JP2001107963A - Hydrostatic bearing - Google Patents

Hydrostatic bearing

Info

Publication number
JP2001107963A
JP2001107963A JP28454899A JP28454899A JP2001107963A JP 2001107963 A JP2001107963 A JP 2001107963A JP 28454899 A JP28454899 A JP 28454899A JP 28454899 A JP28454899 A JP 28454899A JP 2001107963 A JP2001107963 A JP 2001107963A
Authority
JP
Japan
Prior art keywords
bearing
slot
load
sleeve
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28454899A
Other languages
Japanese (ja)
Other versions
JP3106189B1 (en
Inventor
Makoto Okano
眞 岡野
Shinichi Sogo
晋一 十合
Naoyuki Takato
直幸 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11284548A priority Critical patent/JP3106189B1/en
Application granted granted Critical
Publication of JP3106189B1 publication Critical patent/JP3106189B1/en
Publication of JP2001107963A publication Critical patent/JP2001107963A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve rigidity of a hydrostatic bearing and stability in relation to fluctuation of load. SOLUTION: A slot clearance hs between an adjusting sleeve 1 and a fixed sleeve 2 and a clearance hs1 between the upper cylindrical surface of the adjusting sleeve 1 and the fixed sleeve 2 are taken as slot throttles. The adjusting sleeve 1 is attached to a base 5 through a piezoelectric element 3. When the clearance Δh is decreased by the increase of load, the decrease is detected by a displacement gauge 9, voltage corresponding to the displacement amount is applied to the piezoelectric element 3, the piezoelectric element 3 is contracted by Δh, and the fluid resistance is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体,液体を潤滑
材として利用した静圧流体軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic bearing using gas or liquid as a lubricant.

【0002】[0002]

【従来の技術】従来、静圧気体軸受では、気体を供給す
る給気絞りの形状を工夫することによって軸受剛性を向
上させている。
2. Description of the Related Art Conventionally, in a static pressure gas bearing, the rigidity of the bearing is improved by devising a shape of an air supply throttle for supplying gas.

【0003】[0003]

【発明が解決しようとする課題】しかし、受動型のため
ゆっくりした負荷変動に対しても無限軸受剛性を得るこ
とはできなかった。また、軸受剛性の向上を図ると自励
振動を起こしやすい欠点があった。
However, because of the passive type, infinite bearing rigidity could not be obtained even with a slow load change. Further, there is a disadvantage that self-excited vibration is apt to occur when the bearing rigidity is improved.

【0004】そこで、本発明の目的は、上述した従来の
問題点を解消し、静圧流体軸受のスロット状給気絞りの
スロット間隔を制御することで高軸受剛性および高剛性
化の極限である無限軸受剛性を得ることが可能な静圧流
体軸受を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to limit the high bearing rigidity and the high rigidity by controlling the slot interval of the slot-shaped air supply throttle of the hydrostatic bearing. An object of the present invention is to provide a hydrostatic bearing capable of obtaining infinite bearing rigidity.

【0005】[0005]

【課題を解決するための手段】本発明にかかる静圧流体
軸受は、スロット絞りを固定スリーブと調整スリーブと
で構成し、調整スリーブを移動させることで、スロット
間隔を可変とし、流体抵抗を調整するものであって、負
荷変動に応じて絞り部分の圧力および軸受流量を制御す
ることにより軸受剛性を極めて高くするものである。
According to the hydrostatic bearing of the present invention, the slot throttle is composed of a fixed sleeve and an adjusting sleeve, and the adjusting sleeve is moved to make the slot interval variable and adjust the fluid resistance. In this method, the rigidity of the bearing is extremely increased by controlling the pressure in the throttle portion and the flow rate of the bearing according to the load fluctuation.

【0006】[0006]

【発明の実施の形態】本発明にかかる静圧流体軸受は、
スロット状給気絞りのスロット間隔を可変とし、軸受負
荷に応じて絞りの流体抵抗を調整することで軸受剛性の
向上および無限剛性を達成できる。
BEST MODE FOR CARRYING OUT THE INVENTION A hydrostatic bearing according to the present invention
By making the slot interval of the slot-shaped air supply throttle variable and adjusting the fluid resistance of the throttle according to the bearing load, it is possible to improve bearing rigidity and achieve infinite rigidity.

【0007】以下、図面を参照して本発明の実施の形態
を詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0008】図1(a)〜(d)は、本発明の動作原理
を示す図で、図1(a),(b)は軸受側位置の制御動
作原理を示す概略構成図、図1(c)は浮上体に負荷が
加わったとき軸受側を制御しない場合の特性を示す図、
図1(d)は浮上体に負荷が加わったとき軸受側を制御
した場合の特性を示す図である。
FIGS. 1 (a) to 1 (d) are diagrams showing the operation principle of the present invention, and FIGS. 1 (a) and 1 (b) are schematic structural diagrams showing the operation principle of control of the bearing side position. c) is a diagram showing characteristics when the bearing is not controlled when a load is applied to the floating body,
FIG. 1D is a diagram showing characteristics when the bearing is controlled when a load is applied to the floating body.

【0009】図1(a),(b)において、11は静圧
気体軸受(以下、単に軸受という)で、軸受台12がリ
ニアステージ15の上方に設けられて構成される。軸受
台12には、表面に噴出孔13が所要数形成されており
(図1(a),(b)では1個を示している)、図示し
ない給気装置から圧力気体14を噴出する。その上方に
は圧力気体14によって浮上している浮上体16が所要
の負荷Wを受けて配設されている。リニアステージ15
は、上下方向(座標Z方向)への微少移動がリニアに可
能なものである。なお、図1(a),(b)において
は、浮上体16は他の構成部分を省略して受圧体17の
みを図示してあり、受圧体17は軸受台12と対向して
配設されている。Wは負荷で、ΔWは負荷Wに対しさら
に加えられた荷重を示す。また、Oは前記軸受台12の
上面で軸受面となる部分であり、hは前記軸受台12の
上面Oから受圧体17の下面までの距離である。
In FIGS. 1A and 1B, reference numeral 11 denotes a hydrostatic gas bearing (hereinafter simply referred to as a bearing), and a bearing base 12 is provided above a linear stage 15. A required number of ejection holes 13 are formed on the surface of the bearing stand 12 (one is shown in FIGS. 1A and 1B), and a pressure gas 14 is ejected from an air supply device (not shown). Above it, a floating body 16 floating by the pressurized gas 14 is provided under a required load W. Linear stage 15
Is capable of linearly moving slightly in the up-down direction (coordinate Z direction). 1 (a) and 1 (b), only the pressure receiving body 17 is shown by omitting the other components of the floating body 16, and the pressure receiving body 17 is disposed to face the bearing base 12. ing. W is a load, and ΔW is a load further applied to the load W. Further, O is a portion that becomes a bearing surface on the upper surface of the bearing base 12, and h is a distance from the upper surface O of the bearing base 12 to the lower surface of the pressure receiving body 17.

【0010】また、図1(c)において、点S0は軸受
11の動作点で、受圧体17の負荷Wにさらに負荷ΔW
が加わると、フィードバック制御をしない図1(a)の
場合では、図1(c)に示すように点S0から点S1に
変位した距離Δhだけ受圧体17が軸受11側に移動
し、図1(a)の実線の位置から2点鎖線に示した位置
になる。一方、フィードバック制御をする図1(b)の
場合は、図1(d)に示すように変位した距離Δhだけ
軸受台12の上面Oが図1(a)の受圧体17、つまり
浮上体16に近づくため、点S0は点S2に移動するが
受圧体17の位置の変化がなく、高剛性を得たことにな
る。
In FIG. 1C, a point S0 is an operating point of the bearing 11, and a load ΔW is added to the load W of the pressure receiving body 17.
1A, in which the feedback control is not performed, the pressure receiving body 17 moves toward the bearing 11 by a distance Δh displaced from the point S0 to the point S1 as shown in FIG. The position indicated by the two-dot chain line is changed from the position indicated by the solid line in FIG. On the other hand, in the case of FIG. 1B in which the feedback control is performed, as shown in FIG. 1D, the upper surface O of the bearing stand 12 is displaced by a distance Δh as shown in FIG. , The point S0 moves to the point S2, but there is no change in the position of the pressure receiving body 17, and high rigidity is obtained.

【0011】図2に本発明の静圧気体軸受の断面略図を
示す。図中、1は円形の調整スリーブで、円筒状の固定
スリーブ2との間の微少な隙間がスロット状給気絞りを
形成する。すなわち、調整スリーブ1の上面と固定スリ
ーブ2との間のスロット間隔hsおよび調整スリーブ1
の上部の円筒面と固定スリーブ2との間の隙間hs1が
スロット状給気絞りとなる。調整スリーブ1は、圧電素
子3を介して円板状のベース5に取り付けられる。6は
前記調整スリーブ1の位置決めおよび給気の漏れ込みを
防ぐためのOリング、7は浮上体、4は前記調整スリー
ブ1の下面を周囲圧に保つためのバランス孔である。な
お、ro,rg,hs1,ls1,rsはそれぞれ要部
の寸法を示す。
FIG. 2 is a schematic sectional view of the hydrostatic gas bearing of the present invention. In the drawing, reference numeral 1 denotes a circular adjusting sleeve, and a minute gap between the adjusting sleeve and the cylindrical fixed sleeve 2 forms a slot-shaped air supply throttle. That is, the slot interval hs between the upper surface of the adjustment sleeve 1 and the fixed sleeve 2 and the adjustment sleeve 1
A gap hs1 between the upper cylindrical surface and the fixed sleeve 2 serves as a slot-shaped air supply throttle. The adjustment sleeve 1 is attached to a disk-shaped base 5 via the piezoelectric element 3. Reference numeral 6 denotes an O-ring for positioning the adjustment sleeve 1 and preventing leakage of air supply, reference numeral 7 denotes a floating body, and reference numeral 4 denotes a balance hole for keeping the lower surface of the adjustment sleeve 1 at ambient pressure. In addition, ro, rg, hs1, ls1, and rs each indicate the size of a main part.

【0012】図3に本発明の静圧流体軸受の制御系統図
を示す。浮上体7にかかる負荷の増大により隙間Δhが
減少すると、これを変位計9が検知し、その変位量に対
応した電圧が制御器8から圧電素子3に加わる。すると
圧電素子3はΔh相当分だけ収縮し、図2に示したスロ
ット間隔hsが増加して調整絞りの流体抵抗を減少さ
せ、隙間hs1の流路についても長さが縮まり、その
分、流体抵抗を減少させる。これによりスロット絞り静
圧気体軸受内の圧力が上昇して隙間hを増大させ、結果
として隙間hは、一定に保たれ、無限剛性を発揮するこ
とになる。
FIG. 3 shows a control system diagram of the hydrostatic bearing of the present invention. When the gap Δh decreases due to an increase in the load applied to the floating body 7, the displacement meter 9 detects this and a voltage corresponding to the displacement is applied to the piezoelectric element 3 from the controller 8. Then, the piezoelectric element 3 contracts by an amount corresponding to Δh, the slot interval hs shown in FIG. 2 increases, the fluid resistance of the adjustment throttle decreases, and the length of the flow path of the gap hs1 also decreases. Decrease. This increases the pressure in the slot throttle static pressure gas bearing to increase the gap h. As a result, the gap h is kept constant and exhibits infinite rigidity.

【0013】図4に、ro=25mm,rg=15m
m,hs1=10μm,ls1=5mm,rs=30m
mの軸受で、設計荷重W=10kg、設定隙間h=10
μm、給気圧力Ps=5kg/cm において無限剛
性を得るための調整絞り隙間、すなわちスロット間隔h
sおよび流量Qの計算結果を示す。
FIG. 4 shows ro = 25 mm, rg = 15 m
m, hs1 = 10 μm, ls1 = 5 mm, rs = 30 m
m, design load W = 10kg, set clearance h = 10
μm, adjustment throttle gap for obtaining infinite rigidity at supply pressure Ps = 5 kg / cm 2 , that is, slot interval h
The calculation results of s and the flow rate Q are shown.

【0014】なお、調整スリーブ1の駆動手段として圧
電素子3を用いたが、これは磁歪素子その他であっても
よい。
Although the piezoelectric element 3 is used as a driving means of the adjusting sleeve 1, it may be a magnetostrictive element or the like.

【0015】上記の実施形態では圧力気体14を用いた
が、これは圧力液体であってもよく、したがって本発明
は圧力流体を用いた静圧流体軸受である。
In the above embodiment, the pressurized gas 14 is used. However, this may be a pressurized liquid. Therefore, the present invention is a hydrostatic bearing using a pressurized fluid.

【0016】[0016]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、浮上体の変位に応じて静圧気体軸受内に配
置されている調整スリーブを駆動手段を用いて制御する
ことによって、軸受剛性が著しく高められ、無限軸受剛
性をも期待できる。
As is apparent from the above description, according to the present invention, the adjusting sleeve disposed in the hydrostatic gas bearing is controlled by the driving means in accordance with the displacement of the floating body. In addition, the bearing rigidity is significantly increased, and infinite bearing rigidity can be expected.

【0017】この結果、浮上体の負荷変動に対する変位
変化を極力小さくすることが可能となり、従来、軸受の
剛性不足で達成できなかった精度的な問題を解決できる
とともに、産業機器の軸受にこの気体軸受を採用するこ
とにより機器の性能および信頼性の向上に貢献できる。
As a result, it is possible to minimize the change in displacement of the floating body with respect to the load fluctuation, to solve the problem of accuracy that could not be achieved conventionally due to insufficient rigidity of the bearing, and to use this gas for the bearing of industrial equipment. The use of bearings can contribute to improving the performance and reliability of equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動作原理を示す図で、図1(a),
(b)は軸受側位置の制御動作原理を示す概略構成図、
図1(c)は浮上体に負荷が加わったとき軸受側を制御
しない場合の特性を示す図、図1(d)は浮上体に負荷
が加わったとき軸受側を制御した場合の特性を示す図で
ある。
FIG. 1 is a diagram showing the principle of operation of the present invention.
(B) is a schematic configuration diagram showing the principle of control operation of the bearing side position,
FIG. 1C shows the characteristics when the bearing is not controlled when a load is applied to the floating body, and FIG. 1D shows the characteristics when the bearing is controlled when a load is applied to the floating body. FIG.

【図2】本発明にかかる静圧気体軸受の要部を示す断面
略図である。
FIG. 2 is a schematic sectional view showing a main part of the hydrostatic gas bearing according to the present invention.

【図3】本発明での静圧気体軸受の制御系統図を示す図
である。
FIG. 3 is a diagram showing a control system diagram of a hydrostatic gas bearing according to the present invention.

【図4】無限剛性を与えるための調整絞りのスロット間
隔と流量の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a slot interval and a flow rate of an adjustment throttle for giving infinite rigidity.

【符号の説明】[Explanation of symbols]

1 調整スリーブ 2 固定スリーブ 3 圧電素子 4 バランス孔 5 ベース 6 Oリング 7 浮上体 8 制御器 9 変位計 11 気体軸受 12 軸受台 13 噴出口 14 圧力気体 15 リニアステージ 16 浮上体 17 受圧体 DESCRIPTION OF SYMBOLS 1 Adjusting sleeve 2 Fixed sleeve 3 Piezoelectric element 4 Balance hole 5 Base 6 O-ring 7 Floating body 8 Controller 9 Displacement gauge 11 Gas bearing 12 Bearing stand 13 Jet port 14 Pressure gas 15 Linear stage 16 Floating body 17 Pressure receiving body

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月13日(2000.6.1
3)
[Submission date] June 13, 2000 (2006.1.
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】本発明にかかる静圧流体
軸受は、前記スロット状給気絞りを、スロット間隔をも
って内面が対向する固定スリーブと調整スリーブとで構
成し、前記調整スリーブを、流れの垂直方向に移動させ
ることで流体抵抗が調整できる可動体で構成し、調整ス
リーブを移動させることで、負荷変動に応じて絞り部分
の圧力および軸受流量を制御することにより軸受剛性を
極めて高くするものである。
In the hydrostatic bearing according to the present invention, the slot-shaped air-supply restrictor is provided with a slot space.
The fixed sleeve and the adjustment sleeve
Moving the adjusting sleeve in the vertical direction of the flow.
Fluid resistance is constituted by a movable member which can be adjusted in Rukoto, by moving the adjustment sleeve is intended to very high bearing stiffness by controlling the pressure and bearing flow throttle portion in accordance with the load fluctuation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スロット状給気絞りを介して流体を噴出
して浮上体を浮上させ非接触で保持する静圧流体軸受に
おいて、前記スロット状給気絞りを固定スリーブと調整
スリーブとで構成し、前記調整スリーブを移動させ前記
固定スリーブとのスロット間隔を調整する駆動手段と、
前記浮上体側の負荷による軸の変位を検出する検出手段
と、検出された変位に応じてフィードバック制御して前
記駆動手段を前記浮上体の変位を打消すように駆動する
制御手段とを具備したことを特徴とする静圧流体軸受。
1. A hydrostatic bearing in which a fluid is ejected through a slot-shaped air supply throttle to float a floating body and hold it in a non-contact manner, wherein the slot-shaped air supply throttle is constituted by a fixed sleeve and an adjustment sleeve. Driving means for moving the adjusting sleeve to adjust the slot interval with the fixed sleeve,
Detecting means for detecting displacement of the shaft due to the load on the floating body side, and control means for performing feedback control according to the detected displacement to drive the driving means to cancel the displacement of the floating body. A hydrostatic bearing.
JP11284548A 1999-10-05 1999-10-05 Hydrostatic bearing Expired - Lifetime JP3106189B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11284548A JP3106189B1 (en) 1999-10-05 1999-10-05 Hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11284548A JP3106189B1 (en) 1999-10-05 1999-10-05 Hydrostatic bearing

Publications (2)

Publication Number Publication Date
JP3106189B1 JP3106189B1 (en) 2000-11-06
JP2001107963A true JP2001107963A (en) 2001-04-17

Family

ID=17679887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11284548A Expired - Lifetime JP3106189B1 (en) 1999-10-05 1999-10-05 Hydrostatic bearing

Country Status (1)

Country Link
JP (1) JP3106189B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073118A (en) * 2009-10-01 2011-04-14 Jtekt Corp Fluid holding device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011918B (en) * 2010-11-04 2012-08-22 北京卫星制造厂 High-precision direct driven air flotation turntable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073118A (en) * 2009-10-01 2011-04-14 Jtekt Corp Fluid holding device

Also Published As

Publication number Publication date
JP3106189B1 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
KR0166987B1 (en) Weight supporting apparatus
JPH06183561A (en) Moving stage device
US6538348B2 (en) Stage device capable of moving an object to be positioned precisely to a target position
KR101348861B1 (en) Deflection correction device for ram
JPH06249239A (en) Static pressure bearing device
US20060123888A1 (en) Method and system for operating an air gauge at programmable or constant standoff
JP2010249315A (en) Static pressure gas bearing
JP2001107963A (en) Hydrostatic bearing
JP4491364B2 (en) Non-contact support device
JP5319378B2 (en) Drive apparatus, exposure apparatus, and device manufacturing method
JP2001241439A (en) Moving device provided with hydrostatic bearing
JP3145355B2 (en) Travel guidance device
JP4494179B2 (en) Non-contact support device
JPH0510330A (en) Static pressure bearing device
JP2948010B2 (en) Linear driving apparatus
JP3143582B2 (en) Hydrostatic bearing device and positioning stage using the same
JP2001242937A (en) Stage mechanism
JP2554794B2 (en) Static pressure fluid support device
JP2747254B2 (en) Fluid bearing device
JP2001140883A (en) Hydrostatic pressure bearing device
CN111120511B (en) Rotary table equipment
JPH10306825A (en) Gas bearing
KR20220158615A (en) Static pressure guide apparatus, transfer apparatus, and article manufacturing method
JP2005351312A (en) Moving mechanism
SU848146A1 (en) Spindle assembly

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3106189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term