JP2001103782A - Control method for motor - Google Patents
Control method for motorInfo
- Publication number
- JP2001103782A JP2001103782A JP27577399A JP27577399A JP2001103782A JP 2001103782 A JP2001103782 A JP 2001103782A JP 27577399 A JP27577399 A JP 27577399A JP 27577399 A JP27577399 A JP 27577399A JP 2001103782 A JP2001103782 A JP 2001103782A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- compressor
- energization
- stability
- control method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気調和装置など
のような多機能装置に設けられる直流モータの制御方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a DC motor provided in a multifunctional device such as an air conditioner.
【0002】[0002]
【従来の技術】一般に、誘起電圧でモータ磁極位置検知
を行いながら駆動させる直流モータ制御においては、効
率や振動の対策のため、各相の通電期間を120°以上
の広角通電を行う場合、3相通電期間では誘起電圧検知
ができない。2. Description of the Related Art Generally, in DC motor control in which a motor is driven while detecting a magnetic pole position using an induced voltage, in order to improve efficiency and vibration, the energizing period of each phase must be 120 ° or more for wide-angle energizing. Induced voltage cannot be detected during the phase conduction period.
【0003】そのため、従来は、2相通電期間のみでモ
ータ磁極位置検知を行い、モータを駆動させている。[0003] Therefore, conventionally, the motor magnetic pole position is detected only during the two-phase energizing period, and the motor is driven.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記従
来の方法では、モータの回転が不安定な時、特にモータ
起動時等、3相通電期間にモータ磁極位置検知信号が返
ってくることがあり、モータ磁極位置検知が確実にでき
ないものであった。その結果、振動が大きくなったり、
効率の低下や、回転不良、起動失敗等の問題があった。However, in the above-described conventional method, when the rotation of the motor is unstable, particularly when the motor is started, the motor magnetic pole position detection signal may be returned during the three-phase energizing period. The motor magnetic pole position cannot be reliably detected. As a result, the vibration increases,
There were problems such as a decrease in efficiency, poor rotation, and failure to start.
【0005】本発明は、かかる従来の課題を解決するも
ので、高効率かつ、低振動のモータの起動方法を提供す
るものである。The present invention solves the above-mentioned conventional problems and provides a method of starting a motor with high efficiency and low vibration.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
の請求項1記載の発明は、直流モータと、前記直流モー
タを駆動する直流モータ駆動回路と、前記直流モータ駆
動回路を制御する制御部と、前記モータの運転が安定し
たことを判断する安定判定手段とを備えた多機能装置に
おいて、前記安定判定手段の出力信号により、前記モー
タの各相の通電期間を、120°通電から120°以上
の広角通電に切換えるものである。According to a first aspect of the present invention, there is provided a DC motor, a DC motor drive circuit for driving the DC motor, and a control unit for controlling the DC motor drive circuit. And a stability determining means for determining that the operation of the motor has been stabilized, the output signal of the stability determining means, the energizing period of each phase of the motor, from 120 ° current to 120 ° It switches to the wide-angle energization described above.
【0007】また、請求項2記載の発明は、上記安定判
定手段から出力された安定度合いにより、広角通電の通
電幅を変化させるものである。Further, according to a second aspect of the present invention, the width of energization of wide-angle energization is changed according to the degree of stability output from the stability determination means.
【0008】さらに、請求項3記載の発明は、上記安定
判定手段を、上記直流モータの運転時間を計時する計時
手段とした請求項1または請求項2記載のモータの制御
方法。Further, the invention according to claim 3 is the motor control method according to claim 1 or 2, wherein the stability determining means is time measuring means for measuring an operation time of the DC motor.
【0009】さらに、請求項4記載の発明は、上記安定
判定手段を、上記直流モータの回転数を検知する回転数
検知手段としたものである。Further, the invention according to a fourth aspect is characterized in that the stability determining means is a rotational speed detecting means for detecting a rotational speed of the DC motor.
【0010】さらに、請求項5記載の発明は、上記安定
判定手段を、上記直流モータの電流変化を検知するモー
タ電流検知手段としたものである。Further, the invention according to claim 5 is characterized in that the stability determining means is a motor current detecting means for detecting a change in the current of the DC motor.
【0011】さらに、請求項6記載の発明は、上記安定
判定手段を、上記多機能装置の運転電流を検知する運転
電流検知手段としたものである。Further, in the invention according to claim 6, the stability determining means is an operating current detecting means for detecting an operating current of the multi-function device.
【0012】さらに、請求項7記載の発明は、上記安定
判定手段を、上記直流モータの位置検知信号を検知する
位置検知信号検知手段としたものである。Furthermore, in the invention according to claim 7, the stability determination means is a position detection signal detection means for detecting a position detection signal of the DC motor.
【0013】さらに、請求項8記載の発明は、上記多機
能装置を空気調和装置とし、上記直流モータを、冷媒を
循環させる圧縮機の駆動用モータとしたものである。Further, in the invention according to claim 8, the multifunctional device is an air conditioner, and the DC motor is a driving motor of a compressor for circulating a refrigerant.
【0014】[0014]
【発明の実施の形態】以下、本発明にかかるモータの制
御方法の実施の形態について、図面を参照しながら説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a motor control method according to the present invention will be described below with reference to the drawings.
【0015】(実施の形態1)本実施の形態1では、モ
ータの制御方法を、空気調和機の圧縮機モータに適用し
た場合について説明する。(Embodiment 1) In Embodiment 1, a case where a motor control method is applied to a compressor motor of an air conditioner will be described.
【0016】空気調和機の室外機のモータ制御方法の基
本動作の概略は、冷媒を循環させる圧縮機と、圧縮機を
駆動する駆動回路と、駆動回路を制御する制御部と、圧
縮機の運転が安定したことを判断する安定判定手段とを
備え、安定判定手段の出力信号により、圧縮機の各相の
通電期間を、120°通電かまたは、120°以上の広
角通電かを切換えるものである。The basic operation of a motor control method for an outdoor unit of an air conditioner is as follows. A compressor for circulating a refrigerant, a drive circuit for driving the compressor, a control unit for controlling the drive circuit, and an operation of the compressor And a stability judging means for judging that the compressor is stable, and the energizing period of each phase of the compressor is switched between 120 ° energization or 120 ° or more wide-angle energization in accordance with an output signal of the stability judging means. .
【0017】図1は、空気調和機の室外機の構成図を示
し、図2はその動作を説明するフローチャートである。
図1に示すように、空気調和機の室外機は、圧縮機1
と、電源回路2aを含む駆動回路2と、制御部3と、安
定判定手段4で構成されている。FIG. 1 is a block diagram of an outdoor unit of an air conditioner, and FIG. 2 is a flowchart for explaining the operation.
As shown in FIG. 1, the outdoor unit of the air conditioner is a compressor 1
, A drive circuit 2 including a power supply circuit 2 a, a control unit 3, and a stability determination unit 4.
【0018】上記構成による動作を、図2を用いて説明
する。図2において、運転開始とともに、圧縮機の運転
が安定しているかどうかを判定する(ステップ10
1)。そして、安定していなければ120°通電とし
(ステップ102)、安定していれば広角通電に切換え
る(ステップ103)。したがって、圧縮機の運転が不
安定なときは120°通電とするため、回転不良や起動
失敗を回避することができる。The operation of the above configuration will be described with reference to FIG. In FIG. 2, at the start of the operation, it is determined whether the operation of the compressor is stable (step 10).
1). If the current is not stable, the current is turned to 120 ° (step 102). If the current is stabilized, the current is switched to the wide-angle current (step 103). Therefore, when the operation of the compressor is unstable, the compressor is energized at 120 °, so that it is possible to avoid poor rotation and failure to start.
【0019】ここで、120°通電あるいはそれ以上の
広角通電制御は、前記駆動回路2を構成するマイクロコ
ンピュター(図示せず)の制御プログラム、およびその
プログラムによって動作する関連半導体素子を含む制御
回路(図示せず)によって実現される。Here, the 120 ° energization or the wide-angle energization control of more than 120 degrees is controlled by a control circuit (not shown) for controlling a microcomputer (not shown) constituting the drive circuit 2 and a control circuit (including a related semiconductor element operated by the program). (Not shown).
【0020】(実施の形態2)本実施の形態2は、先の
実施の形態1と同様に、モータの制御方法を空気調和機
の圧縮機モータに適用した場合について説明する。本実
施の形態2は、安定判定手段4から出力された安定度合
い、すなわち安定判定手段4で検出した値や変化の大き
さにより、広角通電の通電幅を変動させるものである。(Embodiment 2) In Embodiment 2, similarly to Embodiment 1 described above, a case where a motor control method is applied to a compressor motor of an air conditioner will be described. In the second embodiment, the energization width of wide-angle energization is varied according to the degree of stability output from the stability determination unit 4, that is, the value or magnitude of change detected by the stability determination unit 4.
【0021】以下、図3のフローチャートを用いて、そ
の動作を説明する。同図において、運転開始とともに、
圧縮機1の運転の安定度合いを判定し(ステップ20
1)、安定度合いがα未満であれば、120°通電とす
る(ステップ202)。そして、前記安定度合いがα以
上β未満であれば(ステップ203)、通電幅を120
°+θ1とし(ステップ204)、安定度合いがβ以上で
あれば、通電幅を120°+θ2とする(ステップ20
5)。 したがって、圧縮機1の運転の安定度合いに応
じて通電幅を変更することにより、より高効率で低振動
な運転ができる。Hereinafter, the operation will be described with reference to the flowchart of FIG. In the figure, with the start of operation,
The degree of stability of the operation of the compressor 1 is determined (step 20).
1) If the degree of stability is less than α, energize 120 ° (step 202). If the degree of stability is not less than α and less than β (step 203), the power supply width is set to 120
° + θ1 (step 204). If the degree of stability is equal to or more than β, the energization width is set to 120 ° + θ2 (step 20).
5). Therefore, by changing the power supply width in accordance with the degree of stability of the operation of the compressor 1, higher efficiency and lower vibration operation can be performed.
【0022】(実施の形態3)本実施の形態3について
も、先の実施の形態1、2と同様に、モータの制御方法
を空気調和機の圧縮機モータに適用した場合について説
明する。(Embodiment 3) In Embodiment 3, as in Embodiments 1 and 2, the case where the motor control method is applied to a compressor motor of an air conditioner will be described.
【0023】一般的に、空気調和機の圧縮機を起動し、
一定時間の運転を行うと、冷媒循環サイクルの高低圧が
安定し、圧縮機の運転も安定する。本実施の形態3は、
圧縮機の運転時間を計時する計時手段で圧縮機の安定判
定を行うものである。Generally, the compressor of the air conditioner is started,
When the operation is performed for a certain period of time, the high and low pressures of the refrigerant circulation cycle are stabilized, and the operation of the compressor is also stabilized. In the third embodiment,
The stability of the compressor is determined by timing means for measuring the operation time of the compressor.
【0024】以下、図4のフローチャートを用いて、そ
の動作を説明する。同図において、運転開始とともに、
圧縮機1の運転の時間を計時し(ステップ301)、運
転時間がT未満であれば120°通電とする(ステップ
302)。そして、運転時間がT以上であれば、広角通
電に切換える(ステップ303)。したがって、圧縮機
1の起動時の運転が不安定なときは120°通電とする
ため、回転不良や起動の失敗を回避することができる。The operation will be described below with reference to the flowchart of FIG. In the figure, with the start of operation,
The operation time of the compressor 1 is measured (step 301), and if the operation time is less than T, 120 ° energization is performed (step 302). If the operation time is equal to or longer than T, the mode is switched to the wide-angle energization (step 303). Therefore, when the operation of the compressor 1 at the time of startup is unstable, the compressor 1 is energized at 120 °.
【0025】(実施の形態4)本実施の形態4について
も、先の実施の形態1、2、3と同様に、モータの制御
方法を空気調和機の圧縮機モータに適用した場合につい
て説明する。(Embodiment 4) In Embodiment 4, as in Embodiments 1, 2, and 3, the case where the motor control method is applied to a compressor motor of an air conditioner will be described. .
【0026】一般的に、空気調和機の圧縮機が起動する
際、圧縮機の回転数が一定値以上になると、圧縮機の運
転も安定する。本実施の形態4は、圧縮機1の回転数を
検知する回転数検知手段により、圧縮機1の安定判定を
行うものである。Generally, when the compressor of the air conditioner is started, if the number of revolutions of the compressor exceeds a certain value, the operation of the compressor is stabilized. In the fourth embodiment, stability determination of the compressor 1 is performed by a rotation speed detecting unit that detects the rotation speed of the compressor 1.
【0027】以下、図5のフローチャートを用いて、そ
の動作を説明する。同図において、運転開始とともに、
圧縮機1の運転の回転数を検知し(ステップ401)、
回転数がn未満であれば120°通電とする(ステップ
402)。そして、回転数がn以上であれば、広角通電
に切換える(ステップ403)。したがって、圧縮機1
の起動時の運転が不安定なときは120°通電とするた
め、回転不良や起動失敗を回避することができる。The operation will be described below with reference to the flowchart of FIG. In the figure, with the start of operation,
The rotational speed of the operation of the compressor 1 is detected (step 401),
If the number of rotations is less than n, 120 ° conduction is performed (step 402). If the number of rotations is equal to or greater than n, the mode is switched to wide-angle energization (step 403). Therefore, the compressor 1
When the start-up operation is unstable, the motor is energized at 120 °, so that rotation failure and start-up failure can be avoided.
【0028】(実施の形態5)本実施の形態5について
も、先の実施形態1、2、3、4と同様に、モータの制
御方法を空気調和機の圧縮機モータに適用した場合につ
いて説明する。(Embodiment 5) In Embodiment 5, as in Embodiments 1, 2, 3, and 4, the case where the motor control method is applied to a compressor motor of an air conditioner will be described. I do.
【0029】一般的に、空気調和機の圧縮機の駆動時、
圧縮機の運転は安定していれば、圧縮機の電流変化量は
一定値未満となる。本実施の形態5は、圧縮機1の電流
変化を検知するモータ電流検知手段で圧縮機の安定判定
を行うものである。Generally, when the compressor of the air conditioner is driven,
If the operation of the compressor is stable, the amount of change in current of the compressor will be less than a certain value. In the fifth embodiment, the stability of the compressor is determined by a motor current detection unit that detects a change in the current of the compressor 1.
【0030】以下、図6のフローチャートを用いて、そ
の動作を説明する。同図において、運転開始とともに、
圧縮機1のモータ電流の変化量を検知し(ステップ50
1)、電流変化がi未満であれば120°通電とする
(ステップ502)。そして、電流変化がi以上であれ
ば、広角通電に切換える(ステップ503)。したがっ
て、圧縮機1の起動時の運転が不安定なときは120°
通電とするため、回転不良や起動失敗を回避することが
できる。The operation will be described below with reference to the flowchart of FIG. In the figure, with the start of operation,
The amount of change in the motor current of the compressor 1 is detected (step 50).
1) If the current change is less than i, 120 ° conduction is performed (step 502). If the current change is equal to or greater than i, the current is switched to the wide-angle energization (step 503). Therefore, when the operation at the time of starting the compressor 1 is unstable, 120 °
Since the power is supplied, poor rotation and failure in starting can be avoided.
【0031】(実施の形態6)本実施の形態6について
も、先の実施の形態1、2、3、4、5と同様に、モー
タの制御方法を空気調和機の圧縮機モータに適用した場
合について説明する。(Embodiment 6) In Embodiment 6, as in Embodiments 1, 2, 3, 4, and 5, the motor control method is applied to a compressor motor of an air conditioner. The case will be described.
【0032】一般的に、空気調和機の圧縮機が起動する
際、空気調和機の運転電流が一定値以上になると、圧縮
機の運転も安定していると判断できる。本実施の形態6
は、空気調和機の運転電流を検知する運転電流検知手段
で圧縮機の安定判定を行うものである。In general, when the compressor of the air conditioner is started, if the operating current of the air conditioner becomes a certain value or more, it can be determined that the operation of the compressor is stable. Embodiment 6
Is for performing a stability determination of the compressor by operating current detecting means for detecting an operating current of the air conditioner.
【0033】以下、図7のフローチャートを用いて、そ
の動作を説明する。同図において、運転開始とともに、
空気調和機の運転電流を検知し(ステップ601)、運
転電流がI未満であれば120°通電とする(ステップ
602)。そして、運転電流がI以上であれば、広角通
電に切換える(ステップ603)。したがって、圧縮機
1の起動時の運転が不安定なときは120°通電とする
ため、回転不良や起動失敗を回避することができる。 (実施の形態7)本実施の形態7についても、実施形態
1、2、3、4、5、6と同様に、モータの制御方法を
空気調和機の圧縮機モータに適用した場合について説明
する。Hereinafter, the operation will be described with reference to the flowchart of FIG. In the figure, with the start of operation,
The operating current of the air conditioner is detected (step 601). If the operating current is less than I, 120 ° conduction is performed (step 602). If the operating current is equal to or greater than I, the operation mode is switched to wide-angle energization (step 603). Therefore, when the operation at the time of startup of the compressor 1 is unstable, the compressor 1 is energized at 120 °, so that rotation failure and startup failure can be avoided. (Embodiment 7) In Embodiment 7, as in Embodiments 1, 2, 3, 4, 5, and 6, a case where a motor control method is applied to a compressor motor of an air conditioner will be described. .
【0034】一般的に、空気調和機の圧縮機の駆動時、
圧縮機の運転が安定していれば、圧縮機の位置検知信号
が正常に検出できる。本実施の形態7は、圧縮機1の位
置検知信号を検知する位置検知信号検知手段で圧縮機1
の安定判定を行うものである。Generally, when a compressor of an air conditioner is driven,
If the operation of the compressor is stable, the position detection signal of the compressor can be normally detected. In the seventh embodiment, a position detection signal detecting means for detecting a position detection signal of the compressor 1
Is performed.
【0035】以下、図8のフローチャートを用いて、そ
の動作を説明する。同図において、運転開始とともに、
圧縮機1の位置検知信号を検知し(ステップ701)、
位置検知信号が検知できなければ120°通電とする
(ステップ702)。そして、位置検知信号が検知でき
れば、広角通電に切換える(ステップ703)。したが
って、圧縮機1の起動時の運転が不安定なときは120
°通電とするため、回転不良や起動失敗を回避すること
ができる。The operation will be described below with reference to the flowchart of FIG. In the figure, with the start of operation,
A position detection signal of the compressor 1 is detected (Step 701),
If the position detection signal cannot be detected, 120 ° conduction is performed (step 702). If the position detection signal can be detected, the mode is switched to the wide-angle energization (step 703). Therefore, when the operation at the time of starting the compressor 1 is unstable, 120
° Since the current is supplied, poor rotation and failure to start can be avoided.
【0036】[0036]
【発明の効果】以上のように、本発明のモータの制御方
法は、モータの運転状態が不安定であれば、120°通
電とし、安定すれば120°以上の広角通電に切換えた
り、通電幅を変化させるもので、回転不良や起動の失敗
が回避できる。As described above, according to the motor control method of the present invention, when the operating state of the motor is unstable, 120 ° energization is performed. Is changed, and rotation failure and startup failure can be avoided.
【0037】また、空気調和機の圧縮機モータ制御の場
合であっても、圧縮機の運転が不安定であれば120°
通電とし、安定すれば120°以上の広角通電に切換え
たり、通電幅を変化させることにより回転不良や起動の
失敗を回避し、高効率で低振動な運転が可能となる。Even in the case of controlling the compressor motor of the air conditioner, if the operation of the compressor is unstable, 120 °
If it is energized and stable, it is switched to wide-angle energization of 120 ° or more, or by changing the energization width, thereby avoiding poor rotation or failure in starting, and high-efficiency, low-vibration operation becomes possible.
【図1】本発明の一実施形態における空気調和機の室外
機の制御回路構成図FIG. 1 is a control circuit configuration diagram of an outdoor unit of an air conditioner according to an embodiment of the present invention.
【図2】本発明の一実施形態における空気調和機の動作
を説明するフローチャートFIG. 2 is a flowchart illustrating the operation of the air conditioner according to one embodiment of the present invention.
【図3】本発明の他の実施形態における空気調和機の動
作を説明するフローチャートFIG. 3 is a flowchart illustrating the operation of an air conditioner according to another embodiment of the present invention.
【図4】本発明のさらに他の実施形態における空気調和
機の動作を説明するフローチャートFIG. 4 is a flowchart illustrating an operation of an air conditioner according to still another embodiment of the present invention.
【図5】本発明のさらに他の実施形態における空気調和
機の動作を説明するフローチャートFIG. 5 is a flowchart illustrating the operation of an air conditioner according to still another embodiment of the present invention.
【図6】本発明のさらに他の実施形態における空気調和
機の動作を説明するフローチャートFIG. 6 is a flowchart illustrating the operation of an air conditioner according to still another embodiment of the present invention.
【図7】本発明のさらに他の実施形態における空気調和
機の動作を説明するフローチャートFIG. 7 is a flowchart illustrating the operation of an air conditioner according to still another embodiment of the present invention.
【図8】本発明のさらに他の実施形態における空気調和
機の動作を説明するフローチャートFIG. 8 is a flowchart illustrating the operation of an air conditioner according to still another embodiment of the present invention.
1 圧縮機 2 圧縮機駆動回路 3 制御部 4 安定判定手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Compressor drive circuit 3 Control part 4 Stability judgment means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 光英 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L060 AA01 AA03 CC08 CC10 CC19 DD02 DD05 EE02 5H560 AA02 BB04 DA13 EB01 SS07 XA03 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuhide Higashi 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F term (reference) 3L060 AA01 AA03 CC08 CC10 CC19 DD02 DD05 EE02 5H560 AA02 BB04 DA13 EB01 SS07 XA03
Claims (8)
直流モータ駆動回路と、前記直流モータ駆動回路を制御
する制御部と、前記モータの運転が安定したことを判断
する安定判定手段とを備えた多機能装置において、前記
安定判定手段の出力信号により、前記モータの各相の通
電期間を、120°通電から120°以上の広角通電に
切換えるモータの制御方法。A DC motor driving circuit for driving the DC motor; a control unit for controlling the DC motor driving circuit; and stability determining means for determining that the operation of the motor has been stabilized. In the multi-function device, a method of controlling a motor in which an energization period of each phase of the motor is switched from 120 ° energization to 120 ° or more wide-angle energization in accordance with an output signal of the stability determination means.
いにより、広角通電の通電幅を変化させる請求項1記載
のモータの制御方法。2. The motor control method according to claim 1, wherein the width of energization of wide-angle energization is changed according to the degree of stability output from said stability determination means.
転時間を計時する計時手段とした請求項1または請求項
2記載のモータの制御方法。3. The motor control method according to claim 1, wherein said stability determining means is time measuring means for measuring an operation time of said DC motor.
転数を検知する回転数検知手段とした請求項1または請
求項2記載のモータの制御方法。4. The motor control method according to claim 1, wherein said stability determination means is a rotation speed detection means for detecting a rotation speed of said DC motor.
流変化を検知するモータ電流検知手段とした請求項1ま
たは請求項2記載のモータの制御方法。5. The motor control method according to claim 1, wherein said stability determination means is a motor current detection means for detecting a change in current of said DC motor.
転電流を検知する運転電流検知手段とした請求項1また
は請求項2記載のモータの制御方法。6. The motor control method according to claim 1, wherein said stability determining means is operating current detecting means for detecting an operating current of said multi-function device.
置検知信号を検知する位置検知信号検知手段とした請求
項1または請求項2記載のモータの制御方法。7. The motor control method according to claim 1, wherein the stability determination means is a position detection signal detection means for detecting a position detection signal of the DC motor.
直流モータを、冷媒を循環させる圧縮機の駆動用モータ
とした請求項1から請求項7のいずれか1項に記載のモ
ータの制御方法。8. The motor control according to claim 1, wherein the multi-function device is an air conditioner, and the DC motor is a motor for driving a compressor for circulating a refrigerant. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27577399A JP3666319B2 (en) | 1999-09-29 | 1999-09-29 | Motor control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27577399A JP3666319B2 (en) | 1999-09-29 | 1999-09-29 | Motor control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001103782A true JP2001103782A (en) | 2001-04-13 |
JP3666319B2 JP3666319B2 (en) | 2005-06-29 |
Family
ID=17560205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27577399A Expired - Fee Related JP3666319B2 (en) | 1999-09-29 | 1999-09-29 | Motor control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3666319B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004266904A (en) * | 2003-02-28 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Operation controller for motor |
JP2010063302A (en) * | 2008-09-05 | 2010-03-18 | Sanden Corp | Inverter |
JP2012157141A (en) * | 2011-01-25 | 2012-08-16 | Jtekt Corp | Electric pump device |
-
1999
- 1999-09-29 JP JP27577399A patent/JP3666319B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004266904A (en) * | 2003-02-28 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Operation controller for motor |
JP2010063302A (en) * | 2008-09-05 | 2010-03-18 | Sanden Corp | Inverter |
JP2012157141A (en) * | 2011-01-25 | 2012-08-16 | Jtekt Corp | Electric pump device |
CN103329428A (en) * | 2011-01-25 | 2013-09-25 | 株式会社捷太格特 | Electric pump device |
CN103329428B (en) * | 2011-01-25 | 2016-01-20 | 株式会社捷太格特 | Electric pump device |
EP2670046A4 (en) * | 2011-01-25 | 2016-01-27 | Jtekt Corp | Electric pump device |
US9322410B2 (en) | 2011-01-25 | 2016-04-26 | Jtekt Corporation | Electric pump device |
Also Published As
Publication number | Publication date |
---|---|
JP3666319B2 (en) | 2005-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100702913B1 (en) | Method of driving brushless dc motor and device therefor | |
JP3832257B2 (en) | Synchronous motor start control method and control device | |
JP4115423B2 (en) | Method for controlling commutation of brushless DC motor and commutation control apparatus for implementing the method | |
US7235941B2 (en) | Phase commutation method of brushless direct current motor | |
JPH09266690A (en) | Driver of sensorless brushless motor | |
KR950014129B1 (en) | Method and apparatus for controlling brushless dc motor | |
KR19990078373A (en) | A method for controlling dc brushless motor | |
JPH11318097A (en) | Drive controller of brushless motor | |
JP2001204192A (en) | Control unit of brushless motor and self-priming pump using the same | |
JP2001103782A (en) | Control method for motor | |
JP2009100567A (en) | Method of controlling inverter, and control circuit | |
KR100376383B1 (en) | Operating Method of Sensorless Brushless Direct Current Motor and Apparatus thereof | |
JP2000209888A (en) | Controller for brushless motor | |
JPH1084691A (en) | Motor driver | |
JP2001054295A (en) | Motor start control unit | |
JP3332612B2 (en) | Brushless motor drive | |
JP2007209154A (en) | Controller for brushless dc motor, heat-exchange type cooling device, and ventilator blower | |
JPH06311778A (en) | Freezing cycle controller | |
KR100282366B1 (en) | How to Drive Sensorless BLDC Motor | |
JPH05219785A (en) | Driving device for brushless motor | |
JP4289774B2 (en) | Sensorless DC brushless motor control method, sensorless DC brushless motor, fan motor and compressor motor, refrigeration and air conditioning fan motor and refrigeration and air conditioning compressor motor | |
KR100282365B1 (en) | How to Drive Sensorless BLDC Motor | |
JPH06253584A (en) | Driver for sensorless brushless motor | |
KR100829182B1 (en) | Method for controlling BLDC motor for inverter airconditioner | |
JPH09312989A (en) | Method and device for controlling brushless motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050328 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080415 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100415 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110415 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120415 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130415 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130415 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |