JP2001107181A - Tool steel excellent in machinability and heat treatability and die using the same - Google Patents

Tool steel excellent in machinability and heat treatability and die using the same

Info

Publication number
JP2001107181A
JP2001107181A JP2000151440A JP2000151440A JP2001107181A JP 2001107181 A JP2001107181 A JP 2001107181A JP 2000151440 A JP2000151440 A JP 2000151440A JP 2000151440 A JP2000151440 A JP 2000151440A JP 2001107181 A JP2001107181 A JP 2001107181A
Authority
JP
Japan
Prior art keywords
heat treatment
less
tool steel
tempering
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000151440A
Other languages
Japanese (ja)
Other versions
JP3365624B2 (en
Inventor
Kunichika Kubota
邦親 久保田
Yukio Abe
行雄 阿部
Isao Tamura
庸 田村
Yoshihiro Kada
善裕 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000151440A priority Critical patent/JP3365624B2/en
Publication of JP2001107181A publication Critical patent/JP2001107181A/en
Application granted granted Critical
Publication of JP3365624B2 publication Critical patent/JP3365624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide tool steel excellent in antipodal characteristics of machinability and heat treatability. SOLUTION: This tool steel satisfies the relational formulae of, by mass, (Cr+5.9×C): 9.1 to 12.5, (Cr-4.2×C): <=5, and (Cr-6.3×C)>=2.2. Preferably, the tool steel has a composition, in addition to the above, containing 0.1 to 0.6% Si, 0.1 to 1.2% Mn, one or two kinds of Mo and W by (Mo+1/2W): 0.6 to 1.25% and <0.5% V, furthermore containing <=0.12% Si, <=100 ppm Ca, <=1% Ni and <=0.6% Al, and the balance Fe with inevitable impurities. In addition, in the tool steel, the matrix segregation width of Cr after quenching if <=1%, by mass, or, by tempering at >=500 deg.C, the maximum tempering hardness if >=57 HRC, or the heat treatment dimensional change generated by tempering at >=500 deg.C is <=0.1% expressed in terms of a linear expansion coefficient on a standard before the quenching, and also, the heat treatment dimensional change by tempering at 490 deg.C is <=0, and a die is produced by refining the tool steel to the hardness of >=55 HRC and executing machining.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、家庭電化
製品、農機具等に使用される鋼板の打抜、曲げ、絞りあ
るいはトリミング用の金型等に使用される工具鋼に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tool steel used for a die for punching, bending, drawing or trimming a steel sheet used for automobiles, household appliances, agricultural equipment and the like.

【0002】[0002]

【従来の技術】自動車メーカー等では、価格競争に打ち
勝ち収益を確保するために、これまであらゆる分野での
コスト低減を実施してきた。その分野は金型関連までに
もおよび、コスト低減のため、プレス金型で成形される
製品の製作工程の短縮や金型製作数の削減、更には、金
型の加工方法や工具の開発等、種々の低減施策が実施さ
れてきた。
2. Description of the Related Art Automakers and the like have been reducing costs in various fields in order to overcome price competition and secure profits. The field extends to molds, and to reduce costs, shorten the manufacturing process of products formed by press dies, reduce the number of dies, and develop mold processing methods and tools. Various reduction measures have been implemented.

【0003】このような金型において、従来より使用さ
れる金型材、特に冷間加工用金型材には、耐摩耗性付与
のため炭化物を多量に含み、更に、焼入れ性に優れかつ
靭性を確保するためCr含有量が多い材料が求められて
おり、例えば、JIS G4404規定の合金工具鋼鋼
材であるSKD11等の高C−高Cr系鋼が使用されて
いる。
[0003] In such a mold, conventionally used mold materials, especially mold materials for cold working, contain a large amount of carbides for imparting wear resistance, and further have excellent hardenability and ensure toughness. Therefore, a material having a high Cr content is required, and for example, a high C-high Cr steel such as SKD11 which is an alloy tool steel according to JIS G4404 is used.

【0004】[0004]

【発明が解決しようとする課題】しかし、近年の傾向と
しては、切削加工工数を圧縮させる様々な動きが激しく
なってきている。もともと造形技術の中でも、高コスト
である切削加工は、塑性加工の進歩により更にその高コ
スト性が鮮明となり、それに対抗する形で、CBN、コ
ーティング工具の開発、高速切削機の出現、NCアルゴ
リズムの進歩等の新技術の開拓が進んできている。この
流れに呼応して、被削性を改善した工具鋼としては、S
KD11近似組成にSを添加する快削工具鋼が存在す
る。しかし、切削様式は多彩に存在し、単なるS添加だ
けではエンドミル、フライス、ドリル等の様々な切削様
式や切削条件に対応しない。
However, in recent years, various movements for reducing the number of man-hours for cutting have become intense. Originally, among the molding technologies, the high cost cutting process became even more costly due to the advance of plastic working, and in opposition to it, CBN, the development of coating tools, the emergence of high-speed cutting machines, the NC algorithm Development of new technologies, such as progress, is progressing. In response to this trend, tool steels with improved machinability include S
There is a free cutting tool steel in which S is added to the KD11 approximate composition. However, there are various cutting modes, and mere addition of S does not correspond to various cutting modes and cutting conditions such as end mills, milling cutters, and drills.

【0005】更に、高速切削機の出現で60HRCの焼
入れ焼戻し状態での加工が出来るという報告が相次いで
いる。しかし、まだまだ荒加工等で切削は困難な状態に
なっている。高硬度材の被削性は上記のようなSKD1
1にSを添加しただけのものでは向上せず、炭化物の存
在自体を減らす必要があるためである。
[0005] Further, there have been reports that it is possible to perform processing in a quenched and tempered state of 60 HRC with the advent of high-speed cutting machines. However, cutting is still difficult due to rough machining and the like. The machinability of high hardness material is SKD1 as described above.
This is because the addition of S to 1 does not improve, and it is necessary to reduce the presence of carbides.

【0006】また、切削と同様、熱処理時の変寸も問題
となっている。この熱処理変寸が大きいと取りしろを多
くしなければならず、結果として仕上げ加工工数を引き
上げるからである。SKS3は低合金工具鋼でSKD1
1より格段に被削性が良好だが、焼入性が悪く油焼入れ
になるためそりが発生しやすくなる。また、1980年
代に開発された8%Cr系ダイス鋼は焼入性は良好であ
るが、熱処理変寸や経年変形が起きやすく、結果的に削
り難いSKD11の熱処理変寸が良好となっている。
[0006] As in the case of cutting, size change during heat treatment is also a problem. If the heat treatment size is large, the margin must be increased, and as a result, the number of finishing steps is increased. SKS3 is a low alloy tool steel and SKD1
Although the machinability is much better than 1, the hardenability is poor and oil quenching is likely to cause warpage. The 8% Cr-based die steel developed in the 1980's has good hardenability, but tends to undergo heat treatment deformation and aging deformation, resulting in good heat treatment deformation of SKD11 which is difficult to cut. .

【0007】つまりそれぞれ一長一短があり、熱処理特
性がSKD11並みで被削性はSKS3並みの工具鋼が
望まれているのが現状である。とくに熱処理性において
はSKD11と同一熱処理炉に混載が出来ることが熱処
理作業の合理化の点で強く望まれている。そこで、本発
明は、靭性等の機械的性質を低下させずに、被削性と熱
処理特性の両者が優れた工具鋼を提供するものである。
That is, at present, there is a demand for a tool steel having advantages and disadvantages, a heat treatment property comparable to that of SKD11 and a machinability similar to that of SKS3. In particular, in terms of heat treatment properties, it is strongly desired that the SKD 11 and the SKD 11 can be mixedly loaded in the same heat treatment furnace from the viewpoint of streamlining the heat treatment operation. Thus, the present invention provides a tool steel having excellent machinability and heat treatment characteristics without deteriorating mechanical properties such as toughness.

【0008】[0008]

【課題を解決するための手段】発明者らは、靭性や耐摩
耗性といった基本的な機械的特性の維持を鑑みた上で、
被削性と熱処理性の改善に要求される基本条件を見直し
た。
Means for Solving the Problems In view of maintaining basic mechanical properties such as toughness and wear resistance, the present inventors
The basic conditions required for improvement in machinability and heat treatment were reviewed.

【0009】まず、工具鋼を削る際の様々な切削様式を
検討し、チッピングタイプの損傷と熱的損傷の2つに分
別できることが判明した。そして、この両者が1つの工
具の別部位に同時に形成される方法として、特定の条件
下でのスクウェアーエンドミルで実現できることを掴ん
だ。具体的には刃先は機械的損傷、被削材とのあたりが
終了する境界部には熱的損傷が発生することを突きとめ
た。この方法で両者の損傷機構を低減化する快削化手法
を種々検討した。
First, various cutting modes for cutting tool steel were examined, and it was found that chipping type damage and thermal damage could be classified. They have found that a method of forming both of them simultaneously on different parts of one tool can be realized by a square end mill under specific conditions. Specifically, they found that the cutting edge was mechanically damaged, and that thermal damage was generated at the boundary where the contact with the work material was completed. Various methods of free cutting to reduce the damage mechanism of both by this method were studied.

【0010】その結果、工具鋼に存在する一次炭化物の
低減は機械的損傷を防ぎ、S添加が熱的損傷を防ぐこと
を見いだした。そして、この両者の効果を同時に発現さ
せることで幅広い切削様式、切削条件に対応させること
を考え、その効果の達成に最適な工具鋼を見いだすに至
った。
As a result, it has been found that the reduction of primary carbides present in the tool steel prevents mechanical damage and that the addition of S prevents thermal damage. Then, by considering both of these effects at the same time and considering a wide range of cutting styles and cutting conditions, the present inventors have found an optimum tool steel for achieving the effects.

【0011】すなわち、本発明は、質量%で、(Cr+
5.9×C)の値が9.1以上12.5以下となり、か
つ(Cr−4.2×C)が5以下で(Cr−6.3×
C)が2.2以上となる関係式を満たした工具鋼であ
る。好ましくはこれらに加え、Si:0.1〜0.6
%、Mn:0.1〜1.2%、MoまたはWの1種ある
いは2種を(Mo+1/2W):0.6〜1.25%、
V:0.5%未満、更にはS:0.12%以下、Ca:
100ppm以下を含有し、残部がFeおよび不可避の
不純物からなる工具鋼である。あるいは更に、Ni:1
%以下、Al:0.6%以下を含有する工具鋼である。
That is, the present invention relates to the method of
When the value of (5.9 × C) is 9.1 or more and 12.5 or less, and (Cr−4.2 × C) is 5 or less, (Cr−6.3 × C)
C) is a tool steel satisfying the relational expression of 2.2 or more. Preferably, in addition to these, Si: 0.1 to 0.6
%, Mn: 0.1 to 1.2%, one or two kinds of Mo or W (Mo + 1 / 2W): 0.6 to 1.25%,
V: less than 0.5%, further S: 0.12% or less, Ca:
A tool steel containing 100 ppm or less, with the balance being Fe and unavoidable impurities. Alternatively, Ni: 1
%, Al: 0.6% or less.

【0012】そして、焼入れ後のCrのマトリックス偏
析幅が質量で1%以下、または、500℃以上の焼戻し
によりその最高焼戻し硬さが57HRC以上である工具
鋼である。加えて、500℃以上の焼戻しにより発生す
る熱処理変寸が焼入れ前基準、線膨張率換算で0.1%
以下でかつ、490℃での焼戻しで熱処理変寸が0以下
である工具鋼であって、これら本発明の工具鋼を55H
RC以上の硬さに調質し、切削加工を行うことで作製し
た金型である。
A tool steel having a matrix segregation width of 1% or less by mass of Cr after quenching or a maximum temper hardness of 57HRC or more by tempering at 500 ° C. or more. In addition, the heat treatment dimensional change generated by tempering at 500 ° C. or higher is 0.1% in terms of the linear expansion coefficient based on the reference before quenching.
Tool steel having a heat treatment dimension of 0 or less after tempering at 490 ° C.
This is a mold produced by tempering to a hardness of RC or higher and cutting.

【0013】[0013]

【発明の実施の形態】本発明の特徴は、SKD11と近
似された熱処理特性と、かつSKS3並みの被削性を同
時に有した工具鋼を達成したところにある。以下、本発
明の工具鋼を見いだすに至った詳細について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the present invention resides in that a tool steel having both heat treatment characteristics similar to SKD11 and machinability comparable to SKS3 has been achieved. Hereinafter, the details of finding the tool steel of the present invention will be described.

【0014】炭化物量を減少させる領域で、ディファク
トスタンダードの工具鋼であるSKD11とほぼ同じ熱
処理が出来る成分設計を行った。同一の熱処理特性を得
るには、焼入れ時に基地に固溶させる組成をSKD11
に近づけることを基本方針とした。図1はサーモカルク
によって決定した成分設計線図の全体、図2は本発明に
相当する領域を拡大した成分設計線図である。(A)線
は焼入れ時のSKD11と同一固溶C量が得られる添加
成分平面上の線を示す。同様に(B)線はSKD11と
の同一固溶Cr量線を示す。両者とも途中で折れ曲がっ
ているのは、(C)線以上から炭化物が残留するため合
金元素が炭化物に取られてしまい、添加成分を多くしな
いと基地の固溶元素を同一に維持できないためである。
In the region where the amount of carbides is reduced, a component design capable of performing almost the same heat treatment as SKD11 which is a de facto standard tool steel was performed. In order to obtain the same heat treatment characteristics, the composition to be dissolved in the matrix during quenching is SKD11.
The basic policy was to get closer to. FIG. 1 is an entire component design diagram determined by thermocalc, and FIG. 2 is a component design diagram in which a region corresponding to the present invention is enlarged. The line (A) shows the line on the plane of the additive component that gives the same amount of solid solution C as SKD11 during quenching. Similarly, the line (B) indicates the same solid solution Cr amount line as that of SKD11. The reason why both are bent in the middle is that carbides remain from the line (C) or higher, so that alloying elements are taken into the carbides and the solid solution elements in the matrix cannot be maintained the same unless the amount of added components is increased. .

【0015】(A)、(B)の2つの線は基本的には、
SKD11の組成でしか交わらないので、同一焼入れ温
度でマトリックス組成をSKD11と同一にすることは
不可能である。しかし、それでも(C)線以上では
(A)、(B)線が接近しているのでSKD11に近似
した基地組成となる。ただし、この線を更に接近させよ
うとして添加C、Cr量を上げてゆくと、残留炭化物量
が多くなり、チッピングタイプの工具摩耗が促進され被
削性が劣化する。また耐久性の面でも疲労破壊が起こり
やすくなるために、応力集中の起こりやすい金型への使
用も限定される。この相反関係を実験的に明らかにし、
被削性が優れ、熱処理特性がSKD11に近似した領域
こそが図2に図示されている本発明の工具鋼である。
The two lines (A) and (B) are basically
Since it only intersects with the composition of SKD11, it is impossible to make the matrix composition the same as SKD11 at the same quenching temperature. However, the base composition approximates to SKD11 even after the line (C) because the lines (A) and (B) are close to each other. However, if the amounts of added C and Cr are increased in order to bring this line closer, the amount of residual carbide increases, and chipping type tool wear is accelerated and machinability deteriorates. In addition, since fatigue fracture is likely to occur also in terms of durability, use in a mold in which stress concentration is likely to occur is limited. This reciprocal relationship was clarified experimentally,
The region where the machinability is excellent and the heat treatment characteristic is close to that of SKD11 is the tool steel of the present invention shown in FIG.

【0016】また近年、熱処理特性の中で特に重要視さ
れてきたのが、熱処理変寸である。金型の品質は、耐久
性もさることながら、最近では形状精度が特に注目視さ
れてきており、SKD11はこの点でも評価が高い。こ
の熱処理変寸の制御に関する考え方を以下に示す。
In recent years, heat treatment dimensional change has been particularly emphasized among heat treatment characteristics. Regarding the quality of the mold, the shape accuracy has recently attracted particular attention in addition to the durability, and the SKD11 is also highly evaluated in this respect. The concept regarding the control of the heat treatment size change is described below.

【0017】この熱処理変寸挙動の原理図を図3に示
す。焼入れままでは、主体となっているマルテンサイト
組織中に固溶するCによって結晶格子が押し広げられ、
膨張する。焼戻し温度を上げてゆくと、低、中温領域
(図3(A)域)ではセメンタイトが析出して寸法変化
が収縮傾向となる。高温域では、2次硬化とほぼ同じ温
度で変寸率が最大になる。この最大値が発生するのは、
この最大値の低温側(図3(B)域)と高温側(図3
(C)域)で主に起こる2つの機構による。低温側では
残留オーステナイトの分解が温度を上げるとより多くな
り、膨張傾向が発生する。最大値よりも高温側ではM
、M23系の炭化物の析出・凝集によりマルテ
ンサイト中の固溶C量が低下してゆくため、収縮傾向が
発生する。
FIG. 3 shows a principle diagram of the heat-sizing behavior. In the as-quenched state, the crystal lattice is expanded by C that forms a solid solution in the main martensite structure,
Swell. As the tempering temperature is increased, cementite precipitates in the low and medium temperature regions (FIG. 3 (A) region), and the dimensional change tends to shrink. In the high temperature range, the dimensional change is maximized at substantially the same temperature as the secondary curing. This maximum occurs when
The low temperature side (FIG. 3 (B) region) and the high temperature side (FIG.
(C) region) mainly due to two mechanisms. On the low temperature side, the decomposition of the retained austenite increases as the temperature increases, and the tendency to expand occurs. M 7 on the higher temperature side than the maximum value
Since the amount of solid solution C in martensite decreases due to precipitation and agglomeration of C 3 and M 23 C 6 based carbides, a tendency to shrink occurs.

【0018】この(A)、(B)、(C)の機構を用い
てSKD11は硬さを維持しながら(B)、(C)間で
起こる変寸を押さえる組成となっており、マトリックス
組成をSKD11に近似化した本発明の発想の源泉はこ
こにある。そのため、SKD11の主要合金元素のC、
Crだけでなく、図3にも示されているような、セメン
タイト析出を制御するSi、M、M23系炭
化物の析出を制御するMo、Wの最適化も行っている。
Using the mechanisms (A), (B), and (C), the SKD 11 has a composition that suppresses the size change that occurs between (B) and (C) while maintaining the hardness. Here is the source of the idea of the present invention in which is approximated to SKD11. Therefore, C, the main alloying element of SKD11,
As shown in FIG. 3, not only Cr but also Si, M 7 C 3 , and M 23 C 6 based carbides for controlling the precipitation of cementite are optimized.

【0019】また、本発明の成分系では平衡状態図上で
は一次炭化物が晶出し難い成分域であるため、急冷凝
固、あるいは1100〜1400℃程度の拡散焼鈍を行
い、一次炭化物を消失あるいは減少させる処置を行うと
更なる被削性向上につながる。
In the component system of the present invention, primary carbides are hardly crystallized in the equilibrium diagram, so rapid solidification or diffusion annealing at about 1100 to 1400 ° C. is performed to eliminate or reduce the primary carbides. The treatment leads to a further improvement in machinability.

【0020】これに加えて、S添加による熱処理変寸の
作用を検討した。その結果、S添加が0.12%を超え
ると、熱処理変寸が大きくなることを見いだした。従来
はこのような報告がなかったが、その原因はS添加を多
用する快削鋼系では、熱処理変寸は問題視され難いこと
が考えられる。一方、工具鋼系では残留炭化物が多いた
め、変寸を拘束する作用が働いてSの変寸に対する効果
を検出できなかったものと推定される。これにより、変
寸の少ない0.12%以下の組成に調整する必要性があ
ることを見いだした。
In addition, the effect of heat treatment sizing due to the addition of S was examined. As a result, it has been found that when the S content exceeds 0.12%, the heat treatment size change increases. Conventionally, there has been no such report, but it is considered that the cause is that heat treatment sizing is hardly regarded as a problem in a free-cutting steel system that frequently uses S addition. On the other hand, it is presumed that the tool steel system has a large amount of residual carbide, so that the effect of restraining the size change worked and the effect on the size change of S could not be detected. As a result, it has been found that it is necessary to adjust the composition to 0.12% or less, which is small in size.

【0021】次に、本発明の熱処理・表面処理性につい
て述べておく。本発明は、C含有量の抑制による耐摩耗
性の不足が生じた場合にも対処すべく、表面処理性をも
十分に確保するものである。表面処理には浸炭、窒化、
PVD、CVD処理があるが、この中で処理母材の性質
よっては処理が困難となるのはCVD処理である。この
処理は、1000℃程度の状態で気化された成膜元素を
化学的に材料表面に析出させる。そのため、実質的には
材料の熱処理と同様、焼入不足、熱処理変寸大きい等の
問題が浮上する。
Next, the heat treatment and surface treatment properties of the present invention will be described. The present invention sufficiently secures the surface treatment properties in order to cope with the case where the wear resistance is insufficient due to the suppression of the C content. Carburizing, nitriding,
There are PVD and CVD processes. Among them, the CVD process is difficult depending on the properties of the base material. This treatment chemically deposits the vaporized film-forming element at about 1000 ° C. on the material surface. As a result, problems such as insufficient quenching and large heat treatment dimensional changes are raised as in the case of heat treatment of the material.

【0022】つまり、熱処理性の代表的指標である焼入
れ性は、あらゆる表面処理装置への適用を可能にすべく
付与するものであるが、焼入れ性の良好なSKD11に
近似して組成を用いているため、十分満足いくものとな
っている。この他、焼入れ焼戻し時の熱処理変寸量をS
KD11と同等な特性とすることが工業上の利便性を高
めるとして、マトリックスのC,Cr組成をSKD11
に近づけるため、図2に示す領域を採用することが重要
である。SKD11は熱処理変寸の少ない鋼としてゲー
ジ鋼にも採用されている。
That is, the quenchability, which is a representative index of the heat treatment property, is given to enable application to any surface treatment apparatus. Therefore, they are fully satisfactory. In addition, the dimensional change of heat treatment during quenching and tempering is S
In order to improve the industrial convenience by making the properties equivalent to KD11, the C and Cr compositions of the matrix are changed to SKD11.
It is important to adopt the region shown in FIG. SKD11 is also used as a gauge steel as a steel with little heat treatment dimensional change.

【0023】SKD11が低熱処理変寸特性を有するの
は、高温焼き戻し領域での硬さの維持をほぼ固溶Crの
みでセメンタイト析出を抑制させる方法を採用している
ことに起因している。つまり、高温焼き戻しができる高
速度工具鋼等のMo、W、Vを積極的に添加している2
次硬化鋼は、2次硬化時におこる残留オーステナイトの
分解によって生成されるフレッシュマルテンサイトがな
かなか焼戻し収縮を起こさないため、高い熱処理変寸が
発生してしまう。
The reason why the SKD 11 has the low heat treatment sizing characteristic is that the hardness in the high temperature tempering region is maintained by adopting a method of suppressing the precipitation of cementite almost exclusively with solid solution Cr. That is, Mo, W, and V such as high-speed tool steel capable of high-temperature tempering are actively added.
In the secondary hardened steel, fresh martensite generated by the decomposition of residual austenite generated during secondary hardening does not readily undergo tempering shrinkage, so that high heat treatment deformation occurs.

【0024】しかし、Crで同様な効果を狙った場合、
フレッシュマルテンサイト中に速やかにM等のC
r系炭化物が析出し、焼き戻しマルテンサイト化が速や
かに起こるため、マルテンサイト中の固溶C量を減らし
極端な膨張を抑制でき、これがSKD11の低熱処理変
寸性の原因である。熱処理変寸は熱処理前の仕上げ加工
の取りしろの量を左右するため被削性と同様、加工能率
を左右する重要な因子となっている。
However, when the same effect is aimed at with Cr,
C such as M 7 C 3 quickly in fresh martensite
Since r-based carbides are precipitated and tempered martensite occurs promptly, the amount of solid solution C in martensite can be reduced and extreme expansion can be suppressed, which is the cause of the low heat treatment dimensional change of SKD11. Since heat treatment size changes the amount of margin for finishing before heat treatment, it is an important factor that affects machining efficiency as well as machinability.

【0025】いずれにせよ、固溶C、Cr量をSKD1
1に近似させることにより、CVD等の熱処理変寸が問
題となる表面処理の変寸や、焼入れ性、硬さ、経年変寸
ともにSKD11と実用上同一とみなせる特性となる。
これによりSKD11と同一炉での混載が可能になるた
め、表面処理作業コストの大幅な合理化を行える。
In any case, the amounts of solid solution C and Cr are adjusted to SKD1.
By approximation to 1, there is a characteristic that can be regarded as practically the same as SKD11 in terms of surface treatment dimensional change, quenching property, hardness and aging change in which heat treatment dimensional change such as CVD becomes a problem.
As a result, mixed loading in the same furnace as the SKD 11 becomes possible, so that the cost of surface treatment work can be greatly reduced.

【0026】CVD等の表面処理温度でのオーステナイ
ト組織中に固溶するC量は、十分な膜厚を有するMX型
化合物(TiC、VC等)の生成に重要である。つま
り、固溶Cは、特にCVD表面処理にてMX型化合物を
生成するために、その鋼材から供給すべく必要となり、
その最適量は表面処理温度に保持する前のマルテンサイ
ト組織中に固溶するC量による。本発明の工具鋼は、そ
の固溶C量が0.4%以上を達成しているので十分な成
膜が可能である。これらに基いて、本発明の工具鋼を構
成する元素およびその含有量の限定理由について述べ
る。
The amount of C that forms a solid solution in the austenite structure at a surface treatment temperature such as CVD is important for producing an MX type compound (TiC, VC, etc.) having a sufficient film thickness. In other words, solid solution C is required to be supplied from the steel material in order to generate an MX-type compound particularly in the CVD surface treatment,
The optimum amount depends on the amount of C which forms a solid solution in the martensite structure before the surface treatment temperature is maintained. Since the tool steel of the present invention achieves a solid solution C content of 0.4% or more, a sufficient film formation is possible. Based on these, the elements constituting the tool steel of the present invention and the reasons for limiting the contents thereof will be described.

【0027】C,CrはSKD11との類似性、焼入れ
直後の残留炭化物量が5(mass%)以下という観点か
ら、図1、図2に示した領域を採用している。具体的に
は1000℃から1050℃の焼入れ直後の組織中に
て、例えばサーモカルクによる計算で未固溶の炭化物の
存在量が5(mass%)以下であることが被削性の向上に
好ましいとするものである。
C and Cr adopt the regions shown in FIGS. 1 and 2 from the viewpoint of similarity to SKD11 and the amount of residual carbide immediately after quenching is 5 (mass%) or less. Specifically, in the structure immediately after quenching at 1000 ° C. to 1050 ° C., it is preferable that the amount of undissolved carbides calculated by, for example, thermocalc is 5 (mass%) or less for improving machinability. Is what you do.

【0028】SKD11の熱処理特性は、焼き戻し温度
が490℃以下の領域では圧延方向での熱処理変寸がマ
イナスとなり、それよりも高い焼戻し温度ではプラスに
転じる特徴をもつ。また、この490℃よりも高い焼戻
し温度での最大の熱処理変寸量が0.1%以下でプラス
の値となることが特徴であるが、更に、これらの焼戻し
領域で57〜60HRCの硬さを確保出来る熱処理条件
が存在するという特徴も合わせ持っている。
The heat treatment characteristics of SKD11 are such that in the region where the tempering temperature is 490 ° C. or less, the heat treatment dimension in the rolling direction becomes negative, and at higher tempering temperatures, it turns positive. In addition, the maximum heat treatment deformation at a tempering temperature higher than 490 ° C. is characterized in that it has a positive value when the tempering temperature is 0.1% or less. Also, there is a feature that there is a heat treatment condition that can secure the temperature.

【0029】これらをすべての特徴を満足出来る成分域
が図1、2に示した成分域ということになる。490℃
以下で必ずマイナスの変寸を経験し、それよりも高い温
度でプラスに転じる特性は、焼戻し温度を少しずつ上げ
て処理すると、どこかの条件で必ず熱処理変寸がゼロに
なる条件が存在するということであるから、変寸をゼロ
に近づける処理を熱処理条件で見いだすことが可能にな
る。このこともSKD11が技術の高い熱処理業者に支
持され、ディファクトスタンダード化されてきた背景で
あり、ここで示したC、Crのバランスが特に重要とな
る。
The component regions satisfying all the characteristics are the component regions shown in FIGS. 490 ° C
The characteristic that always undergoes negative scaling in the following, and turns positive at higher temperatures, the condition that when the tempering temperature is increased little by little, the heat treatment scaling always becomes zero in some conditions Therefore, it is possible to find a process for reducing the size to zero under heat treatment conditions. This is also the background that SKD11 has been supported by highly skilled heat treatment companies and has been de facto standardized, and the balance between C and Cr shown here is particularly important.

【0030】Siも基本的にはSKD11(Si=0.
25(mass%))との類似性を基本に設定した。ただ、
Siは、元来、脱酸剤および鋳造性改善の目的で含有す
るが、これを低減化すると靭性が向上する。しかし被削
性も劣化するため0.1%以上が必要である。一方、過
多の含有はセメンタイト析出を抑制するため、結果的に
500〜550℃の焼戻し領域で熱処理変寸が大きくな
る原因となる。このため、Siの含有量は、0.1〜
0.6%とした。
Basically, Si is also SKD11 (Si = 0.
25 (mass%)). However,
Si is originally contained for the purpose of improving the deoxidizing agent and the castability, but when this is reduced, toughness is improved. However, since the machinability also deteriorates, 0.1% or more is necessary. On the other hand, the excessive content suppresses the precipitation of cementite, and consequently causes the heat treatment in the tempering region of 500 to 550 ° C. to become large. Therefore, the content of Si is 0.1 to
0.6%.

【0031】Mnも基本的にはSKD11(Mn=0.
4(mass%))との類似性を基本に設定している。Mn
は、焼入性向上のために含有するが、0.1%未満では
焼入硬さを安定して得るためには不十分である。一方、
多すぎると溶接性を劣化させる原因となり、更にSiと
同様、マトリックスの成分偏析も激しくなるので、0.
1〜1.2%とした。ただし、Mnは高価なCrやMo
等と置換できる経済的な元素でもあるが、CrやMo等
の効果が十分発揮され、Sの添加のない場合にはMnを
無添加としても良い。
Mn is also basically SKD11 (Mn = 0.
4 (mass%)). Mn
Is contained for improving the hardenability, but if it is less than 0.1%, it is insufficient to stably obtain the hardenability. on the other hand,
If it is too large, it will cause deterioration of weldability, and like Si, segregation of the matrix components will be intensified.
1 to 1.2%. However, Mn is expensive Cr or Mo
Although it is an economical element that can be replaced with, for example, Cr, Mo, and the like are sufficiently exerted, and Mn may be omitted when S is not added.

【0032】MoおよびWもSKD11(Mo=0.8
5(mass%))と同等であることを基本としている。M
oおよびWは焼入性を向上する。更に、焼戻しを高温側
で行っても軟化が急におこらなくなる。そのため、硬さ
の調整が簡単になる。Wの原子量はMoの約2倍である
ため、Mo1%の含有量はW2%の含有量と等しい効果
を有し、(Mo+1/2W)量でその効果を表すことが
可能である。本発明ではMo、Wの1種または2種を含
有させることができ、つまり、Moの全含有量を2倍の
W含有量で置き換え使用してもよく、Moの一部をそれ
に相当するW量に置き換え使用してもよい。(Mo+1
/2W)量でどちらの成分を優先して使うかは経済性を
考慮して判断すればよい。しかし、基本的にW置換はフ
レームハード性を劣化させるのでMoを加えるのが好ま
しい。
Mo and W are also SKD11 (Mo = 0.8
5 (mass%)). M
o and W improve hardenability. Further, even if tempering is performed on the high temperature side, softening does not occur suddenly. Therefore, adjustment of hardness becomes easy. Since the atomic weight of W is about twice that of Mo, the content of Mo 1% has the same effect as the content of W 2%, and the effect can be expressed by the (Mo + / W) content. In the present invention, one or two types of Mo and W can be contained, that is, the entire content of Mo may be replaced with twice the content of W, and a part of Mo may be replaced with the corresponding W. It may be used in place of the amount. (Mo + 1
/ W) which component should be preferentially used in the amount may be determined in consideration of economy. However, since W replacement basically deteriorates the frame hardware, it is preferable to add Mo.

【0033】(Mo+1/2W)の添加量が0.6%未
満では高温焼戻しでの硬さの低下が急激になり、硬さの
コントロールが難しくなる。一方、過多の添加量では、
マルテンサイト中の炭化物の析出・凝集を遅滞させ50
0〜550℃での焼戻しで熱処理変寸が大きくなった
り、マルテンサイトの焼戻しの遅滞化に伴う、オーステ
ナイト分解の遅滞化のため十分焼戻ししたと思っていて
も不安定なオーステナイトが残留し、型作製後の使用中
に経年変寸が発生するため、0.6〜1.25%とし
た。好ましくは0.6〜1.10%である。
If the amount of (Mo + 1 / 2W) is less than 0.6%, the hardness during high-temperature tempering decreases sharply, making it difficult to control the hardness. On the other hand, if the amount is too large,
Delays precipitation and aggregation of carbides in martensite
Unstable austenite remains even if it is thought that tempering at 0 to 550 ° C. results in a large heat treatment dimensional change, or a delay in austenite decomposition due to a delay in martensite tempering. Since aging occurs during use after production, the content is set to 0.6 to 1.25%. Preferably it is 0.6-1.10%.

【0034】本発明の工具鋼は、その他求められる効果
に則して、上記の成分組成にVを含有してもよい。Vも
基本的にはSKD11(V=0.25(mass%))と同
等にすることを基本とした。Vは工具鋼に必要な軟化抵
抗を増大させる元素であり、好ましい含有量は0.05
%以上であるが、V系炭化物を形成し被削性を低下させ
る原因となるので、0.5%未満とした。
[0034] The tool steel of the present invention may contain V in the above component composition in accordance with the other effects required. V was basically set to be equivalent to SKD11 (V = 0.25 (mass%)). V is an element that increases the softening resistance required for the tool steel, and the preferred content is 0.05
% Or more, but V-based carbides are formed and cause the machinability to be reduced.

【0035】Sは、脆化元素の代表として溶接、高硬度
鋼の分野では忌み嫌われる元素であるが、快削効果があ
るため、炭化物量を減らし靭性を向上させている分添加
が可能になる。そのため熱処理変寸が大きくなることを
考慮して、0.12%までなら許容される。なお、上記
の効果を得るに好ましい含有量は0.005%以上であ
り、更に好ましくは0.02%以上である。
S is an element which is detestable in the fields of welding and high hardness steel as a representative embrittlement element. However, since it has a free cutting effect, it can be added because the amount of carbide is reduced and the toughness is improved. . Therefore, in consideration of the increase in heat treatment size change, up to 0.12% is allowable. The content is preferably 0.005% or more, more preferably 0.02% or more, for obtaining the above effects.

【0036】Caは、機械的性質の低下や組織の変質を
伴わない、理想的な快削元素である。その快削機構は、
鋼中に微量に分散している酸化物を低融点化させ、これ
が切削熱で溶けだし、刃先に保護膜を形成するためであ
る。しかし、蒸気圧が高いため溶鋼中から抜け出しやす
く、添加技術上100ppm程度までが現状の技術的レ
ベルである。なお、上記の効果を得るに好ましくは10
ppm以上である。
[0036] Ca is an ideal free-cutting element without a decrease in mechanical properties or a change in structure. The free-cutting mechanism is
This is because oxides, which are slightly dispersed in the steel, have a low melting point, and this is melted by the cutting heat to form a protective film on the cutting edge. However, since the vapor pressure is high, it is easy to escape from the molten steel, and up to about 100 ppm is the current technical level due to the addition technology. In order to obtain the above effect, it is preferable that 10
ppm or more.

【0037】その他、希土類は、本発明の工具鋼におけ
る被削性を向上する目的のもとに0.2%以下の含有が
可能である。また不可避不純物の総量は0.5%以下が
好ましい。ただし、靭性・溶接性が必要ならNiは1%
以下、好ましくは0.01〜1%添加し、耐摩耗性付与
が更に必要な場合Alを0.6%以下、好ましくは0.
01〜0.6%添加して、窒化硬さを上げることも可能
である。加えて、その他求められる効果に則して、P
b、Se、Te、Bi、In、Be、Ce、Zr、Ti
のうちの1種または2種以上を0.2%以下なら含有し
ても基本特性を変えることはない。
In addition, rare earth elements can be contained in an amount of 0.2% or less for the purpose of improving machinability in the tool steel of the present invention. Further, the total amount of unavoidable impurities is preferably 0.5% or less. However, if toughness and weldability are required, Ni should be 1%
Or less, preferably 0.01 to 1%, and when further addition of wear resistance is required, Al is 0.6% or less, preferably 0.1 to 0.1%.
It is also possible to increase the nitriding hardness by adding from 01 to 0.6%. In addition, according to other required effects, P
b, Se, Te, Bi, In, Be, Ce, Zr, Ti
Even if one or more of them are contained in an amount of 0.2% or less, the basic characteristics are not changed.

【0038】なお、本発明では、本効果の更なる向上に
おいて、焼入後の状態を調整することが有効である。つ
まり、焼入れ後のマルテンサイト組織中に固溶するCお
よびCr含有量をSKD11と近似させること、そし
て、焼入れ直後の残留炭化物重量を5(mass%)以下と
することである。この焼入れ直後の残留炭化物量は、鋼
材製造工程によっても低減が可能である。粉末法、溶解
直後の鋼塊に1100℃以上で1〜10時間程度の熱処
理を行う、すなわちソーキング法、鋼塊の小型化や、急
冷凝固法を採用することでも焼入れ直後の残留炭化物量
を5(mass%)以下とすることができる。加えて、焼入
れ後のCrのマトリックス偏析幅を質量%で1%以下に
することも被削性の向上に好ましいものである。
In the present invention, in order to further improve the present effect, it is effective to adjust the condition after quenching. That is, the contents of C and Cr dissolved in the martensite structure after quenching are made to approximate SKD11, and the weight of residual carbide immediately after quenching is set to 5 (mass%) or less. The amount of residual carbide immediately after quenching can be reduced by the steel material manufacturing process. The powder method, heat treatment of the steel ingot immediately after melting at 1100 ° C. or higher for about 1 to 10 hours, that is, the soaking method, miniaturization of the steel ingot, and the rapid solidification method also reduce the amount of residual carbide immediately after quenching (Mass%) or less. In addition, it is also preferable to reduce the matrix segregation width of Cr after quenching to 1% or less by mass% in order to improve machinability.

【0039】以上に述べた本発明の工具鋼であれば、優
れた溶接性の付与に加えて、従来のSKD11と同等の
熱処理条件である1000〜1050℃からの焼入れ、
500℃以上の焼戻しによっても57HRC以上の硬さ
が確保できる。そして、その57HRC以上の硬さにて
優れた被削性の達成に加え、塩浴法やCVD処理といっ
た表面処理性にも優れるものである。
With the tool steel of the present invention described above, in addition to imparting excellent weldability, quenching from 1000 to 1050 ° C., which is a heat treatment condition equivalent to that of the conventional SKD11,
A hardness of 57 HRC or more can be ensured even by tempering at 500 ° C. or more. In addition to achieving excellent machinability with a hardness of 57 HRC or more, it is also excellent in surface treatment properties such as a salt bath method and a CVD treatment.

【0040】また、本発明の工具鋼を金型等に使用した
場合は、その求められる機能に応じて必要な部位のみに
フレームハード等を実施しても良く、製作工数あるいは
必要特性を考慮して硬さを得るための熱処理方法を選択
すればよい。例えば本発明の工具鋼を55HRC以上の
硬さに調質し、切削加工を行うことで作製した金型、い
わゆるプリハードン金型である。
When the tool steel of the present invention is used for a mold or the like, a frame hardware or the like may be implemented only in a necessary portion according to the required function, and the number of manufacturing steps or required characteristics should be taken into consideration. What is necessary is just to select the heat treatment method for obtaining hardness. For example, a so-called pre-hardened mold is prepared by cutting the tool steel of the present invention to a hardness of 55 HRC or more and performing cutting.

【0041】[0041]

【実施例】次に、本発明の実施例について詳細に説明す
るが、本発明はこれらの実施例により何等限定されるも
のではない。 (実施例1)まず、100kg高周波炉を使用して材料
を溶解し、表1に示す化学組成を有したインゴットを作
製した。なお、比較材1はSKD11相当材である。次
に、鍛造比が5程度になるように熱間圧延をし、冷却
後、850℃で4時間保持の焼鈍を実施した。
EXAMPLES Next, examples of the present invention will be described in detail, but the present invention is not limited to these examples. (Example 1) First, a material was melted using a 100 kg high frequency furnace, and an ingot having a chemical composition shown in Table 1 was produced. The comparative material 1 is a material equivalent to SKD11. Next, hot rolling was performed so that the forging ratio was about 5, and after cooling, annealing was performed at 850 ° C. for 4 hours.

【0042】[0042]

【表1】 [Table 1]

【0043】次に、圧延方向と長手方向が一致するよう
に直径10mm長さ80mmの試験片を各21本作製
し、それぞれ長さ測定を行った。次にその内の各10本
を真空加熱炉を用いて1025℃に加熱保持後、不活性
ガスでガス冷却焼入れを実施した。更に530℃、1時
間で焼戻しを2回実施した。得られた試験片の硬さを測
定したところ、比較例2、3は57HRC以上は出なか
った。つぎに57HRC以上がでた材料の長さ方向の長
さを測定し、あらかじめ計っておいた焼入れ前の長さを
基準にして寸法変化率を算出し、0.1%を超えるもの
が何本発生したかを調べた。結果を表2に示す。
Next, 21 test pieces each having a diameter of 10 mm and a length of 80 mm were prepared so that the rolling direction coincided with the longitudinal direction, and their lengths were measured. Next, ten of them were heated and maintained at 1025 ° C. using a vacuum heating furnace, and then gas-cooled and quenched with an inert gas. Further, tempering was performed twice at 530 ° C. for one hour. When the hardness of the obtained test piece was measured, Comparative Examples 2 and 3 did not show 57 HRC or more. Next, measure the length in the length direction of the material having 57HRC or more, calculate the dimensional change rate based on the length before quenching measured in advance, and calculate the number of pieces exceeding 0.1%. I checked whether it occurred. Table 2 shows the results.

【0044】[0044]

【表2】 [Table 2]

【0045】表2より、本発明はすべて変寸が0.1%
以下であった。比較例においては、4、5、6に0.1
%を超えるものが発生した。
From Table 2, it can be seen that all of the present invention has a size change of 0.1%.
It was below. In the comparative example, 0.1 was added to 4, 5, and 6
%.

【0046】次に530℃での変寸が0.1%以下だっ
たものに加え、比較例4、5について、残りの焼鈍状態
のものを用いて、各10本を真空加熱炉で1025℃に
加熱保持後、不活性ガスでガス冷却焼入れを実施した。
更に490℃、1時間で焼戻しを2回実施した。その
後、試験片の長さ方向の長さを測定し、あらかじめ計っ
ておいた焼入れ前の長さを基準にして寸法変化率を算出
した。それらの中で寸法変化がプラス側に膨張したもの
が何本発生したかを調べた。結果を表3に示す。
Next, in addition to those whose deformation at 530 ° C. was 0.1% or less, 10 pieces each of Comparative Examples 4 and 5 were subjected to 1025 ° C. in a vacuum heating furnace using the remaining annealed ones. After heating and maintaining the temperature, gas cooling quenching was performed with an inert gas.
Further, tempering was performed twice at 490 ° C. for one hour. Thereafter, the length of the test piece in the length direction was measured, and the dimensional change rate was calculated based on the length before quenching measured in advance. It was examined how many of those dimensional changes expanded to the plus side. Table 3 shows the results.

【0047】[0047]

【表3】 [Table 3]

【0048】これより、比較例5はプラス側に膨張する
ため変寸調整が困難となってしまうが、本発明例1〜1
4と比較例1は上記表2の結果に加え、プラス側に膨張
していないため変寸が調整しやすく、SKD11と同等
の熱処理扱いが可能となることが分かる。
Thus, Comparative Example 5 expands to the plus side, making it difficult to adjust the size.
4 and Comparative Example 1, in addition to the results shown in Table 2 above, show that the swelling is easy to adjust because it does not expand to the plus side, and that the same heat treatment as SKD11 is possible.

【0049】(実施例2)次に、被削性の評価を行なっ
た。まず、表1に示す素材の中で実施例1で変寸挙動が
SKD11と同等とみなせる材料(本発明例1〜14お
よび比較例1)に比較例4を加えたものを、硬さ24H
RC以下の焼きなまし状態にし、スクエアエンドミルで
の被削性の評価を行った。なお、切削試験は表4に示す
条件で行なった。表5に示す結果より、本発明例1〜1
4は工具寿命(刃先摩耗0.3mm)が10m以上の高
い被削性を示す。しかし、比較例1、4はクロム系炭化
物が原因で被削性が悪い。
Example 2 Next, the machinability was evaluated. First, among the materials shown in Table 1, those obtained by adding Comparative Example 4 to the materials (Examples 1 to 14 and Comparative Example 1 of the present invention) whose sizing behavior in Example 1 can be regarded as equivalent to SKD11 have a hardness of 24H.
The sample was placed in an annealing state of RC or less, and the machinability of the square end mill was evaluated. The cutting test was performed under the conditions shown in Table 4. From the results shown in Table 5, Examples 1 to 1 of the present invention
No. 4 shows high machinability with a tool life (edge wear of 0.3 mm) of 10 m or more. However, Comparative Examples 1 and 4 have poor machinability due to the chromium carbide.

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】次に、変寸挙動がSKD11と同等とみな
せる材料(本発明例1〜14および比較例1)に比較例
4を加えたものにて、1030℃の焼入れと500℃以
上の焼戻しにより硬さ57〜60HRCに調質した供試
材を作製し、スクエアエンドミルでの被削性の評価を行
った。切削条件は表6に示す。表7に示す試験結果よ
り、本発明例1〜14は工具寿命(刃先摩耗0.1m
m)が良く被削性も高いが、比較例1、4は被削性が悪
いことが分かる。
Next, a material obtained by adding Comparative Example 4 to a material (inventive examples 1 to 14 and Comparative Example 1) which can be regarded as having a size change behavior equivalent to that of SKD11 was subjected to quenching at 1030 ° C. and tempering at 500 ° C. or more. A test material tempered to a hardness of 57 to 60 HRC was prepared, and the machinability of the test piece was evaluated with a square end mill. The cutting conditions are shown in Table 6. From the test results shown in Table 7, the invention examples 1 to 14 show the tool life (edge wear 0.1 m)
m) is good and the machinability is high, but it can be seen that Comparative Examples 1 and 4 have poor machinability.

【0053】[0053]

【表6】 [Table 6]

【0054】[0054]

【表7】 [Table 7]

【0055】(実施例3)表1に示す材料のうち、本発
明材で被削性が比較的劣っていた本発明例1、2と熱処
理特性では良好である比較材1、そして比較材4につい
て、そのインゴット状態で1160℃で10時間のソー
キングを行い、焼きなまし後、1030℃の焼入れ、5
00℃以上の焼戻しにて57HRCに調整したものにつ
き、被削性試験を行った。条件は表8に示す条件で刃先
摩耗が0.1mmになる切削距離を寿命とした。また、
マトリックスの偏析状態を評価するために焼入れままの
材料でのEPMAで1mmの線上Crの特性X線を検出
し、炭化物でない場所のCr変化幅を2σとして統計解
析もおこなった。両者の結果を表9に示す。
(Example 3) Among the materials shown in Table 1, Comparative Examples 1 and 2 which were excellent in heat treatment characteristics and Comparative Examples 1 and 2 which were comparatively inferior in machinability of the inventive materials. Is subjected to soaking at 1160 ° C. for 10 hours in the ingot state, and after annealing, quenching at 1030 ° C.
A machinability test was performed on the steel sheet adjusted to 57 HRC by tempering at 00 ° C. or higher. The conditions were the conditions shown in Table 8 and the cutting distance at which the edge wear was 0.1 mm was defined as the life. Also,
In order to evaluate the segregation state of the matrix, a characteristic X-ray of 1 mm linear Cr was detected by EPMA using the as-quenched material, and a statistical analysis was also performed with a Cr change width of a non-carbide portion as 2σ. Table 9 shows the results of both.

【0056】[0056]

【表8】 [Table 8]

【0057】[0057]

【表9】 [Table 9]

【0058】表9より、焼入れままのCr偏析幅が1%
以下である本発明材は、先の実施例2よりも更に寿命が
向上しているが、比較材1、4はCr偏析幅が1%を超
えることもあって、工具の寿命向上が大きく望めない結
果となった。
According to Table 9, the as-quenched Cr segregation width was 1%.
The following materials of the present invention have a further improved life than the previous Example 2, but the comparative materials 1 and 4 have a Cr segregation width exceeding 1%, so that the life of the tool can be greatly improved. There was no result.

【0059】[0059]

【発明の効果】以上、本発明によれば、SKD11に比
べ焼きなまし状態の被削性が優れ、焼き入れ焼戻し時の
材料性能上においても、靭性、溶接性が高い鋼材を提供
することができる。更に熱処理変寸や、焼入れ性、焼戻
し温度に対する硬さの変化がSKD11と近似された特
性を持つため、SKD11と同じ炉に混載ができ、生産
性、条件出しが不要となる。加えて、焼入れ焼戻し後の
被削性もSKD11に比べ格段に高く、CVDのような
鋼中の固溶C量に左右される表面処理でも膜特性の劣化
がないため、耐摩耗性に優れる金型基材としても高い製
造容易性があることから、本発明による工業的価値は大
きい。
As described above, according to the present invention, it is possible to provide a steel material having excellent machinability in an annealed state and high toughness and weldability in quenching and tempering as compared with SKD11. Furthermore, since the heat treatment changes, the hardenability, and the change in hardness with respect to the tempering temperature have characteristics similar to those of SKD11, they can be mixed and loaded in the same furnace as SKD11, eliminating the need for productivity and setting conditions. In addition, the machinability after quenching and tempering is remarkably higher than that of SKD11, and there is no deterioration in film characteristics even in surface treatment such as CVD which is affected by the amount of solid solution C in steel, so that gold having excellent wear resistance is used. The industrial value according to the present invention is great because the mold substrate has high manufacturing easiness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の効果を説明する図である。FIG. 1 is a diagram illustrating an effect of the present invention.

【図2】本発明の効果を説明する図1の詳細図である。FIG. 2 is a detailed view of FIG. 1 for explaining the effect of the present invention.

【図3】熱処理変寸の挙動を説明する図である。FIG. 3 is a view for explaining the behavior of heat treatment dimension change.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加田 善裕 島根県安来市安来町2107番地2 日立金属 株式会社安来工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshihiro Kada 2107-2 Yasugi-cho, Yasugi-shi, Shimane Pref.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、(Cr+5.9×C)の値が
9.1以上12.5以下となり、かつ(Cr−4.2×
C)が5以下で(Cr−6.3×C)が2.2以上とな
る関係式を満たすことを特徴とする被削性および熱処理
性に優れた工具鋼。
(1) In mass%, the value of (Cr + 5.9 × C) becomes 9.1 or more and 12.5 or less, and (Cr-4.2 × C)
C) A tool steel excellent in machinability and heat treatment characteristics, which satisfies a relational expression of not more than 5 and (Cr-6.3 × C) being not less than 2.2.
【請求項2】 質量%で、(Cr+5.9×C)の値が
9.1以上12.5以下となり、かつ(Cr−4.2×
C)が5以下で(Cr−6.3×C)が2.2以上とな
る関係式を満たし、Si:0.1〜0.6%、Mn:
0.1〜1.2%、MoまたはWの1種あるいは2種を
(Mo+1/2W):0.6〜1.25%、V:0.5
%未満を含有し、残部がFeおよび不可避の不純物から
なることを特徴とする被削性および熱処理性に優れた工
具鋼。
2. In mass%, the value of (Cr + 5.9 × C) becomes 9.1 or more and 12.5 or less, and (Cr-4.2 × C)
C) satisfies the relational expression of not more than 5 and (Cr-6.3 × C) being not less than 2.2, Si: 0.1 to 0.6%, Mn:
0.1 to 1.2%, one or two types of Mo or W (Mo + 1 / 2W): 0.6 to 1.25%, V: 0.5
%, With the balance being Fe and inevitable impurities, the tool steel having excellent machinability and heat treatment properties.
【請求項3】 質量%で、(Cr+5.9×C)の値が
9.1以上12.5以下となり、かつ(Cr−4.2×
C)が5以下で(Cr−6.3×C)が2.2以上とな
る関係式を満たし、Si:0.1〜0.6%、Mn:
0.1〜1.2%、MoまたはWの1種あるいは2種を
(Mo+1/2W):0.6〜1.25%、V:0.5
%未満、S:0.12%以下を含有し、残部がFeおよ
び不可避の不純物からなることを特徴とする被削性およ
び熱処理性に優れた工具鋼。
3. The value of (Cr + 5.9 × C) in mass% becomes 9.1 or more and 12.5 or less, and (Cr−4.2 × C).
C) satisfies the relational expression of not more than 5 and (Cr-6.3 × C) being not less than 2.2, Si: 0.1 to 0.6%, Mn:
0.1 to 1.2%, one or two types of Mo or W (Mo + 1 / 2W): 0.6 to 1.25%, V: 0.5
%, S: 0.12% or less, the balance being Fe and unavoidable impurities, characterized by having excellent machinability and heat treatment properties.
【請求項4】 質量%で、(Cr+5.9×C)の値が
9.1以上12.5以下となり、かつ(Cr−4.2×
C)が5以下で(Cr−6.3×C)が2.2以上とな
る関係式を満たし、Si:0.1〜0.6%、Mn:
0.1〜1.2%、MoまたはWの1種あるいは2種を
(Mo+1/2W):0.6〜1.25%、V:0.5
%未満、S:0.12%以下、Ca:100ppm以下
を含有し、残部がFeおよび不可避の不純物からなるこ
とを特徴とする被削性および熱処理性に優れた工具鋼。
4. The value of (Cr + 5.9 × C) in mass% is 9.1 or more and 12.5 or less, and (Cr−4.2 × C).
C) satisfies the relational expression of not more than 5 and (Cr-6.3 × C) being not less than 2.2, Si: 0.1 to 0.6%, Mn:
0.1 to 1.2%, one or two types of Mo or W (Mo + 1 / 2W): 0.6 to 1.25%, V: 0.5
%, S: 0.12% or less, Ca: 100 ppm or less, the balance being Fe and unavoidable impurities, the tool steel having excellent machinability and heat treatment properties.
【請求項5】 質量%で、Ni:1%以下を含有するこ
とを特徴とする請求項2ないし4のいずれかに記載の被
削性および熱処理性に優れた工具鋼。
5. The tool steel having excellent machinability and heat treatment properties according to claim 2, wherein the steel contains Ni: 1% or less by mass%.
【請求項6】 質量%で、Al:0.6%以下を含有す
ることを特徴とする請求項2ないし5のいずれかに記載
の被削性および熱処理性に優れた工具鋼。
6. A tool steel having excellent machinability and heat treatment properties according to claim 2, wherein the steel contains 0.6% or less of Al by mass%.
【請求項7】 焼入れ後のCrのマトリックス偏析幅が
質量%で1%以下であることを特徴とする請求項1ない
し6のいずれかに記載の被削性および熱処理性に優れた
工具鋼。
7. The tool steel according to claim 1, wherein a matrix segregation width of Cr after quenching is 1% or less by mass%.
【請求項8】 500℃以上の焼戻しにより、その最高
焼戻し硬さが57HRC以上であることを特徴とする請
求項1ないし7のいずれかに記載の被削性および熱処理
性に優れた工具鋼。
8. The tool steel according to claim 1, wherein the maximum temper hardness by tempering at 500 ° C. or more is 57 HRC or more.
【請求項9】 500℃以上の焼戻しにより発生する熱
処理変寸が、焼入れ前基準、線膨張率換算で0.1%以
下でかつ、490℃での焼戻しで熱処理変寸が0以下で
あることを特徴とする請求項1ないし8のいずれかに記
載の被削性および熱処理性に優れた工具鋼。
9. The heat treatment dimensional change caused by tempering at 500 ° C. or more is 0.1% or less in terms of linear expansion coefficient before quenching and the heat treatment dimensional change at tempering at 490 ° C. is 0 or less. The tool steel according to any one of claims 1 to 8, having excellent machinability and heat treatment properties.
【請求項10】 請求項1ないし9のいずれかの工具鋼
を55HRC以上の硬さに調質し、切削加工を行うこと
で作製したことを特徴とする金型。
10. A mold prepared by tempering the tool steel according to claim 1 to a hardness of 55 HRC or more and performing a cutting process.
JP2000151440A 1999-07-30 2000-05-23 Tool steel with excellent machinability and heat treatment and mold using the tool steel Expired - Lifetime JP3365624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151440A JP3365624B2 (en) 1999-07-30 2000-05-23 Tool steel with excellent machinability and heat treatment and mold using the tool steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-216227 1999-07-30
JP21622799 1999-07-30
JP2000151440A JP3365624B2 (en) 1999-07-30 2000-05-23 Tool steel with excellent machinability and heat treatment and mold using the tool steel

Publications (2)

Publication Number Publication Date
JP2001107181A true JP2001107181A (en) 2001-04-17
JP3365624B2 JP3365624B2 (en) 2003-01-14

Family

ID=26521309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151440A Expired - Lifetime JP3365624B2 (en) 1999-07-30 2000-05-23 Tool steel with excellent machinability and heat treatment and mold using the tool steel

Country Status (1)

Country Link
JP (1) JP3365624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145100A (en) * 2013-01-28 2014-08-14 Sanyo Special Steel Co Ltd Cold tool steel having reduced alloy addition amount
US8815147B2 (en) 2002-12-25 2014-08-26 Hitachi Metals, Ltd. Cold die steel excellent in characteristic of suppressing dimensional change
WO2014156487A1 (en) 2013-03-29 2014-10-02 日立金属株式会社 Steel material for die and process for producing same, process for producing prehardened steel product for die, and process for producing cold working die

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815147B2 (en) 2002-12-25 2014-08-26 Hitachi Metals, Ltd. Cold die steel excellent in characteristic of suppressing dimensional change
JP2014145100A (en) * 2013-01-28 2014-08-14 Sanyo Special Steel Co Ltd Cold tool steel having reduced alloy addition amount
WO2014156487A1 (en) 2013-03-29 2014-10-02 日立金属株式会社 Steel material for die and process for producing same, process for producing prehardened steel product for die, and process for producing cold working die

Also Published As

Publication number Publication date
JP3365624B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
EP2679697B1 (en) Manufacturing method for cold-working die
JP5143531B2 (en) Cold mold steel and molds
JP5276330B2 (en) Cold mold steel and cold press mold
KR20100135205A (en) Hot work tool steel and steel product using the same
US6663726B2 (en) High-hardness prehardened steel for cold working with excellent machinability, die made of the same for cold working, and method of working the same
JP4860774B1 (en) Cold work tool steel
JP4258772B2 (en) Cold die steel with excellent size reduction characteristics
KR100368541B1 (en) Tool steel having excellent welding, machinability, and heat treatment properties and a metal mold made from the same
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
KR20160041869A (en) Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof
JP5854332B2 (en) High hardness pre-hardened cold tool steel for surface PVD treatment, method for producing the same, and surface PVD treatment method therefor
JP3365624B2 (en) Tool steel with excellent machinability and heat treatment and mold using the tool steel
JP5597999B2 (en) Cold work tool steel with excellent machinability
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same
JP2005330511A (en) Method for manufacturing high-carbon steel parts with small strain of heat treatment
JP2021147624A (en) Steel for hot working die, hot working die, and method for manufacturing the same
JP2001064754A (en) Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same
CN112899559B (en) Steel for mold and mold
JP3830030B2 (en) High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel
JP2001020041A (en) Tool steel excellent in weldability and machinability and tool and die
JP4266384B2 (en) Manufacturing method of steel for cold mold
JP4088886B2 (en) Free-cutting tool steel with excellent heat-resistant deformation and surface treatment characteristics, and molds using it
JP2000192195A (en) Free cutting cold working tool steel
JP2001049394A (en) Tool steel excellent in weldability and machinability, and die using the same
KR20230017943A (en) Cold work tool steel with excellent wear resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3365624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

EXPY Cancellation because of completion of term