとき遅れ時間Tの大小を検出することで試料表
面の物性の大小を比較することができる。ここで正しい
位相信号を得るためには探針が確実に試料表面にあたっ
たり離れたりしていないといけない。位相を測定する際
にもレバ−加振周波数をQカ−ブの半値幅となる周波数
帯の両側とすることでレバ−の振動を減衰しやすくしレ
バ−の振幅量の変化もすばやくし試料表面の凹凸に対し
探針が確実に追従し位相信号も正しく測定することがで
きる。
FIG. 3 shows the time relationship between the voltage waveform applied to the lever vibration means and the optical position output signal detected by the optical position detector. If the probe and the sample surface do not interact with each other, the applied voltage waveform and the optical position output waveform are the same without a time delay. The probe and the sample surface are separated from each other with a time delay even if the probe is separated from the sample surface due to adhesive force, electrostatic force, magnetic force, or the like. The applied voltage when the probe is moving away from the sample surface is V1 and the applied voltage when the probe is in contact with the sample surface is -V1. When the probe is in contact with the sample surface, the optical position output signal is W1, and when the probe is away from the sample surface, the optical position output signal is W2. The applied voltage waveform is V due to the above interaction between the probe and the sample surface.
Even if it becomes 1, the optical position output signal becomes W2 after time T seconds. That is, if there is an acting force due to physical properties on the sample surface, a time delay (phase) occurs when the probe leaves the sample surface. At this time, the magnitude of the physical property of the sample surface can be compared by detecting the magnitude of the delay time T. Here, in order to obtain a correct phase signal, the probe must surely hit or separate from the sample surface. When measuring the phase, the vibration of the lever is easily attenuated by changing the lever excitation frequency to both sides of the frequency band that is the half width of the Q curve, and the change in the amplitude of the lever is quickly performed. The probe reliably follows the irregularities on the surface, and the phase signal can be measured correctly.

【0017】次に図4に真空中での実施例を示す。レ−
ザ発生器61からのレ−ザ5はウインドウ62を透過し
て真空容器63内へ導入される。真空容器とウインドウ
は気密性が確保されていて真空容器は真空排気手段64
により真空状態が達成される。真空容器内にはカンチレ
バ−2とレバ−加振手段3と試料9と試料を加熱あるい
は冷却あるいは室温のまま載せる試料台65が設置され
ている。試料台は試料台移動手段69によりスキャン動
作および上下動作が可能となっている。ウインドウを介
し真空容器内に導入されたレ−ザはカンチレバ−2のレ
−ザ反射面に照射され、レ−ザの反射光7はウインドウ
を介し真空容器外に設置された光位置検出器8へ到達す
る。光位置検出器の位置によりカンチレバ−の振幅量が
得られる。探針が試料表面にあたることで振幅量が減少
するが減少した振幅量を維持するように試料移動手段の
スキャン動作に応じて上下動作により操作量を決めれば
試料凹凸情報を得ることができる。この際レバ−加振動
周波数をQカ−ブの半値幅の周波数帯の両外側とするこ
とでレバ−が減衰しやすくなり試料凹凸に追随しやすく
なり試料の凹凸形状情報を測定することができる。また
レバ−加振手段3への印加電圧波形と光位置検出器8の
出力信号を測定することで探針が離れるときの時間遅れ
(位相)を得ることができ時間遅れの大小は試料表面の
物性値の大小になるため物性分布を測定することができ
る。
FIG. 4 shows an embodiment in a vacuum. Ray
The laser 5 from the generator 61 passes through the window 62 and is introduced into the vacuum vessel 63. The vacuum container and the window are kept airtight, and the vacuum container is
A vacuum state is thereby achieved. In the vacuum vessel, a cantilever 2, a lever vibrating means 3, a sample 9, and a sample table 65 on which the sample is heated or cooled or placed at room temperature are provided. The sample stage can be scanned and moved up and down by the sample stage moving means 69. The laser introduced into the vacuum vessel through the window is applied to the laser reflecting surface of the cantilever-2, and the reflected light 7 of the laser is transmitted through the window to an optical position detector 8 installed outside the vacuum vessel. To reach. The amount of amplitude of the cantilever can be obtained depending on the position of the optical position detector. When the probe hits the surface of the sample, the amplitude decreases. However, if the operation amount is determined by the vertical movement according to the scanning operation of the sample moving means so as to maintain the reduced amplitude, the sample unevenness information can be obtained. At this time, by setting the lever vibration frequency to both sides of the frequency band of the half width of the Q curve, the lever is easily attenuated and easily follows the unevenness of the sample, so that the unevenness shape information of the sample can be measured. . Also, by measuring the voltage waveform applied to the lever vibrating means 3 and the output signal of the optical position detector 8, a time delay (phase) when the probe separates can be obtained. Since the physical property value becomes large or small, the physical property distribution can be measured.

【0018】また測定は真空中だけではなく、真空排気
手段により真空にした後真空容器にガス導入68して大
気圧下で測定してもよい。さらにガス置換する際に湿度
を含ませたガスを導入して測定してもよい。また真空排
気せず真空容器内へガスあるいは湿度を含めたガスを常
時流し続けて1気圧状態で測定してもよい。また試料を
溶液を入れることのできるセル内にセットして試料移動
手段上に置き溶液中で測定してもよい。
The measurement may be performed not only in a vacuum but also under an atmospheric pressure by evacuating by a vacuum exhaust means and then introducing gas 68 into a vacuum vessel. Further, when performing gas replacement, a gas containing humidity may be introduced for measurement. Alternatively, the measurement may be performed at a pressure of 1 atm by continuously flowing a gas or a gas including humidity into the vacuum vessel without evacuating. Alternatively, the sample may be set in a cell in which a solution can be placed, placed on a sample moving means, and measured in the solution.

【0019】レバ−加振周波数をレバ−の振幅量と加振
周波数の依存曲線(Qカ−ブ)の半値幅となる周波数帯
の両外側とすることでレバ−の減衰をしやすくし、大気
中のみならず真空中、ガス中、溶液中においも試料の凹
凸に追随させ試料表面凹凸情報のみならず探針が試料表
面から離れるときの時間的遅れ(位相)を正しく測定で
きる。
By setting the lever excitation frequency to both sides of a frequency band which is a half width of a dependency curve (Q curve) of the lever amplitude and the excitation frequency, the lever can be easily attenuated. Not only in the atmosphere but also in a vacuum, a gas, and a solution, the irregularity of the sample can be followed to accurately measure not only the irregularity of the sample surface but also the time delay (phase) when the probe leaves the sample surface.

【0020】[0020]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。先端に
微小な探針を有するカンチレバーとカンチレバ−のレ−
ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検
出する光位置検出器と試料を移動させる試料移動手段と
カンチレバ−を振動させるレバ−加振手段からなりカン
チレバ−の探針が試料表面に接触したとき振幅量の減少
分を光位置検出器でとらえて減少した振幅量が一定にな
るように試料移動手段の上下動作を制御することで上下
動作の操作量から試料表面の凹凸形状情報を測定する走
査型プローブ顕微鏡において、カンチレバ−の加振周波
数と振幅量の依存曲線(Qカ−ブ)の半値幅となる周波
数帯の両外側をレバ−加振周波数とすることでカンチレ
バ−が減衰しやすくなり、試料表面の凹凸情報および位
相(物性)を安定して測定するするようにした。特に空
気抵抗の無い真空中での測定を可能にする効果がある。
The present invention is embodied in the form described above and has the following effects. Cantilever and cantilever with micro tip at tip
A cantilever comprising a laser for irradiating the laser reflecting surface, an optical position detector for detecting the position of the reflected light from the laser, a sample moving means for moving the sample, and a lever vibrating means for vibrating the cantilever. When the needle touches the sample surface, the amount of decrease in the amplitude is captured by the optical position detector, and the vertical movement of the sample moving means is controlled so that the reduced amplitude is constant. In the scanning probe microscope for measuring the uneven shape information of the above, both outer sides of the frequency band corresponding to the half width of the dependency curve (Q curve) of the vibration frequency and the amplitude of the cantilever are used as the lever vibration frequency. As a result, the cantilever is easily attenuated, and the unevenness information and phase (physical properties) of the sample surface are stably measured. In particular, there is an effect of enabling measurement in a vacuum having no air resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は走査型プロ−ブ顕微鏡で表面凹凸分布
を測定するときの方式の模式図、(b)は、カンチレバ
−の振動を説明する模式図、(c)は、カンチレバ−の
振幅量と加振周波数の依存曲線と本発明の加振周波数領
域の説明図である。
FIG. 1A is a schematic diagram of a method for measuring surface unevenness distribution by a scanning probe microscope, FIG. 1B is a schematic diagram for explaining vibration of a cantilever, and FIG. 1C is a schematic diagram of a cantilever. FIG. 4 is an explanatory diagram of a dependency curve of an amplitude amount and an excitation frequency and an excitation frequency region of the present invention.

【図2】(a)は走査型プロ−ブ顕微鏡で表面凹凸分布
を測定するときの探針と試料表面の関係を示す説明図、
(b)は走査型プロ−ブ顕微鏡で表面凹凸分布を測定す
るときのカンチレバ−が減衰しにくいときの測定される
凹凸情報の説明図である。
FIG. 2A is an explanatory diagram showing a relationship between a probe and a sample surface when measuring surface unevenness distribution with a scanning probe microscope;
(B) is an explanatory diagram of the unevenness information measured when the cantilever is hardly attenuated when measuring the surface unevenness distribution with a scanning probe microscope.

【図3】走査型プロ−ブ顕微鏡で物性分布を測定する
際、探針の試料表面から離れる時間的遅れ(位相)を示
す説明図である。
FIG. 3 is an explanatory view showing a time delay (phase) of a probe tip moving away from a sample surface when measuring a physical property distribution with a scanning probe microscope.

【図4】走査型プロ−ブ顕微鏡で試料表面凹凸情報およ
び物性分布を測定する際の実施例を示す模式図である。
FIG. 4 is a schematic diagram showing an example when measuring sample surface unevenness information and physical property distribution with a scanning probe microscope.

【符号の説明】[Explanation of symbols]

1 探針 2 カンチレバ− 3 レバ−加振手段 4 レ−ザ反射面 5 レ−ザ 7 反射光 8 光位置検出器 9 試料 10 試料移動手段 11 スキャン動作 12 上下動作 13 振動 14 共振点 21 試料凸部 61 レ−ザ発生器 62 ウインドウ 63 真空容器 64 真空排気手段 65 試料台 66 レ−ザ移動手段 67 光位置検出器移動手段 68 ガス導入 69試料台移動手段 B,C,D レ−ザ反射光の光位置検出器への到達する
位置 A、A0、A1、A2 カンチレバ−の振幅 Amax Qカ−ブの共振点の振幅量 f1、f2 Qカ−ブの共振点振幅量の半分となる周波
数 V1、−V1 レバ−加振手段への印加電圧 W1、W2 光位置検出器での光位置出力信号
DESCRIPTION OF SYMBOLS 1 Probe 2 Cantilever 3 Lever vibrating means 4 Laser reflecting surface 5 Laser 7 Reflected light 8 Optical position detector 9 Sample 10 Sample moving means 11 Scanning operation 12 Vertical operation 13 Vibration 14 Resonance point 21 Sample convex Part 61 Laser generator 62 Window 63 Vacuum container 64 Vacuum exhaust means 65 Sample table 66 Laser moving means 67 Optical position detector moving means 68 Gas introduction 69 Sample table moving means B, C, D Laser reflected light A, A0, A1, A2 The amplitude of the cantilever Amax The amplitude of the resonance point of the Q curve f1, f2 The frequency that is half the amplitude of the resonance point of the Q curve V1 , -V1 Voltage applied to lever-vibration means W1, W2 Optical position output signal from optical position detector

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 先端に微小な探針を有するカンチレバー
とカンチレバ−のレ−ザ反射面に照射するレ−ザとレ−
ザの反射光の位置を検出する光位置検出器と試料を移動
させる試料移動手段とカンチレバ−を一定周期で所望の
振幅量で振動させるレバ−加振手段からなりカンチレバ
−の探針が試料表面に接触したとき振幅量の減少分を光
位置検出器でとらえて減少した振幅量が一定になるよう
に試料移動手段の上下動作を制御することで上下動作の
操作量から試料表面の凹凸形状情報を測定する走査型プ
ローブ顕微鏡において、カンチレバ−の加振周波数と振
幅量の依存曲線(Qカ−ブ)の半値幅となる周波数帯の
両外側をレバ−加振周波数とすることを特徴とする走査
型プローブ顕微鏡。
A cantilever having a minute probe at its tip and a laser for irradiating a laser reflecting surface of a cantilever with a laser.
An optical position detector for detecting the position of the reflected light of the laser, a sample moving means for moving the sample, and a lever vibration means for oscillating the cantilever with a desired amplitude at a constant period, the probe of the cantilever is provided on the surface of the sample. The vertical position of the sample moving means is controlled by controlling the vertical movement of the sample moving means so that the reduced amount of amplitude is captured by the optical position detector when it comes into contact with In the scanning probe microscope for measuring the vibration frequency of the cantilever, both outer sides of the frequency band which is the half width of the dependency curve (Q curve) of the vibration frequency and the amplitude of the cantilever are set as the lever vibration frequency. Scanning probe microscope.
【請求項2】 試料表面とカンチレバ−の探針との相互
作用でカンチレバ−の振動形態に時間的遅れ(位相)が
発生したときの信号をとらえる位相検出器を有し 位相
を検出することで試料表面の物性の違いを測定するよう
にしたことを特徴とする請求項1記載の走査型プローブ
顕微鏡。
2. A phase detector for capturing a signal when a time delay (phase) occurs in the vibration form of the cantilever due to the interaction between the sample surface and the probe of the cantilever, and detecting the phase by detecting the phase. 2. The scanning probe microscope according to claim 1, wherein a difference in physical properties of the sample surface is measured.
【請求項3】 大気中で測定するようにした、請求項1
または請求項2記載の走査型プローブ顕微鏡。
3. The method according to claim 1, wherein the measurement is performed in the atmosphere.
Or the scanning probe microscope according to claim 2.
【請求項4】 溶液を入れるセルを有し、試料を溶液中
に入れ溶液中で測定するようにした、請求項1または請
求項2記載の走査型プローブ顕微鏡。
4. The scanning probe microscope according to claim 1, further comprising a cell for storing the solution, wherein the sample is placed in the solution and measured in the solution.
【請求項5】 真空容器と排気の手段を有した真空環境
で測定するようにした、請求項1または請求項2記載の
走査型プローブ顕微鏡。
5. The scanning probe microscope according to claim 1, wherein the measurement is performed in a vacuum environment having a vacuum vessel and an exhaust means.
【請求項6】 前記真空容器を一度真空にしてからガス
置換してガス雰囲気中で測定できるようにした、請求項
5記載の走査型プローブ顕微鏡。
6. The scanning probe microscope according to claim 5, wherein the vacuum vessel is once evacuated and then replaced with gas so that measurement can be performed in a gas atmosphere.
【請求項7】 ガス置換する際、ガスに湿度を含ませる
ようにした、請求項6記載の走査型プローブ顕微鏡。
7. The scanning probe microscope according to claim 6, wherein when replacing the gas, humidity is included in the gas.
JP29161999A 1999-10-13 1999-10-13 Scanning probe microscope Expired - Fee Related JP3877919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29161999A JP3877919B2 (en) 1999-10-13 1999-10-13 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29161999A JP3877919B2 (en) 1999-10-13 1999-10-13 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2001108602A true JP2001108602A (en) 2001-04-20
JP3877919B2 JP3877919B2 (en) 2007-02-07

Family

ID=17771308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29161999A Expired - Fee Related JP3877919B2 (en) 1999-10-13 1999-10-13 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3877919B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181687A (en) * 2000-12-15 2002-06-26 Seiko Instruments Inc Scanning probe microscope
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003149118A (en) * 2001-11-14 2003-05-21 Seiko Instruments Inc Scanning probe microscope
WO2003067224A1 (en) * 2002-02-05 2003-08-14 Riken Scanning probe microscope and specimen surface structure measuring method
KR101109378B1 (en) * 2010-01-25 2012-01-30 삼성전기주식회사 Measuring Method of Resonance Frequency for Cantilever Biosensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181687A (en) * 2000-12-15 2002-06-26 Seiko Instruments Inc Scanning probe microscope
JP4510277B2 (en) * 2000-12-15 2010-07-21 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003149118A (en) * 2001-11-14 2003-05-21 Seiko Instruments Inc Scanning probe microscope
WO2003067224A1 (en) * 2002-02-05 2003-08-14 Riken Scanning probe microscope and specimen surface structure measuring method
US7241994B2 (en) 2002-02-05 2007-07-10 Riken Scanning probe microscope and specimen surface structure measuring method
KR101109378B1 (en) * 2010-01-25 2012-01-30 삼성전기주식회사 Measuring Method of Resonance Frequency for Cantilever Biosensor

Also Published As

Publication number Publication date
JP3877919B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP4510277B2 (en) Scanning probe microscope
JP5252389B2 (en) Scanning probe microscope
CN102272610A (en) Dynamic probe detection system
US20100299791A1 (en) Mechanically-coupled tuning fork-scanning probe vibrating system
Graebner et al. Dynamic visualization of subangstrom high-frequency surface vibrations
KR20020006032A (en) Active probe for an atomic force microscope and method of use thereof
RU2005102703A (en) SCANNING PROBE MICROSCOPE
JPH09159681A (en) Method and equipment for measuring physical properties using cantilever for introducing ultrasonic wave
JP4446929B2 (en) Cantilever holder for scanning probe microscope and scanning probe microscope using the same
JP3175913B2 (en) Control method of probe microscope
EP1244113A2 (en) Specimen observation method for atomic force microscopy and atomic force microscope
JP4960347B2 (en) Higher order harmonic atomic force microscope
JPWO2008029562A1 (en) Atomic force microscope
JPH04198751A (en) Ultrasonic spectrum microscope
JP2006284363A (en) Probe microscope and physical property measuring method
JP2001108602A (en) Scanning-type probe microscope
JPH03500213A (en) Acoustic scanning microscope that inspects objects in the near field of a resonant acoustic oscillator
JP2005106786A (en) Scanning type probe microscope
JP2001108601A (en) Scanning-type probe microscope
CN104950142B (en) The vibration characteristics measuring method of cantilever and the vibration characteristics measurement device of cantilever
JP4680196B2 (en) Method and apparatus for exciting non-contact torsional vibrations in a spring cantilever with one side fixed in an atomic force microscope
JP3989704B2 (en) Scanning probe microscope
JPH09329606A (en) Scanning near field microscope with in-liquid observation function
JP2007017388A (en) Scanned probe microscope
US20100132078A1 (en) Method for Measuring the Force of Interaction in a Scanning Probe Microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees