JP2001101647A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JP2001101647A JP2001101647A JP2000223622A JP2000223622A JP2001101647A JP 2001101647 A JP2001101647 A JP 2001101647A JP 2000223622 A JP2000223622 A JP 2000223622A JP 2000223622 A JP2000223622 A JP 2000223622A JP 2001101647 A JP2001101647 A JP 2001101647A
- Authority
- JP
- Japan
- Prior art keywords
- abrasive
- magnetic
- recording medium
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気記録媒体に関
するものであり、さらに詳しくは走行性能および走行耐
久性に優れる磁気記録媒体、特にフレキシブルディスク
状磁気記録媒体およびテープ状磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having excellent running performance and running durability, and more particularly to a flexible disk-shaped magnetic recording medium and a tape-shaped magnetic recording medium.
【0002】[0002]
【従来の技術】一般に、塗布型の磁気記録媒体は、非磁
性支持体上に強磁性粉末、無機添加材等の成分をバイン
ダーに分散した磁性層を有する。このような磁気記録媒
体のひとつとして、ディスク状の可とう性非磁性支持体
上に磁性層を設けたフレキシブルディスク状磁気記録媒
体がある。2. Description of the Related Art In general, a coating type magnetic recording medium has a magnetic layer in which components such as a ferromagnetic powder and an inorganic additive are dispersed in a binder on a non-magnetic support. As one of such magnetic recording media, there is a flexible disk-shaped magnetic recording medium in which a magnetic layer is provided on a disk-shaped flexible non-magnetic support.
【0003】フレキシブルディスク状磁気記録媒体は、
記録再生の際にディスクが磁気ヘッド部分やライナーと
激しく接触するため、優れた耐摩耗性や耐久性が必要と
されている。さらに近年、これら磁気記録媒体の使用環
境が多様化し、温度や湿度が激しく変化する環境でも良
好な耐久性を持つ磁気記録媒体が求められるようになっ
た。[0003] Flexible disk-shaped magnetic recording media are:
Since the disk violently comes into contact with the magnetic head and the liner during recording and reproduction, excellent wear resistance and durability are required. Further, in recent years, the use environment of these magnetic recording media has been diversified, and a magnetic recording medium having good durability has been demanded even in an environment where temperature and humidity change drastically.
【0004】一般的に、耐久性を改善する方法のひとつ
として、磁性層中にα−Al2O3、Cr2O3、SiC
等の研磨材を添加することで、積層された塗膜内部の補
強および塗膜表面の耐摩耗性改善が試みられている。In general, as one method of improving the durability, α-Al 2 O 3 , Cr 2 O 3 , SiC
Attempts have been made to enhance the inside of the laminated coating film and to improve the abrasion resistance of the coating film surface by adding an abrasive such as.
【0005】近年、磁気記録媒体の更なる高密度化が求
められ、媒体の厚み損失や自己減磁損失を考慮して極端
な磁性層の薄膜化が試みられている。In recent years, there has been a demand for higher density magnetic recording media, and attempts have been made to make the magnetic layer extremely thin in consideration of the thickness loss and self-demagnetization loss of the medium.
【0006】この磁性層の薄膜化により、現在一般に用
いられている研磨材では、研磨材粒径より磁性層膜厚が
薄くなる場合がある。このような場合、研磨材粒径が適
切でないために適当な研磨能力が得られずに耐久性が悪
化したり、電磁変換特性が悪化するなどの現象が発生す
る。[0006] Due to the thinning of the magnetic layer, the thickness of the magnetic layer may be smaller than the particle size of the abrasive in the abrasives generally used at present. In such a case, since the particle size of the abrasive is not appropriate, an appropriate polishing ability cannot be obtained, and phenomena such as deterioration of durability and deterioration of electromagnetic conversion characteristics occur.
【0007】さらに詳しくは、磁性層の薄膜化により、
磁性層膜厚より大幅に大きい研磨材を使用すると、塗膜
より大きく露出した研磨材によってヘッド表面を傷つけ
てしまったり、ヘッドとの接触により研磨材が脱落して
逆に塗膜を削ってしまう不具合がおきる。More specifically, by making the magnetic layer thinner,
If an abrasive that is much larger than the magnetic layer thickness is used, the surface of the head will be damaged by the abrasive that is larger than the coating, or the abrasive will fall off due to contact with the head and conversely scrape the coating Failure occurs.
【0008】一方、研磨材が必要以上に小さいと塗膜表
面の耐摩耗性が著しく低下し、塗膜内部の補強効果も不
十分となるなどの問題が発生する。[0008] On the other hand, if the abrasive is smaller than necessary, the abrasion resistance of the coating film surface is remarkably reduced, and problems such as an insufficient reinforcing effect inside the coating film occur.
【0009】そこで、磁性層膜厚と研磨材粒径との関係
について検討がなされており、特開平5−282658
号公報、特開平8−263826号公報では、磁性層膜
厚と研磨材粒径とを数値で規定している。しかし磁性層
膜厚に対する研磨材粒径の関係が明確でなく、前記のよ
うに、磁性層膜厚より研磨材粒径が大きくなる場合が起
こりうる。Therefore, the relationship between the thickness of the magnetic layer and the particle size of the abrasive has been studied, and is disclosed in JP-A-5-282658.
In JP-A-8-263826, the thickness of the magnetic layer and the particle size of the abrasive are specified by numerical values. However, the relationship of the abrasive particle diameter to the magnetic layer thickness is not clear, and as described above, the abrasive particle diameter may be larger than the magnetic layer thickness.
【0010】そこで、特開平7−272256号公報、
特開平7−334835号公報、特開平10−2473
16号公報では、磁性層膜厚と研磨材粒径との関係をパ
ラメーター化することで、磁性層膜厚に対する研磨材粒
径範囲をより明確に指定できるようにした。Therefore, Japanese Patent Application Laid-Open No. 7-272256 discloses
JP-A-7-334835, JP-A-10-2473
In Japanese Patent Publication No. 16, the relationship between the thickness of the magnetic layer and the particle size of the abrasive is parameterized so that the range of the particle size of the abrasive with respect to the thickness of the magnetic layer can be specified more clearly.
【0011】[0011]
【発明が解決しようとする課題】しかし近年、磁性層に
対して更なる耐久性が求められ、上記の公報等に開示さ
れているような、磁性層膜厚と研磨材粒径とをパラメー
ター化して規定することによって得られる耐久性だけで
は不十分となってきた。However, in recent years, further durability has been required for the magnetic layer, and the thickness of the magnetic layer and the particle size of the abrasive have been parameterized as disclosed in the above publications. The durability obtained by defining the above has become insufficient.
【0012】すなわち本発明によれば、高密度化する磁
気記録媒体において最適な研磨材が選択でき、高耐久性
を有する磁気記録媒体を提供できる。That is, according to the present invention, an optimum abrasive can be selected for a magnetic recording medium of high density, and a magnetic recording medium having high durability can be provided.
【0013】[0013]
【課題を解決するための手段】前記課題を解決すべく研
究を重ねた結果、研磨材粒径をある範囲に規定し、さら
にその研磨材が持っている研磨能力を規定することによ
って、磁性層の厚みを変更しても常に最適な研磨材を選
択でき、これによって高耐久性を有する磁気記録媒体を
得ることができることを見出した。As a result of repeated studies to solve the above problems, the magnetic layer is defined by defining the abrasive particle size within a certain range and further defining the polishing ability of the abrasive. It has been found that the optimum abrasive can always be selected even if the thickness of the magnetic recording medium is changed, and that a magnetic recording medium having high durability can be obtained.
【0014】すなわち本発明によれば、非磁性支持体上
に、バインダーを含む非磁性層を塗布乾燥後に磁性層を
形成し、かつ該磁性層の膜厚が0.5μm以下である磁
気記録媒体において、磁性層に含まれる研磨材のモース
硬度が5以上で相対研磨速度が200以上であり、この
とき、研磨材平均粒径(D)と磁性層膜厚(T)との関
係式(1)によって得られた値(A)が、0.55乃至
1.20である磁気記録媒体によって上記課題が解決さ
れる。 A=D/T (1)That is, according to the present invention, a non-magnetic layer containing a binder is coated and dried on a non-magnetic support, and a magnetic layer is formed, and the thickness of the magnetic layer is 0.5 μm or less. In the above, the Mohs hardness of the abrasive contained in the magnetic layer is 5 or more, and the relative polishing rate is 200 or more. At this time, the relational expression (1) between the abrasive average particle diameter (D) and the magnetic layer thickness (T) is obtained. The above problem is solved by a magnetic recording medium in which the value (A) obtained by (1) is 0.55 to 1.20. A = D / T (1)
【0015】本発明のさらに好ましい態様は、前記磁性
層に含まれる磁性粉の保磁力(Hc)が1400乃至2
600Oeで、前記非磁性層に用いられるバインダー
が、放射線によって架橋可能なバインダーを含んでいる
磁気記録媒体で、特に記録再生時における磁気記録媒体
の回転数が700rpm以上のフレキシブルディスク状
磁気記録媒体(磁気ディスク)および記録再生時の磁気
記録媒体と磁気ヘッドの相対速度が1.0m/sec以
上であるテープ状磁気記録媒体(磁気テープ)では、走
行耐久性、走行性能に優れ、なおかつ高い電磁変換特性
を備える。In a further preferred aspect of the present invention, the magnetic powder contained in the magnetic layer has a coercive force (Hc) of 1400 to 2
At 600 Oe, the binder used for the non-magnetic layer is a magnetic recording medium containing a binder which can be cross-linked by radiation, and in particular, a flexible disk-shaped magnetic recording medium in which the rotation speed of the magnetic recording medium during recording and reproduction is 700 rpm or more ( A magnetic recording medium (magnetic disk) and a tape-shaped magnetic recording medium (magnetic tape) in which the relative speed between the magnetic recording medium and the magnetic head at the time of recording / reproducing is 1.0 m / sec or more have excellent running durability and running performance and high electromagnetic conversion. With characteristics.
【0016】[0016]
【発明の実施の形態】図1に、本発明の一実施の形態に
係る磁気ディスク1の構成例を示す。この好適例では、
非磁性支持体10の両面に非磁性下地層21、25およ
び磁性層31、35が順次積層されている。また、図2
に本発明の他の実施の形態に係る磁気テープ2の構成例
を示す。この好適例では、非磁性支持体110の片面の
みに非磁性下地層121および磁性層131が順次積層
され、その裏面にはバックコート層140が塗布されて
いる。FIG. 1 shows a configuration example of a magnetic disk 1 according to an embodiment of the present invention. In this preferred example,
Nonmagnetic underlayers 21 and 25 and magnetic layers 31 and 35 are sequentially laminated on both surfaces of the nonmagnetic support 10. FIG.
FIG. 9 shows a configuration example of a magnetic tape 2 according to another embodiment of the present invention. In this preferred example, the nonmagnetic underlayer 121 and the magnetic layer 131 are sequentially laminated on only one surface of the nonmagnetic support 110, and the backcoat layer 140 is applied on the back surface.
【0017】本発明の磁気記録媒体の磁性層31、3
5、131に含まれる研磨材の相対研磨速度は塗膜とし
て十分な耐久性を得るために200以上とすることが必
要で、より好ましくは250以上である。The magnetic layers 31, 3 of the magnetic recording medium of the present invention
The relative polishing rate of the abrasives contained in Nos. 5 and 131 needs to be 200 or more in order to obtain sufficient durability as a coating film, and more preferably 250 or more.
【0018】またこの研磨材の平均粒径は、磁性層膜厚
の55乃至120%程度とすることで高耐久性が得られ
るとともに信号出力も向上する。平均粒径が55%未満
になると、塗膜表面に露出する研磨材の量が減少するこ
とで、研磨材添加の効果は減少し、120%を超える
と、塗膜表面に大きく露出した研磨材によりヘッドに傷
を付けたり、塗膜から研磨材が脱落してヘッドや塗膜表
面に傷を付けたりする。When the average particle size of the abrasive is about 55 to 120% of the thickness of the magnetic layer, high durability is obtained and the signal output is improved. When the average particle size is less than 55%, the amount of the abrasive exposed on the surface of the coating film decreases, and the effect of the addition of the abrasive decreases. When the average particle size exceeds 120%, the abrasive greatly exposed on the surface of the coating film. This causes scratches on the head, and the abrasive material falls off the coating film and damages the head and the coating film surface.
【0019】研磨材のモース硬度は5以上で、α−アル
ミナ、β−アルミナ、γ−アルミナ、三酸化二クロム、
α−酸化鉄、γ−酸化鉄、ゲーサイト、SiO2、Zn
O、TiO2、ZrO2、SnO2等があり、これらを単
独で用いるかまたは幾つかを組み合わせて使用する。The Mohs hardness of the abrasive is 5 or more, α-alumina, β-alumina, γ-alumina, dichromium trioxide,
α-iron oxide, γ-iron oxide, goethite, SiO 2 , Zn
There are O, TiO 2 , ZrO 2 , SnO 2 and the like, and these may be used alone or in combination.
【0020】これら研磨材の添加量は、磁性粉100に
対し5乃至30重量部が好ましく、より好ましくは10
乃至20重量部である。The amount of the abrasive added is preferably 5 to 30 parts by weight, more preferably 10 to 30 parts by weight, based on 100 of the magnetic powder.
To 20 parts by weight.
【0021】5重量部より少ないと、研磨材としての効
果が減少する傾向にある。また30重量部より多いと、
塗膜表面の研磨能力が強すぎてドライブによっては磁気
ヘッドを傷つける場合もある。また相対的に磁性粉の含
有量が少なくなるため、電磁変換特性に影響する。If the amount is less than 5 parts by weight, the effect as an abrasive tends to decrease. If more than 30 parts by weight,
Depending on the drive, the magnetic head may be damaged due to too strong polishing ability of the coating film surface. Further, since the content of the magnetic powder is relatively small, it affects the electromagnetic conversion characteristics.
【0022】バインダーは、熱可塑性樹脂、熱硬化性な
いしは熱反応型樹脂、放射線感応型変性樹脂等が、媒体
の特性、工程条件に合わせて適宜選択され、組み合わせ
て使用される。As the binder, a thermoplastic resin, a thermosetting or heat-reactive resin, a radiation-sensitive modified resin or the like is appropriately selected according to the characteristics of the medium and the process conditions, and is used in combination.
【0023】熱可塑性樹脂としては、アクリル樹脂、ポ
リエステル樹脂、ポリウレタン系樹脂、ポリアミド樹
脂、ポリイミド樹脂、フェノール樹脂、ポリビニルアル
コール樹脂、アセタール樹脂、エポキシ系樹脂、フェノ
キシ系樹脂、ポリエーテル樹脂、塩化ビニル系共重合
体、アクリロニトリル−ブタジエン系共重合体、ポリビ
ニルブチラール、ニトロセルロース、スチレン−ブタジ
エン系共重合体、ポリカプロラクトン等の多官能性ポリ
エーテル類、ポリブタジエンエラストマー、塩化ゴム、
アクリルゴム、イソプレンゴム、エポキシ変性ゴム等が
挙げられる。Examples of the thermoplastic resin include acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyimide resin, phenol resin, polyvinyl alcohol resin, acetal resin, epoxy resin, phenoxy resin, polyether resin, and vinyl chloride resin. Copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, nitrocellulose, styrene-butadiene copolymer, polyfunctional polyethers such as polycaprolactone, polybutadiene elastomer, chlorinated rubber,
Acrylic rubber, isoprene rubber, epoxy-modified rubber and the like can be mentioned.
【0024】熱硬化性樹脂としては、縮重合するフェノ
ール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿
素樹脂、ブチラール樹脂、ポリマール樹脂、メラミン樹
脂、アルキド樹脂、シリコン樹脂、アクリル系反応樹
脂、ポリアミド樹脂、エポキシ−ポリアミド樹脂、飽和
ポリエステル樹脂、尿素ホルムアルデヒド樹脂等が挙げ
られる。Examples of the thermosetting resin include phenol resin, epoxy resin, polyurethane curable resin, urea resin, butyral resin, polymer resin, melamine resin, alkyd resin, silicone resin, acrylic reaction resin, polyamide resin, Epoxy-polyamide resins, saturated polyester resins, urea-formaldehyde resins, and the like.
【0025】これらのうち、末端および/または側鎖に
水酸基を有するものは、反応型樹脂としてポリイソシア
ネートを使用した架橋や放射線架橋変性等が容易に行え
ることから好適である。Of these, those having a hydroxyl group at the terminal and / or the side chain are preferred because crosslinking using a polyisocyanate as a reactive resin or radiation crosslinking modification can be easily performed.
【0026】さらに末端や側鎖に極性基として−COO
H、−SO3M、−OSO3M、−OPO3X、−PO
3X、−PO2X、−N+R3Cl-、−NR2等(Mは水素
原子あるいはリチウム、カリウム、ナトリウム等のアル
カリ金属であり、Xはフッ素、塩素、臭素、ヨウ素等の
ハロゲン元素イオンあるいは無機・有機イオン、Rは水
素原子あるいは炭化水素基)をはじめとする酸性極性
基、塩基性極性基、ベタイン等を含有していてもよく、
これらは分散性の向上に好適で、単独または必要に応じ
て組み合わせて使用してもよい。Further, as a polar group at the terminal or side chain, -COO is used.
H, -SO 3 M, -OSO 3 M, -OPO 3 X, -PO
3 X, -PO 2 X, -N + R 3 Cl -, -NR 2 , etc. (M is an alkali metal such as a hydrogen atom or a lithium, potassium, sodium, X is fluorine, chlorine, bromine, halogen iodine Element ions or inorganic / organic ions, R may be a hydrogen atom or a hydrocarbon group), an acidic polar group including a basic polar group, betaine, etc.
These are suitable for improving dispersibility, and may be used alone or in combination as needed.
【0027】これらのうちで好ましく用いられるものは
塩化ビニル系樹脂とウレタン系樹脂の組み合わせであ
る。Of these, those preferably used are a combination of a vinyl chloride resin and a urethane resin.
【0028】使用される樹脂の例としては、塩化ビニル
含有量60〜95重量%の塩化ビニル系樹脂で、その平
均重合度は100〜500程度であることが好ましい。
このような塩化ビニル系樹脂と併用するウレタン系樹脂
は、耐摩耗性および非磁性支持体への接着性がよい点で
特に有効である。なお、これらの樹脂に加えて、さらに
他の樹脂を含有させてもよい。As an example of the resin used, a vinyl chloride resin having a vinyl chloride content of 60 to 95% by weight and an average degree of polymerization of about 100 to 500 is preferable.
A urethane-based resin used in combination with such a vinyl chloride-based resin is particularly effective in that it has good wear resistance and good adhesion to a nonmagnetic support. Note that, in addition to these resins, other resins may be further included.
【0029】さらにこれらの樹脂にアクリル系二重結合
を導入して放射線感応変性を行ったものを使用すること
もできる。またその放射線官能基含有量は、製造時の安
定性、放射線硬化性等から水酸基成分中1〜40モル
%、好ましくは10〜30モル%であり、特に塩化ビニ
ル系共重合体の場合1分子あたり1〜20個、好ましく
は2〜10個の官能基となるようにモノマーを反応させ
ると、分散性、硬化性ともに優れた放射線硬化型樹脂を
得ることができる。Further, those resins which have been subjected to radiation-sensitive modification by introducing an acrylic double bond into these resins can also be used. The content of the radiation functional group is from 1 to 40 mol%, preferably from 10 to 30 mol% in the hydroxyl group component in view of the stability at the time of production, radiation curability, etc. When the monomers are reacted so as to have 1 to 20, preferably 2 to 10 functional groups per unit, a radiation-curable resin excellent in both dispersibility and curability can be obtained.
【0030】磁性層に含まれる磁性粉末としては、γ−
Fe2O3、Co含有γ−Fe2O3、Fe3O4、Co含有
Fe3O4、CrO2、六方晶フェライト等の酸化物微粉
末や、Fe、Co、Ni、等の金属あるいはこれらの合
金微粉末、炭化鉄などがあげられる。As the magnetic powder contained in the magnetic layer, γ-
Oxide fine powders such as Fe 2 O 3 , Co-containing γ-Fe 2 O 3 , Fe 3 O 4 , Co-containing Fe 3 O 4 , CrO 2 , hexagonal ferrite, and metals such as Fe, Co, Ni, etc. These alloy fine powder, iron carbide and the like can be mentioned.
【0031】これらの磁性粉末は、適用する磁気記録媒
体種類に応じて選択すればよいが、バリウムフェライ
ト、金属あるいは合金、炭化鉄などが好ましく、1種の
みを用いても2種以上を併用して用いてもよく、含有量
は磁性層全体の50〜85重量%、好ましくは55〜7
5重量%である。These magnetic powders may be selected according to the type of magnetic recording medium to be applied, but barium ferrite, metal or alloy, iron carbide, etc. are preferred, and if only one kind is used, two or more kinds may be used in combination. The content is 50 to 85% by weight of the whole magnetic layer, preferably 55 to 7%.
5% by weight.
【0032】さらに磁性層には、これら磁性粉末、バイ
ンダー、研磨材の他に、必要に応じてカーボンブラッ
ク、潤滑剤、分散剤等を添加してもよい。Further, in addition to these magnetic powders, binders and abrasives, carbon black, lubricants, dispersants and the like may be added to the magnetic layer, if necessary.
【0033】本発明の塗膜の構成は、非磁性支持体上に
非磁性層、その上に磁性層を積層する。この時非磁性層
の厚みは0.5〜3.0μmが好ましく、さらに好まし
くは1.0〜3.0μmで、非磁性支持体表面の影響を
受け難く、磁気記録媒体の表面性が良好となり、電磁変
換特性や耐久性も向上する。According to the constitution of the coating film of the present invention, a non-magnetic layer is laminated on a non-magnetic support, and a magnetic layer is laminated thereon. At this time, the thickness of the non-magnetic layer is preferably from 0.5 to 3.0 μm, more preferably from 1.0 to 3.0 μm, so that it is hardly affected by the surface of the non-magnetic support and the surface property of the magnetic recording medium becomes good. Also, the electromagnetic conversion characteristics and durability are improved.
【0034】0.5μmより薄くなると耐久性が悪化
し、逆に3.0μmより厚くなると、塗布性が悪くなる
ことで欠陥が増加して歩留が低下するため生産上好まし
くない。When the thickness is less than 0.5 μm, the durability is deteriorated. On the other hand, when the thickness is more than 3.0 μm, the coating property is deteriorated to increase defects and decrease the yield, which is not preferable in production.
【0035】一方、磁性層の膜厚は、実際に使用する磁
気記録システムにより任意に選択できるが、媒体の厚み
損失や自己減磁損失を考慮すれば0.5μm以下とする
必要がある。On the other hand, the thickness of the magnetic layer can be arbitrarily selected depending on the magnetic recording system actually used. However, the thickness must be 0.5 μm or less in consideration of the thickness loss and the self-demagnetization loss of the medium.
【0036】非磁性層と磁性層の塗布方法は、基本的に
非磁性層が塗布され、それを乾燥した後に磁性層を塗布
するウエットオンドライ塗布である。ただし生産効率か
ら考えて、非磁性層は放射線硬化性樹脂を用いて作製
し、磁性層を塗布する前に放射線硬化する方法を用いる
ことがより好ましい。The method of applying the non-magnetic layer and the magnetic layer is basically wet-on-dry application in which the non-magnetic layer is applied, and after drying, the magnetic layer is applied. However, from the viewpoint of production efficiency, it is more preferable to use a method in which the nonmagnetic layer is formed using a radiation-curable resin and radiation-cured before applying the magnetic layer.
【0037】塗布手段としては、グラビアコート、リバ
ースロールコート、ダイノズルコート等の塗布手段を用
いることができる。As a coating means, a coating means such as a gravure coat, a reverse roll coat, and a die nozzle coat can be used.
【0038】[0038]
【実施例】以下に本発明を実施例によりさらに詳細に説
明する。なお、本発明において相対研磨速度、走行耐久
性、研磨材平均粒径は以下の測定方法を用いた。The present invention will be described in more detail with reference to the following examples. In the present invention, the following measuring methods were used for the relative polishing rate, running durability, and average particle size of the abrasive.
【0039】相対研磨速度の測定方法:アルミナスラリ
ーを定量供給しながらMn−Znフェライト単結晶(1
11)面をバフ上で研磨し、単位時間当たりの研磨量
(長さ)を標準試料の研磨量と比較する。(アルミナス
ラリー組成は試料2重量部に対して水98重量部、標準
試料は住友化学(株)製AKP20を2重量部に対して
水98重量部)標準試料の研磨速度を100として相対
的に表す。Measurement method of relative polishing rate: Mn-Zn ferrite single crystal (1
11) The surface is polished on a buff, and the polishing amount (length) per unit time is compared with the polishing amount of the standard sample. (Alumina slurry composition is 98 parts by weight of water with respect to 2 parts by weight of sample; standard sample is 98 parts by weight of water with 2 parts by weight of AKP20 manufactured by Sumitomo Chemical Co., Ltd.) Represent.
【0040】ディスク状媒体走行耐久性の測定方法:2
940rpmの回転速度のZIPドライブにディスクを
挿入し、図3のサイクル環境にてヘッドをランダムシ−
クさせ、目視にて100時間毎に傷の有無を確認し、傷
の入ったところで終了。Measurement method for running durability of disk-shaped medium: 2
A disk is inserted into a ZIP drive having a rotation speed of 940 rpm, and the head is randomly randomized in the cycle environment shown in FIG.
And check visually for flaws every 100 hours.
【0041】テープ状媒体耐久性評価法 走行耐久性の測定方法(DLTカセット):Quann
tum社 DLT4000ドライブを使用し、常温の環
境でテープ長さで5mを記録再生させながら往復させ
(往復で2パス計算)、記録再生時のエラーレートが初
期の10倍になったところでNGとした。100万パス
クリアーした物について合格とした。ヘッド付着:テー
プサンプルを40℃80%の環境で5日間保存後、Qu
anntum社 DLT4000ドライブを使用し、1
000パス走行させ、走行後のヘッド付着を倍率100
倍の光学顕微鏡で確認した。 ヘッド付着あり:× ヘッド付着なし:○ とした。走行耐久性の測定方法(8mmカセット):ソ
ニー社製EV−S900ドライブを使用し、0℃の環境
下にて200パス走行を50巻のテープサンプルについ
て行い、目詰まりの有無を確認した。 目詰まりなし:○ 目詰まりあり:× とした。 Evaluation method for durability of tape-shaped medium Measuring method for running durability (DLT cassette): Quann
Using a DLT4000 drive from tu, reciprocate while recording / reproducing at a tape length of 5 m in an environment at normal temperature (2 pass calculation for reciprocation). . Those that cleared 1 million passes were judged to have passed. Head adhesion: After storing the tape sample in an environment of 40 ° C and 80% for 5 days,
using anntum DLT4000 drive, 1
000 passes, and the head adhesion after running was
It was confirmed with a light microscope at × 2. With head adhesion: × Without head adhesion: ○ Measuring method of running durability (8 mm cassette): Using an EV-S900 drive manufactured by Sony Corporation, 200 passes were run for 50 tape samples in an environment of 0 ° C. to check for clogging. No clogging: ○ Clogging: x
【0042】研磨材平均粒径測定法:SEMを用い、倍
率20000倍にて研磨材の粒径を100個測定し、平
均粒径を求めた。Abrasive average particle size measuring method: Using an SEM, 100 abrasive particles were measured at a magnification of 20000 times to determine the average particle size.
【0043】実施例1 <非磁性層塗料> 粒状α−Fe2O3(堺化学工業(株)製:FRO−
3):55重量部(平均粒径=30nm、比表面積(B
ET値)=45m2/g) カーボンブラック(三菱化学(株)製:#45B):3
0重量部(平均粒径=24nm、BET値=125
m2、DBP吸油量=47ml/100g) α−Al2O3(住友化学工業(株)製:AKP50):
15重量部(平均粒径=0.19μm、BET値=8m
2/g) 放射線感応型塩化ビニル系樹脂(東洋紡績(株)製:T
B0246 30%溶液):12重量部(重合度=30
0、極性基:−OSO3K=1.5個/分子) 放射線感応型ウレタン系樹脂(東洋紡績(株)製:TB
0242 35%溶液):4重量部(分子量=2500
0、極性基:次亜リン酸ナトリウム=1個/1分子) 3官能アクリルモノマー(三洋化成工業(株)製:TA
505):2重量部 イソセチルステアレート:10重量部 ブチルステアレート:4重量部 メチルエチルケトン(MEK):126重量部 トルエン:38重量部 シクロヘキサノン:38重量部 Example 1 <Non-magnetic layer paint> Granular α-Fe 2 O 3 (manufactured by Sakai Chemical Industry Co., Ltd .: FRO-
3): 55 parts by weight (average particle size = 30 nm, specific surface area (B
ET value) = 45 m 2 / g) Carbon black (Mitsubishi Chemical Corporation: # 45B): 3
0 parts by weight (average particle size = 24 nm, BET value = 125)
m 2 , DBP oil absorption = 47 ml / 100 g) α-Al 2 O 3 (AKP50, manufactured by Sumitomo Chemical Co., Ltd.):
15 parts by weight (average particle size = 0.19 μm, BET value = 8 m
2 / g) Radiation-sensitive vinyl chloride resin (Toyobo Co., Ltd .: T
B0246 30% solution): 12 parts by weight (degree of polymerization = 30)
0, polar group: -OSO 3 K = 1.5 / molecule) Radiation-sensitive urethane resin (Toyobo Co., Ltd .: TB
0242 35% solution): 4 parts by weight (molecular weight = 2500)
0, polar group: sodium hypophosphite = 1 / molecule) Trifunctional acrylic monomer (manufactured by Sanyo Chemical Industries, Ltd .: TA)
505): 2 parts by weight Isocetyl stearate: 10 parts by weight Butyl stearate: 4 parts by weight Methyl ethyl ketone (MEK): 126 parts by weight Toluene: 38 parts by weight Cyclohexanone: 38 parts by weight
【0044】以上の組成物を混練処理した後、サンドグ
ラインダーミルにて分散を行い、非磁性層塗料を作製し
た。After kneading the above composition, it was dispersed in a sand grinder mill to prepare a non-magnetic layer paint.
【0045】<磁性塗料1> 針状Fe系金属磁性粉:100重量部(保磁力=166
0Oe、σs=126emu/g、BET値=58m2
/g、平均長軸長=0.33μm、Fe/Co/Ni/
Al=100/5/5/4(重量比)) 塩化ビニル系樹脂(日本ゼオン(株)製:MR11
0):14重量部(重合度=300、極性基:−OSO
3K=1.5個/分子) ホスホベタイン含有ポリウレタン樹脂:4重量部(分子
量=40000、極性基濃度=1.5個/1分子) −SO3Na含有ポリウレタン樹脂:2重量部(分子量
=25000、極性基濃度=1個/1分子) 研磨材α−Al2O3:10重量部(平均粒径=0.23
μm、BET値=8m2/g) カーボンブラック(コロンビアン(株)製:セバカーブ
MT):3重量部(平均粒径=350nm、BET値=
7m2/g、DBP吸油量=41ml/100g) ソルビタンモノステアレート:3重量部 イソセチルステアレート:3重量部 ブチルステアレート:2重量部 メチルエチルケトン:250重量部 トルエン:80重量部 シクロヘキサノン:80重量部<Magnetic paint 1> Acicular Fe-based metal magnetic powder: 100 parts by weight (coercive force = 166)
0 Oe, σs = 126 emu / g, BET value = 58 m 2
/ G, average major axis length = 0.33 μm, Fe / Co / Ni /
Al = 100/5/5/4 (weight ratio)) Vinyl chloride resin (manufactured by Zeon Corporation: MR11)
0): 14 parts by weight (degree of polymerization = 300, polar group: —OSO)
3 K = 1.5 / molecule) Phosphobetaine-containing polyurethane resin: 4 parts by weight (molecular weight = 40000, polar group concentration = 1.5 / molecule) -SO 3 Na-containing polyurethane resin: 2 parts by weight (molecular weight = 25000, polar group concentration = 1 / molecule) Abrasive α-Al 2 O 3 : 10 parts by weight (average particle size = 0.23)
μm, BET value = 8 m 2 / g) Carbon black (manufactured by Columbian Co., Ltd .: Sevacarb MT): 3 parts by weight (average particle size = 350 nm, BET value =
7 m 2 / g, DBP oil absorption = 41 ml / 100 g) Sorbitan monostearate: 3 parts by weight Isocetyl stearate: 3 parts by weight Butyl stearate: 2 parts by weight Methyl ethyl ketone: 250 parts by weight Toluene: 80 parts by weight Cyclohexanone: 80 parts by weight Department
【0046】上記組成物を混練処理した後、サンドグラ
インダーミルにて分散を行い磁性塗料1を作製した。After kneading the above composition, the composition was dispersed in a sand grinder mill to prepare a magnetic paint 1.
【0047】まず非磁性塗料を表面粗さ(Ra)=9n
m、厚さ62μmのPETフィルムに押し出しダイノズ
ル方式で乾燥後の膜厚が1.5μmになるように塗布
し、乾燥温度100℃で乾燥後、放射線照射(5Mra
d)を行った。次に同じような手順でもう一方の面も形
成し両面非磁性層のロールを作製した。First, the non-magnetic paint was coated with a surface roughness (Ra) of 9n.
m, and applied to a PET film having a thickness of 62 μm by an extrusion die nozzle method so that the film thickness after drying becomes 1.5 μm, dried at a drying temperature of 100 ° C., and then irradiated with radiation (5 Mra
d) was performed. Next, the other surface was also formed by the same procedure, and a roll of a double-sided nonmagnetic layer was prepared.
【0048】次に、磁性塗料1にコロネートL(日本ポ
リウレタン工業(株)製)を4重量部添加し、前記ロー
ルに押し出しダイノズル方式で乾燥後の膜厚が0.3μ
mになるように塗布し、無配向磁石にて無配向化を行
い、乾燥温度100℃で乾燥後、線圧300kg/c
m、温度90℃にてカレンダー処理を行い片面の塗膜を
仕上げた。次に同じような手順でもう一方の面も形成し
両面磁性層の原反ロールを作製した。Next, 4 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the magnetic paint 1, and the film thickness after drying was 0.3 μm after being extruded into the roll by a die nozzle method.
m, non-oriented by a non-oriented magnet, dried at a drying temperature of 100 ° C, and a linear pressure of 300 kg / c.
A calender treatment was performed at a temperature of 90 ° C. to complete a coating film on one side. Next, the other surface was also formed in the same procedure to prepare a raw roll of a double-sided magnetic layer.
【0049】この原反ロールをディスク状に打ち抜き、
70℃24hrの条件で熱硬化を行いディスクを作製し
た。ここで用いた磁性層中の研磨材の相対研磨速度は4
50、研磨材平均粒径(D)と磁性層膜厚(T)との関
係値D/Tは0.77で、作製した磁気記録媒体は走行
耐久性が優れていた。The raw roll is punched into a disk shape,
Thermal curing was performed at 70 ° C. for 24 hours to produce a disk. The relative polishing rate of the abrasive in the magnetic layer used here was 4
50, the relation value D / T between the average particle size (D) of the abrasive and the thickness (T) of the magnetic layer was 0.77, and the produced magnetic recording medium was excellent in running durability.
【0050】実施例2 磁性塗料1の研磨材を、平均粒径0.19μm、相対研
磨速度600の研磨材に変更した以外は実施例1と同様
にしてディスクを作製した。ここで用いた研磨材の相対
研磨速度は600、研磨材平均粒径(D)と磁性層膜厚
(T)との関係値D/Tは0.63で、作製した磁気記
録媒体は走行耐久性が優れている。 Example 2 A disk was produced in the same manner as in Example 1 except that the abrasive of the magnetic paint 1 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 600. The relative polishing rate of the abrasive used here was 600, the relation value D / T between the average particle size (D) of the abrasive and the thickness (T) of the magnetic layer was 0.63, and the produced magnetic recording medium had running durability. Excellent in nature.
【0051】比較例1 磁性塗料1の研磨材を平均粒径0.35μm、相対研磨
速度80の研磨材に変更した以外は実施例1と同様にし
てディスクを作製した。ここで用いた研磨材は研磨材平
均粒径(D)と磁性層膜厚(T)との関係値D/Tは
1.16であったが、相対研磨速度が80であったた
め、作製した磁気記録媒体は十分な走行耐久性が得られ
なかった。 Comparative Example 1 A disk was produced in the same manner as in Example 1 except that the abrasive of the magnetic paint 1 was changed to an abrasive having an average particle size of 0.35 μm and a relative polishing rate of 80. The abrasive used here was manufactured because the relative value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 1.16, but the relative polishing rate was 80. The magnetic recording medium did not have sufficient running durability.
【0052】比較例2 磁性塗料1の研磨材を平均粒径0.23μm、相対研磨
速度50の研磨材に変更した以外は実施例1と同様にし
てディスクを作製した。ここで用いた研磨材は研磨材平
均粒径(D)と磁性層膜厚(T)との関係値D/Tは
0.77であったが、相対研磨速度が50であったた
め、作製した磁気記録媒体は十分な走行耐久性が得られ
なかった。 Comparative Example 2 A disk was prepared in the same manner as in Example 1 except that the abrasive of the magnetic paint 1 was changed to an abrasive having an average particle size of 0.23 μm and a relative polishing rate of 50. The abrasive used here was manufactured because the relative value D / T between the abrasive average particle diameter (D) and the magnetic layer thickness (T) was 0.77, but the relative polishing rate was 50. The magnetic recording medium did not have sufficient running durability.
【0053】比較例3 磁性塗料1の研磨材を平均粒径0.19μm、相対研磨
速度170の研磨材に変更した以外は実施例1と同様に
してディスクを作製した。ここで用いた研磨材は研磨材
平均粒径(D)と磁性層膜厚(T)との関係値D/Tは
0.63であったが、相対研磨速度が170であったた
め、作製した磁気記録媒体は十分な走行耐久性が得られ
なかった。 Comparative Example 3 A disk was prepared in the same manner as in Example 1 except that the abrasive of the magnetic paint 1 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 170. The abrasive used here was manufactured because the relative value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 0.63, but the relative polishing rate was 170. The magnetic recording medium did not have sufficient running durability.
【0054】比較例4 磁性塗料1の研磨材を平均粒径0.14μm、相対研磨
速度420の研磨材に変更した以外は実施例1と同様に
してディスクを作製した。ここで用いた研磨材の相対研
磨速度は420であったものの、研磨材平均粒径(D)
と磁性層膜厚(T)との関係値D/Tは0.46であっ
たため、作製した磁気記録媒体は十分な走行耐久性が得
られなかった。 Comparative Example 4 A disk was prepared in the same manner as in Example 1 except that the abrasive of the magnetic paint 1 was changed to an abrasive having an average particle size of 0.14 μm and a relative polishing rate of 420. Although the relative polishing rate of the abrasive used here was 420, the average abrasive particle diameter (D)
The relational value D / T between the magnetic recording medium and the magnetic layer thickness (T) was 0.46, and thus the produced magnetic recording medium could not have sufficient running durability.
【0055】実施例3 <磁性塗料2> 針状Fe系金属磁性粉:100重量部(保磁力=240
0Oe、σs=143emu/g、BET値=51m2
/g、pH=10、平均長軸長=0.1μm、Fe/C
o/Al/Y=100/30/5/5(重量比)) 塩化ビニル系樹脂(日本ゼオン(株)製:MR11
0):14重量部(重合度=300、極性基:−OSO
3K=1.5個/分子) ホスホベタイン含有ポリウレタン樹脂:4重量部(分子
量=40000、極性基濃度=1.5個/分子) −SO3Na含有ポリウレタン樹脂:2重量部(分子量
=25000、極性基濃度=1個/1分子) 研磨材α−Al2O3:10重量部(平均粒径=0.14
μm、BET値=17m 2/g) カーボンブラック(コロンビアン(株)製:セバカーブ
MT):3重量部(平均粒径=350nm、BET値=
7m2/g、DBP吸油量=41ml/100g) ソルビタンモノステアレート:3重量部 イソセチルステアレート:3重量部 ブチルステアレート:2重量部 メチルエチルケトン:250重量部 トルエン:80重量部 シクロヘキサノン:80重量部[0055]Example 3 <Magnetic paint 2> Acicular Fe-based metal magnetic powder: 100 parts by weight (coercive force = 240
0 Oe, σs = 143 emu / g, BET value = 51 mTwo
/ G, pH = 10, average major axis length = 0.1 μm, Fe / C
o / Al / Y = 100/30/5/5 (weight ratio)) Vinyl chloride resin (manufactured by Zeon Corporation: MR11)
0): 14 parts by weight (degree of polymerization = 300, polar group: —OSO)
ThreeK = 1.5 / molecule) Phosphobetaine-containing polyurethane resin: 4 parts by weight (molecule)
(Amount = 40000, polar group concentration = 1.5 / molecule)ThreeNa-containing polyurethane resin: 2 parts by weight (molecular weight
= 25000, polar group concentration = 1 / molecule) Abrasive α-AlTwoOThree: 10 parts by weight (average particle size = 0.14)
μm, BET value = 17m Two/ G) Carbon black (manufactured by Columbian Co., Ltd .: Sevacarb)
MT): 3 parts by weight (average particle size = 350 nm, BET value =
7mTwoSorbitan monostearate: 3 parts by weight Isocetyl stearate: 3 parts by weight Methyl ethyl ketone: 250 parts by weight Toluene: 80 parts by weight Cyclohexanone: 80 parts by weight
【0056】上記組成物を混練処理した後、サンドグラ
イダーミルにて分散を行い磁性塗料2を作製した。After kneading the above composition, the composition was dispersed in a sand glider mill to prepare a magnetic paint 2.
【0057】まず、実施例1と同様の非磁性塗料を表面
粗さ(Ra)=9nm、厚さ62μmのPETフィルム
に押し出しダイノズル方式で乾燥後の膜厚が1.5μm
になるように塗布し、100℃にて乾燥後、放射線照射
(5Mrad)を行った。同様にもう一方の面も形成し
て両面非磁性層のロールを作製した。First, the same non-magnetic paint as in Example 1 was extruded onto a PET film having a surface roughness (Ra) of 9 nm and a thickness of 62 μm, and the film thickness after drying by a die nozzle method was 1.5 μm.
After drying at 100 ° C., radiation irradiation (5 Mrad) was performed. Similarly, the other side was also formed to produce a roll of a double-sided nonmagnetic layer.
【0058】次に、磁性塗料2にコロネートL(日本ポ
リウレタン工業(株)製)を4重量部添加し、前記ロー
ルに押し出しダイノズル方式で乾燥後の膜厚が0.2μ
mになるように塗布し、無配向磁石にて無配向化を行
い、100℃にて乾燥後、線圧300kg/cm、温度
90℃にてカレンダー処理を行い片面の塗膜を仕上げ
た。同様にもう一方の面も形成し両面磁性層の原反ロー
ルを作製した。Next, 4 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the magnetic paint 2, and the film thickness after drying was 0.2 μm after being extruded into the roll by a die nozzle method.
m, non-oriented by a non-oriented magnet, dried at 100 ° C, and calendered at a linear pressure of 300 kg / cm and a temperature of 90 ° C to finish a coating film on one side. Similarly, the other side was formed, and a raw roll of a double-sided magnetic layer was produced.
【0059】この原反ロールをディスク状に打ち抜き、
70℃24hrの条件で熱硬化を行いディスクを作製し
た。ここで磁性層に用いた研磨材の相対研磨速度は42
0、研磨材平均粒径(D)と磁性層膜厚(T)との関係
値D/Tは0.70で、作製した磁気記録媒体は走行耐
久性が優れていた。This raw roll is punched into a disk shape,
Thermal curing was performed at 70 ° C. for 24 hours to produce a disk. Here, the relative polishing rate of the abrasive used for the magnetic layer was 42.
0, the relation value D / T between the abrasive average particle diameter (D) and the magnetic layer thickness (T) was 0.70, and the manufactured magnetic recording medium was excellent in running durability.
【0060】実施例4 磁性塗料2の研磨材を平均粒径0.12μm、相対研磨
速度270の研磨材に変更した以外は実施例3と同様に
してディスクを作製した。ここで用いた研磨材の相対研
磨速度は270、研磨材平均粒径(D)と磁性層膜厚
(T)との関係値D/Tは0.60で、作製した磁気記
録媒体は走行耐久性が優れていた。 Example 4 A disk was produced in the same manner as in Example 3 except that the abrasive of the magnetic paint 2 was changed to an abrasive having an average particle size of 0.12 μm and a relative polishing rate of 270. The relative polishing rate of the abrasive used here was 270, the relation value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 0.60, and the produced magnetic recording medium had running durability. The character was excellent.
【0061】実施例5 磁性塗料2の研磨材を平均粒径0.23μm、相対研磨
速度450の研磨材に変更した以外は実施例3と同様に
してディスクを作製した。ここで用いた研磨材の相対研
磨速度は450、研磨材平均粒径(D)と磁性層膜厚
(T)との関係値D/Tは1.15で作製した磁気記録
媒体は走行耐久性が優れていた。 Example 5 A disk was produced in the same manner as in Example 3 except that the abrasive of the magnetic paint 2 was changed to an abrasive having an average particle size of 0.23 μm and a relative polishing rate of 450. The relative polishing rate of the abrasive used here was 450, and the relational value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 1.15. Was excellent.
【0062】比較例5 磁性塗料2の研磨材を平均粒径0.19μm、相対研磨
速度170の研磨材に変更した以外は実施例3と同様に
してディスクを作製した。ここで用いた研磨材は研磨材
平均粒径(D)と磁性層膜厚(T)との関係値D/Tは
0.95であったが、相対研磨速度が170であったた
め、作製した磁気記録媒体は十分な走行耐久性が得られ
なかった。 Comparative Example 5 A disk was produced in the same manner as in Example 3 except that the abrasive of the magnetic paint 2 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 170. The abrasive used here was produced because the relative value D / T between the abrasive average particle diameter (D) and the magnetic layer thickness (T) was 0.95, but the relative polishing rate was 170. The magnetic recording medium did not have sufficient running durability.
【0063】比較例6 磁性塗料2の研磨材を平均粒径0.04μm、相対研磨
速度70の研磨材に変更した以外は実施例3と同様にし
てディスクを作製した。ここで用いた研磨材の相対研磨
速度は70、研磨材平均粒径(D)と磁性層膜厚(T)
との関係値D/Tは0.20で、作製した磁気記録媒体
は十分な走行耐久性が得られなかった。 Comparative Example 6 A disk was prepared in the same manner as in Example 3 except that the abrasive of the magnetic paint 2 was changed to an abrasive having an average particle size of 0.04 μm and a relative polishing rate of 70. The relative polishing rate of the abrasive used here was 70, the average abrasive particle diameter (D) and the thickness of the magnetic layer (T).
Was 0.20, and the produced magnetic recording medium did not have sufficient running durability.
【0064】実施例6 <磁性塗料3> バリウムフェライト磁性粉:100重量部(保磁力=2
200Oe、σs=57emu/g、BET値50m2
/g、粒径=3.5nm、板状比=3) 塩化ビニル系樹脂(日本ゼオン(株)製:MR11
0):14重量部(重合度=300、極性基:−OSO
3K=1.5個/分子) ホスホベタイン含有ポリウレタン樹脂:4重量部(分子
量=40000、極性基濃度=1.5個/分子) −SO3Na含有ポリウレタン樹脂:2重量部(分子量
=25000、極性基濃度=1個/1分子) 研磨材α−Al2O3:10重量部(平均粒径=0.23
μm、BET値=8m2/g) カーボンブラック(コロンビアン(株)製:セバカーブ
MT):3重量部(平均粒径=350nm、BET値=
7m2/g、DBP吸油量=41ml/100g) ソルビタンモノステアレート:3重量部 イソセチルステアレート:3重量部 ブチルステアレート:2重量部 メチルエチルケトン:250重量部 トルエン:80重量部 シクロヘキサノン:80重量部 Example 6 <Magnetic paint 3> Barium ferrite magnetic powder: 100 parts by weight (coercive force = 2
200 Oe, σs = 57 emu / g, BET value 50 m 2
/ G, particle size = 3.5 nm, plate ratio = 3) Vinyl chloride resin (manufactured by Zeon Corporation: MR11)
0): 14 parts by weight (degree of polymerization = 300, polar group: —OSO)
3 K = 1.5 / molecule) Phosphobetaine-containing polyurethane resin: 4 parts by weight (molecular weight = 40000, polar group concentration = 1.5 / molecule) -SO 3 Na-containing polyurethane resin: 2 parts by weight (molecular weight = 25,000) , Polar group concentration = 1 / molecule) Abrasive α-Al 2 O 3 : 10 parts by weight (average particle size = 0.23)
μm, BET value = 8 m 2 / g) Carbon black (manufactured by Columbian Co., Ltd .: Sevacarb MT): 3 parts by weight (average particle size = 350 nm, BET value =
7 m 2 / g, DBP oil absorption = 41 ml / 100 g) Sorbitan monostearate: 3 parts by weight Isocetyl stearate: 3 parts by weight Butyl stearate: 2 parts by weight Methyl ethyl ketone: 250 parts by weight Toluene: 80 parts by weight Cyclohexanone: 80 parts by weight Department
【0065】上記組成物を混練処理した後、サンドグラ
インダーミルにて分散を行い磁性塗料3を作製した。After kneading the above composition, the composition was dispersed in a sand grinder mill to prepare a magnetic coating material 3.
【0066】まず、実施例1と同様の非磁性塗料を表面
粗さ(Ra)=9nm、厚さ62μmのPETフィルム
に押し出しダイノズル方式で乾燥後の膜厚が1.5μm
になるように塗布し、100℃で乾燥後、放射線照射
(5Mrad)を行った。同様にもう一方の面も形成し
両面非磁性層のロールを作製した。First, the same non-magnetic paint as in Example 1 was extruded onto a PET film having a surface roughness (Ra) of 9 nm and a thickness of 62 μm, and the film thickness after drying was 1.5 μm by a die nozzle method.
After drying at 100 ° C., radiation irradiation (5 Mrad) was performed. Similarly, the other surface was formed, and a roll of a double-sided nonmagnetic layer was prepared.
【0067】次に、磁性塗料3にコロネートL(日本ポ
リウレタン工業(株)製)を4重量部添加し、このロー
ルに押し出しダイノズル方式で乾燥後の膜厚が0.3μ
mになるように塗布し無配向磁石にて無配向化を行い、
100℃で乾燥後、線圧300kg/cm、温度90℃
にてカレンダー処理を行い片面の塗膜を形成した。同様
にもう一方の面も形成し、両面磁性層の原反ロールを作
製した。Next, 4 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the magnetic coating material 3, and the roll was extruded into this roll with a thickness of 0.3 μm after drying by a die nozzle method.
m and de-oriented by a non-oriented magnet,
After drying at 100 ° C, linear pressure 300kg / cm, temperature 90 ° C
To form a coating film on one side. Similarly, the other side was formed, and a raw roll of a double-sided magnetic layer was produced.
【0068】この原反ロールをディスク状に打ち抜き、
70℃24hrの条件で熱硬化を行いディスクを作製し
た。ここで磁性層に用いた研磨材の相対研磨速度は45
0、研磨材平均粒径(D)と磁性層膜厚(T)との関係
値D/Tは0.77で、作製した磁気記録媒体は走行耐
久性が優れていた。This raw roll is punched into a disk shape,
Thermal curing was performed at 70 ° C. for 24 hours to produce a disk. Here, the relative polishing rate of the abrasive used for the magnetic layer is 45.
0, the relation value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 0.77, and the produced magnetic recording medium was excellent in running durability.
【0069】実施例7 磁性塗料3の研磨材を平均粒径0.12μm、相対研磨
速度270の研磨材に、磁性層膜厚を0.2μmに変更
した以外は実施例6と同様にしてディスクを作製した。
ここで用いた研磨材の相対研磨速度は270、研磨材平
均粒径(D)と磁性層膜厚(T)との関係値D/Tは
0.60で、作製した磁気記録媒体は走行耐久性が優れ
ていた。 Example 7 A disk was prepared in the same manner as in Example 6, except that the abrasive of the magnetic paint 3 was an abrasive having an average particle size of 0.12 μm and a relative polishing rate of 270, and the thickness of the magnetic layer was changed to 0.2 μm. Was prepared.
The relative polishing rate of the abrasive used here was 270, the relation value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 0.60, and the produced magnetic recording medium had running durability. The character was excellent.
【0070】比較例7 磁性塗料3の研磨材を平均粒径0.19μm、相対研磨
速度170の研磨材に変更した以外は実施例6と同様に
してディスクを作製した。ここで用いた研磨材は研磨材
平均粒径(D)と磁性層膜厚(T)との関係値D/Tは
0.63であったが、相対研磨速度が170であったた
め、作製した磁気記録媒体は十分な走行耐久性が得られ
なかった。 Comparative Example 7 A disk was prepared in the same manner as in Example 6, except that the abrasive of the magnetic paint 3 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 170. The abrasive used here was manufactured because the relative value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 0.63, but the relative polishing rate was 170. The magnetic recording medium did not have sufficient running durability.
【0071】比較例8 磁性塗料3の研磨材を平均粒径0.14μm、相対研磨
速度420の研磨材に変更した以外は実施例6と同様に
してディスクを作製した。ここで用いた研磨材の相対研
磨速度は420であったが、研磨材平均粒径(D)と磁
性層膜厚(T)との関係値D/Tが0.46であったた
め、作製した磁気記録媒体は十分な走行耐久性が得られ
なかった。 Comparative Example 8 A disk was produced in the same manner as in Example 6 except that the abrasive of the magnetic paint 3 was changed to an abrasive having an average particle diameter of 0.14 μm and a relative polishing rate of 420. The relative polishing rate of the abrasive used here was 420, but the relative value D / T between the average particle size (D) of the abrasive and the thickness (T) of the magnetic layer was 0.46. The magnetic recording medium did not have sufficient running durability.
【0072】比較例9 磁性塗料3の研磨材を平均粒径0.04μm、相対研磨
速度70の研磨材に磁性層膜厚0.2μmに変更した以
外は実施例6と同様にしてディスクを作製した。ここで
用いた研磨材の相対研磨速度は70、研磨材平均粒径
(D)と磁性層膜厚(T)との関係値D/Tは0.20
で、作製した磁気記録媒体は良好な走行耐久性が得られ
なかった。 Comparative Example 9 A disk was produced in the same manner as in Example 6, except that the abrasive of the magnetic paint 3 was changed to an abrasive having an average particle diameter of 0.04 μm and a relative polishing rate of 70 to a magnetic layer thickness of 0.2 μm. did. The relative polishing rate of the abrasive used here was 70, and the relation value D / T between the average particle diameter (D) of the abrasive and the thickness (T) of the magnetic layer was 0.20.
Thus, the produced magnetic recording medium did not have good running durability.
【0073】実施例8 <非磁性層塗料2> α−Fe2O3(戸田工業(株)製:DPN−250B
W):80重量部(平均短軸径=23nm、BET=5
5m2/g) カーボンブラック(三菱化学(株)製:#850B):
20重量部(平均粒径=16nm、BET=200m2
/g、DBP吸油量=70ml/100g) α−Al2O3(住友化学工業(株)製:HIT60
A):5重量部(平均粒径=0.18μm、BET=1
2m2/g) 放射線感応型塩化ビニル系樹脂(東洋紡績(株)製:T
B0246 30%溶液):16重量部(重合度=30
0、極性基:−OSO3K=1.5個/分子) 放射線感応型ウレタン系樹脂(東洋紡績(株)製:TB
0242 35%溶液):8重量部(分子量=2500
0、極性基:次亜リン酸ナトリウム=1個/1分子) 3官能アクリルモノマー(三洋化成工業(株)製:TA
505):4重量部 MEK:120重量部 トルエン:120重量部 シクロヘキサノン:60重量部 Example 8 <Non-magnetic layer coating material 2> α-Fe 2 O 3 (manufactured by Toda Kogyo KK: DPN-250B)
W): 80 parts by weight (average minor axis diameter = 23 nm, BET = 5)
5 m 2 / g) Carbon black (manufactured by Mitsubishi Chemical Corporation: # 850B):
20 parts by weight (average particle size = 16 nm, BET = 200 m 2)
/ G, DBP oil absorption = 70 ml / 100 g) α-Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd .: HIT60)
A): 5 parts by weight (average particle size = 0.18 μm, BET = 1)
2m 2 / g) Radiation-sensitive vinyl chloride resin (Toyobo Co., Ltd .: T
B0246 30% solution): 16 parts by weight (degree of polymerization = 30)
0, polar group: -OSO 3 K = 1.5 / molecule) Radiation-sensitive urethane resin (Toyobo Co., Ltd .: TB
0242 35% solution): 8 parts by weight (molecular weight = 2500)
0, polar group: sodium hypophosphite = 1 / molecule) Trifunctional acrylic monomer (manufactured by Sanyo Chemical Industries, Ltd .: TA)
505): 4 parts by weight MEK: 120 parts by weight Toluene: 120 parts by weight Cyclohexanone: 60 parts by weight
【0074】上記組成物を混練処理した後、サンドグラ
インダーミルにて分散を行った。次に下記添加剤・溶剤
を加え粘度調整を行い非磁性塗料2を作製した。 ブチルステアレート:1重量部 ステアリン酸:1重量部 MEK:40重量部 トルエン:40重量部 シクロヘキサノン:40重量部After kneading the above composition, it was dispersed in a sand grinder mill. Next, the following additives and solvents were added to adjust the viscosity, and a non-magnetic coating material 2 was prepared. Butyl stearate: 1 part by weight Stearic acid: 1 part by weight MEK: 40 parts by weight Toluene: 40 parts by weight Cyclohexanone: 40 parts by weight
【0075】<磁性塗料4> Fe系金属磁性粉:100重量部(Hc=1830O
e、σs=130emu/g、BET値=57m2/
g、平均長軸長=0.10μm、Fe/Co/Al/Y
=100/10/5/2(重量比)) 塩化ビニル系共重合体(日本ゼオン(株)製:MR11
0):10重量部(重合度=300、極性基:−OSO
3K=1.5個/分子) −SO3Na含有ポリウレタン樹脂:7重量部(Mn=
25000、極性基濃度=1個/1分子) α−Al2O3:12重量部(平均粒径=0.12μm、
BET=20m2/g) ミリスチン酸:2重量部 MEK:90重量部 トルエン:90重量部 シクロヘキサノン:120重量部<Magnetic paint 4> Fe-based metal magnetic powder: 100 parts by weight (Hc = 1830O)
e, σs = 130 emu / g, BET value = 57 m 2 /
g, average major axis length = 0.10 μm, Fe / Co / Al / Y
= 100/10/5/2 (weight ratio)) Vinyl chloride copolymer (manufactured by Zeon Corporation: MR11)
0): 10 parts by weight (degree of polymerization = 300, polar group: —OSO)
3 K = 1.5 / molecule) -SO 3 Na-containing polyurethane resin: 7 parts by weight (Mn =
Α-Al 2 O 3 : 12 parts by weight (average particle diameter = 0.12 μm, 25000, polar group concentration = 1 / molecule)
BET = 20 m 2 / g) Myristic acid: 2 parts by weight MEK: 90 parts by weight Toluene: 90 parts by weight Cyclohexanone: 120 parts by weight
【0076】上記組成物を混練処理した後、サンドグラ
イダーミルにて分散を行った。次に下記添加剤・溶剤を
加え粘度調整を行い磁性塗料4を作成した。 ブチルステアレート:1重量部 ステアリン酸:1重量部 MEK:110重量部 トルエン:110重量部 シクロヘキサノン:160重量部After the above composition was kneaded, it was dispersed in a sand glider mill. Next, the following additives and solvents were added to adjust the viscosity to prepare a magnetic paint 4. Butyl stearate: 1 part by weight Stearic acid: 1 part by weight MEK: 110 parts by weight Toluene: 110 parts by weight Cyclohexanone: 160 parts by weight
【0077】<バックコート層用塗料> カーボンブラック:80重量部(コロンビアンカーボン
社製:Conductex SC 平均粒径=20n
m、BET=220m2/g) カーボンブラック:1重量部(コロンビアンカーボン社
製:SevacarbMT 平均粒径=350nm、B
ET=8m2/g) α−Fe2O3(戸田工業(株)製:TF100、平均粒
径=0.1μm):1重量部 塩化ビニル−酢酸ビニル−ビニルアルコール共重合体:
65重量部(モノマー重量比=92:3:5、平均重合
度=420) ポリエステルポリウレタン樹脂(東洋紡績(株)製:U
R−8300):35重量部 MEK:260重量部 トルエン:260重量部 シクロヘキサノン:260重量部<Coating for Back Coat Layer> Carbon black: 80 parts by weight (Conductex SC, manufactured by Columbian Carbon Co., Ltd.)
m, BET = 220 m 2 / g) Carbon black: 1 part by weight (manufactured by Columbian Carbon Co., Ltd .: SevacarbMT) Average particle size = 350 nm, B
ET = 8 m 2 / g) α-Fe 2 O 3 (manufactured by Toda Kogyo Co., Ltd .: TF100, average particle size = 0.1 μm): 1 part by weight vinyl chloride-vinyl acetate-vinyl alcohol copolymer:
65 parts by weight (weight ratio of monomer = 92: 3: 5, average degree of polymerization = 420) Polyester polyurethane resin (manufactured by Toyobo Co., Ltd .: U
R-8300): 35 parts by weight MEK: 260 parts by weight Toluene: 260 parts by weight Cyclohexanone: 260 parts by weight
【0078】上記組成物を混練処理した後、サンドグラ
イダーミルにて分散を行った。次に下記添加剤・溶剤を
加え粘度調整を行った。 ステアリン酸:1重量部 ミリスチン酸:1重量部 ステアリン酸ブチル:2重量部 MEK:210重量部 トルエン:210重量部 シクロヘキサノン:210重量部After the above composition was kneaded, it was dispersed in a sand glider mill. Next, the following additives and solvents were added to adjust the viscosity. Stearic acid: 1 part by weight Myristic acid: 1 part by weight Butyl stearate: 2 parts by weight MEK: 210 parts by weight Toluene: 210 parts by weight Cyclohexanone: 210 parts by weight
【0079】まず6.1μm厚のPETフィルムに最初
に非磁性塗料2を押し出しダイノズル方式にて乾燥膜厚
が2.0μmとなるように塗布し、乾燥温度100℃で
乾燥後、温度100℃線圧300kg/cmにてカレン
ダー処理を行い、最後に電子線照射(5Mrad)を行
い、非磁性層原反を作成した。次に磁性塗料4にコロネ
ートL(日本ポリウレタン工業(株)製)を4重量部添
加し、バックコート塗料100重量部に1重量部を加
え、非磁性層原反の上に磁性塗料4を押し出しダイノズ
ル方式にて乾燥膜厚が0.20μmとなるように塗布
し、配向を行い、乾燥温度100℃で塗膜を乾燥させた
後、温度100℃線圧300kg/cmにてカレンダー
処理を行った。次に磁性層と反対のベース面にバックコ
ート塗料を押し出しダイノズル方式にて乾燥膜厚が0.
5μmとなるように塗布し、原反ロールを作成した。First, a non-magnetic coating material 2 is first extruded onto a 6.1 μm-thick PET film by a die nozzle method so as to have a dry film thickness of 2.0 μm, dried at a drying temperature of 100 ° C., and then dried at a temperature of 100 ° C. A calender treatment was performed at a pressure of 300 kg / cm, and finally an electron beam irradiation (5 Mrad) was performed to prepare a nonmagnetic layer raw material. Next, 4 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the magnetic paint 4, 1 part by weight was added to 100 parts by weight of the back coat paint, and the magnetic paint 4 was extruded on the non-magnetic layer raw material. Coating was performed by a die nozzle method so that the dry film thickness became 0.20 μm, orientation was performed, and the coating film was dried at a drying temperature of 100 ° C., and then calendered at a temperature of 100 ° C. and a linear pressure of 300 kg / cm. . Next, the back coat paint was extruded onto the base surface opposite to the magnetic layer, and the dry film thickness was reduced to 0.
It was applied so as to have a thickness of 5 μm to prepare a raw roll.
【0080】このロールを24時間常温にて放置後、6
0℃の加熱オーブン中にて24時間硬化した後、1/2
インチ幅に切断してDLTカセットに組み込み、磁気テ
ープサンプルとした。After leaving this roll at room temperature for 24 hours,
After curing for 24 hours in a heating oven at 0 ° C.,
It was cut into inch width and assembled into a DLT cassette to obtain a magnetic tape sample.
【0081】ここで磁性層に用いた研磨材の相対研磨速
度は270、研磨材平均粒径(D)と磁性層膜厚(T)
との関係値D/Tは0.60で、作製した磁気記録媒体
は走行耐久性、ヘッド付着特性が優れていた。Here, the relative polishing rate of the abrasive used for the magnetic layer was 270, the average abrasive particle diameter (D) and the thickness of the magnetic layer (T).
Was 0.60, and the produced magnetic recording medium was excellent in running durability and head adhesion properties.
【0082】実施例9 磁性塗料4の研磨材を平均粒径0.14μm、相対研磨
速度420の研磨材に変更した以外は実施例8と同様に
してテープサンプルを作製した。ここで用いた研磨材の
相対研磨速度は420、研磨材平均粒径(D)と磁性層
膜厚(T)との関係値D/Tが0.70で、作製した磁
気記録媒体は走行耐久性、ヘッド付着特性が優れてい
た。 Example 9 A tape sample was produced in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle diameter of 0.14 μm and a relative polishing rate of 420. The relative polishing rate of the abrasive used here was 420, the relation value D / T between the abrasive average particle diameter (D) and the thickness of the magnetic layer (T) was 0.70, and the produced magnetic recording medium had running durability. Properties and head adhesion properties were excellent.
【0083】実施例10 磁性塗料4の研磨材を平均粒径0.19μm、相対研磨
速度600の研磨材に変更した以外は実施例8と同様に
してテープサンプルを作製した。ここで用いた研磨材の
相対研磨速度は600、研磨材平均粒径(D)と磁性層
膜厚(T)との関係値D/Tは0.95で、作製した磁
気記録媒体は走行耐久性、ヘッド付着特性が優れてい
た。 Example 10 A tape sample was prepared in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 600. The relative polishing rate of the abrasive used here was 600, the relation value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 0.95, and the produced magnetic recording medium had running durability. Properties and head adhesion properties were excellent.
【0084】実施例11 磁性塗料4の研磨材を平均粒径0.23μm、相対研磨
速度450の研磨材に変更した以外は実施例8と同様に
してテープサンプルを作製した。ここで用いた研磨材の
相対研磨速度は450、研磨材平均粒径(D)と磁性層
膜厚(T)との関係値D/Tは1.15で、作製した磁
気記録媒体は走行耐久性、ヘッド付着特性が優れてい
た。 Example 11 A tape sample was prepared in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle size of 0.23 μm and a relative polishing rate of 450. The relative polishing rate of the abrasive used here was 450, the relation value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 1.15, and the produced magnetic recording medium had running durability. Properties and head adhesion properties were excellent.
【0085】比較例10 磁性塗料4の研磨材を平均粒径0.19μm、相対研磨
速度170の研磨材に変更した以外は実施例8と同様に
してテープサンプルを作製した。ここで用いた研磨材は
研磨材平均粒径(D)と磁性層膜厚(T)との関係値D
/Tは0.95であったが、相対研磨速度が170であ
ったため、作製した磁気記録媒体は十分な走行耐久性、
ヘッド付着特性が得られなかった。 Comparative Example 10 A tape sample was prepared in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 170. The abrasive used here is a relational value D between the abrasive average particle diameter (D) and the magnetic layer thickness (T).
/ T was 0.95, but since the relative polishing rate was 170, the produced magnetic recording medium had sufficient running durability,
No head adhesion characteristics were obtained.
【0086】比較例11 磁性塗料4の研磨材を平均粒径0.04μm、相対研磨
速度70の研磨材に変更した以外は実施例8と同様にし
てテープサンプルを作製した。ここで用いた研磨材の相
対研磨速度が70、研磨材平均粒径(D)と磁性層膜厚
(T)との関係値D/Tは0.20で、作製した磁気記
録媒体は十分な走行耐久性、ヘッド付着特性が得られな
かった。 Comparative Example 11 A tape sample was produced in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle size of 0.04 μm and a relative polishing rate of 70. The relative polishing rate of the abrasive used here was 70, and the relation value D / T between the average particle diameter (D) of the abrasive and the thickness (T) of the magnetic layer was 0.20. Running durability and head adhesion characteristics could not be obtained.
【0087】比較例12 磁性塗料4の研磨材を平均粒径0.23μm、相対研磨
速度50の研磨材に変更した以外は実施例8と同様にし
てテープサンプルを作製した。ここで用いた研磨材は研
磨材平均粒径(D)と磁性層膜厚(T)との関係値D/
Tは1.15であったが、相対研磨速度が50であった
ため、作製した磁気記録媒体は十分な走行耐久性、ヘッ
ド付着特性が得られなかった。 Comparative Example 12 A tape sample was prepared in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle size of 0.23 μm and a relative polishing rate of 50. The abrasive used here is a relational value D / between the abrasive average particle diameter (D) and the magnetic layer thickness (T).
Although T was 1.15, since the relative polishing rate was 50, the produced magnetic recording medium could not obtain sufficient running durability and head adhesion characteristics.
【0088】比較例13 磁性塗料4の研磨材を平均粒径0.35μm、相対研磨
速度80の研磨材に変更した以外は実施例8と同様にし
てテープサンプルを作製した。ここで用いた研磨材の相
対研磨速度は80、研磨材平均粒径(D)と磁性層膜厚
(T)との関係値D/Tは1.75で、作製した磁気記
録媒体は十分な走行耐久性、ヘッド付着特性が得られな
かった。 Comparative Example 13 A tape sample was prepared in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle diameter of 0.35 μm and a relative polishing rate of 80. The relative polishing rate of the abrasive used here was 80, and the relationship value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 1.75. Running durability and head adhesion characteristics could not be obtained.
【0089】比較例14 磁性塗料4の研磨材を平均粒径0.36μm、相対研磨
速度220の研磨材に変更した以外は実施例8と同様に
してテープサンプルを作製した。ここで用いた研磨材の
相対研磨速度は220、研磨材平均粒径(D)と磁性層
膜厚(T)との関係値D/Tは1.80で、作製した磁
気記録媒体は十分な走行耐久性、ヘッド付着特性が得ら
れなかった。 Comparative Example 14 A tape sample was produced in the same manner as in Example 8, except that the abrasive of the magnetic paint 4 was changed to an abrasive having an average particle diameter of 0.36 μm and a relative polishing rate of 220. The relative polishing rate of the abrasive used here was 220, and the relation value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) was 1.80. Running durability and head adhesion characteristics could not be obtained.
【0090】実施例12 <磁性塗料5> Fe系金属磁性粉:100重量部(Hc=1680O
e、σs=125emu/g、BET値=58m2/
g、平均長軸長=0.15μm、Fe/Co/Ni/A
l/Si=100/5/3/4/1(重量比)) 塩化ビニル系共重合体(日本ゼオン(株)製:MR11
0):10重量部(重合度=300、極性基:−OSO
3K=1.5個/分子) −SO3Na含有ポリウレタン樹脂:7重量部(Mn=
25000、極性基濃度=1個/1分子) α−Al2O3:12重量部(平均粒径=0.23μm、
相対研磨速度=450、BET=8m2/g) ミリスチン酸:2重量部 MEK:90重量部 トルエン:90重量部 シクロヘキサノン:120重量部 Example 12 <Magnetic paint 5> Fe-based metal magnetic powder: 100 parts by weight (Hc = 1680O)
e, σs = 125 emu / g, BET value = 58 m 2 /
g, average major axis length = 0.15 μm, Fe / Co / Ni / A
1 / Si = 100/5/3/4/1 (weight ratio)) Vinyl chloride copolymer (manufactured by Zeon Corporation: MR11)
0): 10 parts by weight (degree of polymerization = 300, polar group: —OSO)
3 K = 1.5 / molecule) -SO 3 Na-containing polyurethane resin: 7 parts by weight (Mn =
Α-Al 2 O 3 : 12 parts by weight (average particle diameter = 0.23 μm, 25000, polar group concentration = 1 / molecule)
Relative polishing rate = 450, BET = 8 m 2 / g) Myristic acid: 2 parts by weight MEK: 90 parts by weight Toluene: 90 parts by weight Cyclohexanone: 120 parts by weight
【0091】上記組成物を混練処理した後、サンドグラ
インダーミルにて分散を行った。次に下記添加剤・溶剤
を加え粘度調整を行い磁性塗料5を作成した。 ブチルステアレート:1重量部 ステアリン酸:1重量部 MEK:110重量部 トルエン:110重量部 シクロヘキサノン:160重量部After kneading the above composition, it was dispersed in a sand grinder mill. Next, the following additives and solvents were added to adjust the viscosity, and magnetic paint 5 was prepared. Butyl stearate: 1 part by weight Stearic acid: 1 part by weight MEK: 110 parts by weight Toluene: 110 parts by weight Cyclohexanone: 160 parts by weight
【0092】まず8.0μm厚のPETフィルムに最初
に非磁性塗料2を押し出しダイノズル方式にて乾燥膜厚
が2.0μmとなるように塗布し、乾燥温度100℃で
乾燥後、温度100℃線圧300kg/cmにてカレン
ダー処理を行い、最後に電子線照射(5Mrad)を行
い、非磁性層原反を作成した。次に磁性塗料5にコロネ
ートL(日本ポリウレタン工業(株)製)を4重量部添
加し、バックコート塗料100重量部に1重量部を加
え、非磁性層原反の上に磁性塗料を押し出しダイノズル
方式にて乾燥膜厚が0.30μmとなるように塗布し、
配向を行い、乾燥温度100℃で塗膜を乾燥させた後、
温度100℃線圧300kg/cmにてカレンダー処理
を行った。次に磁性層と反対のベース面にバックコート
塗料を押し出しダイノズル方式にて乾燥膜厚が0.5μ
mとなるように塗布し、原反ロールを作成した。First, a non-magnetic coating material 2 was first extruded onto an 8.0 μm-thick PET film by a die nozzle method so as to have a dry film thickness of 2.0 μm, dried at a drying temperature of 100 ° C., and then dried at a temperature of 100 ° C. A calendering process was performed at a pressure of 300 kg / cm, and finally, electron beam irradiation (5 Mrad) was performed to prepare a nonmagnetic layer raw material. Next, 4 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the magnetic paint 5, 1 part by weight was added to 100 parts by weight of the back coat paint, and the magnetic paint was extruded onto the non-magnetic layer raw material. Apply so that the dry film thickness becomes 0.30 μm by the method,
After performing orientation and drying the coating film at a drying temperature of 100 ° C.,
A calendar treatment was performed at a temperature of 100 ° C. and a linear pressure of 300 kg / cm. Next, the back coat paint was extruded on the base surface opposite to the magnetic layer, and the dry film thickness was 0.5 μm by a die nozzle method.
m to give a raw roll.
【0093】このロールを24時間常温にて放置後、6
0℃の加熱オーブン中にて24時間硬化した後、8mm
幅に切断して、8mmカセットに組込み、磁気テープサ
ンプルとした。After leaving this roll at room temperature for 24 hours,
After curing for 24 hours in a heating oven at 0 ° C., 8 mm
It was cut into a width, assembled into an 8 mm cassette, and used as a magnetic tape sample.
【0094】ここで磁性層に用いた研磨材の相対研磨速
度は450、研磨材平均粒径(D)と磁性層膜厚(T)
との関係値D/Tは0.76で、作製した磁気記録媒体
は走行耐久性が優れていた。Here, the relative polishing rate of the abrasive used for the magnetic layer was 450, the average abrasive particle diameter (D) and the thickness of the magnetic layer (T).
Was 0.76, and the produced magnetic recording medium was excellent in running durability.
【0095】実施例13 磁性塗料5の研磨材を、平均粒径0.19μm、相対研
磨速度600の研磨材に変更した以外は実施例11と同
様にしてテープサンプルを作製した。ここで用いた研磨
材の相対研磨速度は600、研磨材平均粒径(D)と磁
性層膜厚(T)との関係値D/Tが0.63で、作製し
た磁気記録媒体は走行耐久性が優れていた。 Example 13 A tape sample was prepared in the same manner as in Example 11, except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 600. The relative polishing rate of the abrasive used here was 600, the relation value D / T between the average particle size (D) of the abrasive and the thickness (T) of the magnetic layer was 0.63, and the produced magnetic recording medium had running durability. The character was excellent.
【0096】実施例14 磁性塗料5の研磨材を、平均粒径0.36μm、相対研
磨速度220の研磨材に変更した以外は実施例11と同
様にしてテープサンプルを作製した。ここで用いた研磨
材の相対研磨速度は220、研磨材平均粒径(D)と磁
性層膜厚(T)との関係値D/Tが1.20で、作製し
た磁気記録媒体は走行耐久性が優れていた。 Example 14 A tape sample was produced in the same manner as in Example 11, except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle diameter of 0.36 μm and a relative polishing rate of 220. The relative polishing rate of the abrasive used here was 220, the relation value D / T between the average particle diameter (D) of the abrasive and the thickness (T) of the magnetic layer was 1.20, and the produced magnetic recording medium had running durability. The character was excellent.
【0097】比較例15 磁性塗料5の研磨材を、平均粒径0.14μm、相対研
磨速度420の研磨材に変更した以外は実施例11と同
様にしてテープサンプルを作製した。ここで用いた研磨
材の相対研磨速度は420であったものの、研磨材平均
粒径(D)と磁性層膜厚(T)との関係値D/Tが0.
46であったため、作製した磁気記録媒体は十分な走行
耐久性が得られなかった。 Comparative Example 15 A tape sample was produced in the same manner as in Example 11 except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle diameter of 0.14 μm and a relative polishing rate of 420. Although the relative polishing rate of the abrasive used here was 420, the relationship value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 0.1.
As a result, the produced magnetic recording medium did not have sufficient running durability.
【0098】比較例16 磁性塗料5の研磨材を、平均粒径0.19μm、相対研
磨速度170の研磨材に変更した以外は実施例11と同
様にしてテープサンプルを作製した。ここで用いた研磨
材は研磨材平均粒径(D)と磁性層膜厚(T)との関係
値D/Tは0.63であったが、相対研磨速度が170
であったため、作製した磁気記録媒体は十分な走行耐久
性が得られなかった。 Comparative Example 16 A tape sample was prepared in the same manner as in Example 11, except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle size of 0.19 μm and a relative polishing rate of 170. The abrasive used here had a relation value D / T between the average abrasive particle diameter (D) and the magnetic layer film thickness (T) of 0.63, but had a relative polishing rate of 170.
Therefore, the produced magnetic recording medium did not have sufficient running durability.
【0099】比較例17 磁性塗料5の研磨材を、平均粒径0.23μm、相対研
磨速度50の研磨材に変更した以外は実施例11と同様
にしてテープサンプルを作製した。ここで用いた研磨材
は研磨材平均粒径(D)と磁性層膜厚(T)との関係値
D/Tは0.76であったが、相対研磨速度が50であ
ったため、作製した磁気記録媒体は十分な走行耐久性が
得られなかった。 Comparative Example 17 A tape sample was produced in the same manner as in Example 11, except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle size of 0.23 μm and a relative polishing rate of 50. The abrasive used here was produced because the relative value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 0.76, but the relative polishing rate was 50. The magnetic recording medium did not have sufficient running durability.
【0100】比較例18 磁性塗料5の研磨材を、平均粒径0.46μm、相対研
磨速度380の研磨材に変更した以外は実施例11と同
様にしてテープサンプルを作製した。ここで用いた研磨
材の相対研磨速度は380であったものの、研磨材平均
粒径(D)と磁性層膜厚(T)との関係値D/Tは1.
53であったため、作製した磁気記録媒体は十分な走行
耐久性が得られなかった。 Comparative Example 18 A tape sample was prepared in the same manner as in Example 11, except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle diameter of 0.46 μm and a relative polishing rate of 380. Although the relative polishing rate of the abrasive used here was 380, the relationship value D / T between the average abrasive particle diameter (D) and the magnetic layer thickness (T) was 1.
As a result, the produced magnetic recording medium did not have sufficient running durability.
【0101】比較例19 磁性塗料5の研磨材を、平均粒径0.57μm、相対研
磨速度150の研磨材に変更した以外は実施例11と同
様にしてテープサンプルを作製した。ここで用いた研磨
材は研磨材平均粒径(D)と磁性層膜厚(T)との関係
値D/Tは1.90であり、相対研磨速度も150であ
ったため、作製した磁気記録媒体は十分な走行耐久性が
得られなかった。以上の結果を下記の表1〜4に示す。 Comparative Example 19 A tape sample was prepared in the same manner as in Example 11, except that the abrasive of the magnetic paint 5 was changed to an abrasive having an average particle size of 0.57 μm and a relative polishing rate of 150. The abrasive used here had a relation value D / T between the average abrasive particle diameter (D) and the thickness of the magnetic layer (T) of 1.90 and a relative polishing rate of 150. The medium did not have sufficient running durability. The above results are shown in Tables 1 to 4 below.
【0102】[0102]
【表1】 [Table 1]
【0103】[0103]
【表2】 [Table 2]
【0104】[0104]
【表3】 [Table 3]
【0105】[0105]
【表4】 [Table 4]
【0106】[0106]
【発明の効果】本発明によれば、非磁性支持体上に、バ
インダーを含む非磁性層を塗布乾燥後に磁性層に形成
し、かつ該磁性層の膜厚が0.5μm以下である磁気記
録媒体において、磁性層に含まれる研磨材のモース硬度
が5以上で相対研磨速度が200以上の時、研磨材平均
粒径(D)と磁性層膜厚(T)との関係式(1) A=D/T (1) によって得られる値(A)が、0.55乃至1.20と
なるような研磨材を用いることにより、記録再生時にお
ける磁気記録媒体の回転数が700rpm以上のフレキ
シブルディスク状磁気記録媒体および記録再生時の磁気
記録媒体と磁気ヘッドの相対速度が1.0m/sec以
上であるテープ状磁気記録媒体において、走行耐久性、
走行性能に優れ、なおかつ高い電磁変換特性を備えた磁
気記録媒体を得ることができる。According to the present invention, there is provided a magnetic recording system wherein a non-magnetic layer containing a binder is formed on a non-magnetic support after coating and drying, and the thickness of the magnetic layer is 0.5 μm or less. In the medium, when the Mohs hardness of the abrasive contained in the magnetic layer is 5 or more and the relative polishing rate is 200 or more, the relational expression (1) between the average particle diameter (D) of the abrasive and the thickness (T) of the magnetic layer. = D / T (1) By using an abrasive whose value (A) is 0.55 to 1.20, a flexible disk having a magnetic recording medium rotation speed of 700 rpm or more during recording and reproduction is used. Running durability in a tape-shaped magnetic recording medium and a tape-shaped magnetic recording medium in which the relative speed between the magnetic recording medium and the magnetic head during recording and reproduction is 1.0 m / sec or more.
A magnetic recording medium having excellent running performance and high electromagnetic conversion characteristics can be obtained.
【図1】本発明の磁気ディスクの好適な構成例の断面図
である。FIG. 1 is a sectional view of a preferred configuration example of a magnetic disk of the present invention.
【図2】本発明のテープ状磁気記録媒体の好適な構成例
の断面図である。FIG. 2 is a sectional view of a preferred configuration example of the tape-shaped magnetic recording medium of the present invention.
【図3】本発明において耐久性試験を行う際の、環境サ
イクル条件を示すグラフである。FIG. 3 is a graph showing environmental cycle conditions when a durability test is performed in the present invention.
1 磁気ディスク 2 テープ状磁気記録媒体 10,110 非磁性支持体 21,25,121 非磁性下地層 31,35,131 磁性層 140 バックコート層 DESCRIPTION OF SYMBOLS 1 Magnetic disk 2 Tape-shaped magnetic recording medium 10,110 Non-magnetic support 21,25,121 Non-magnetic underlayer 31,35,131 Magnetic layer 140 Back coat layer
Claims (5)
磁性層を塗布乾燥後に磁性層を形成し、かつ該磁性層の
膜厚が0.5μm以下である磁気記録媒体において、磁
性層に含まれる研磨材のモース硬度が5以上で相対研磨
速度が200以上であり、このとき、研磨材平均粒径
(D)と磁性層膜厚(T)との関係式(1)によって得
られる値(A)が、0.55乃至1.20であることを
特徴とする磁気記録媒体。 A=D/T (1)1. A magnetic recording medium wherein a non-magnetic layer containing a binder is coated and dried on a non-magnetic support, and the magnetic layer has a thickness of 0.5 μm or less. The contained abrasive has a Mohs hardness of 5 or more and a relative polishing rate of 200 or more. At this time, a value obtained by the relational expression (1) between the average particle diameter (D) of the abrasive and the thickness (T) of the magnetic layer. (A) 0.55 to 1.20, a magnetic recording medium. A = D / T (1)
(Hc)が、1400乃至2600Oeである請求項1
記載の磁気記録媒体。2. The coercive force (Hc) of the magnetic powder contained in the magnetic layer is from 1400 to 2600 Oe.
The magnetic recording medium according to the above.
が、放射線によって架橋可能なバインダーを含んでいる
請求項1記載の磁気記録媒体。3. The magnetic recording medium according to claim 1, wherein the binder used for the non-magnetic layer contains a binder that can be crosslinked by radiation.
m以上のフレキシブルディスク状磁気記録媒体である請
求項1〜3のうちいずれか一項記載の磁気記録媒体。4. The rotation speed during recording and reproduction is 700 rpm
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is a flexible disk-shaped magnetic recording medium having a length of at least m.
の相対速度が1.0m/sec以上であるテープ状磁気
記録媒体である請求項1〜3のうちいずれか一項記載の
磁気記録媒体。5. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is a tape-shaped magnetic recording medium having a relative speed of 1.0 m / sec or more during recording and reproduction. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000223622A JP2001101647A (en) | 1999-07-28 | 2000-07-25 | Magnetic recording medium |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21423199 | 1999-07-28 | ||
JP11-214231 | 1999-07-28 | ||
JP2000223622A JP2001101647A (en) | 1999-07-28 | 2000-07-25 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001101647A true JP2001101647A (en) | 2001-04-13 |
Family
ID=26520205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000223622A Pending JP2001101647A (en) | 1999-07-28 | 2000-07-25 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001101647A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216149A (en) * | 2005-02-03 | 2006-08-17 | Fuji Photo Film Co Ltd | Magnetic recording medium |
US7186472B2 (en) | 2003-05-26 | 2007-03-06 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
US8124256B2 (en) | 2004-08-12 | 2012-02-28 | Hitachi Maxell, Ltd. | Magnetic recording medium |
-
2000
- 2000-07-25 JP JP2000223622A patent/JP2001101647A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7186472B2 (en) | 2003-05-26 | 2007-03-06 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
US8124256B2 (en) | 2004-08-12 | 2012-02-28 | Hitachi Maxell, Ltd. | Magnetic recording medium |
JP2006216149A (en) * | 2005-02-03 | 2006-08-17 | Fuji Photo Film Co Ltd | Magnetic recording medium |
JP4521289B2 (en) * | 2005-02-03 | 2010-08-11 | 富士フイルム株式会社 | Magnetic recording medium and magnetic recording / reproducing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003323710A (en) | Magnetic recording medium | |
US20070020490A1 (en) | Magnetic recording medium | |
JP3046580B2 (en) | Magnetic recording media | |
JP2003296915A (en) | Magnetic recording medium | |
US7300714B2 (en) | Magnetic recording medium | |
JP2001101647A (en) | Magnetic recording medium | |
JP2000155935A (en) | Magnetic recording medium | |
JPS6292128A (en) | Magnetic recording medium | |
JP3852198B2 (en) | Magnetic recording medium | |
EP1073041A1 (en) | Magnetic recording medium | |
JP2005032365A (en) | Magnetic recording medium | |
JP2007200547A (en) | Magnetic recording medium | |
JPH1196545A (en) | Magnetic tape for computer data recording | |
JP2001084570A (en) | Magnetic recording medium | |
JP2934440B2 (en) | Magnetic recording media | |
JP2001084551A (en) | Magnetic recording medium | |
JP3343265B2 (en) | Magnetic recording media | |
JP2001148111A (en) | Magnetic recording medium and manufacturing method therefor | |
JPH09293229A (en) | Magnetic tape for recording computer data | |
JP3290718B2 (en) | Magnetic recording media | |
JP3331810B2 (en) | Magnetic recording media | |
JPH06195679A (en) | Magnetic recording medium and its production | |
JPH0817037A (en) | Magnetic recording medium | |
JP2001084569A (en) | Magnetic recording medium | |
JPH06176348A (en) | Magnetic disk medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040506 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040511 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20051018 Free format text: JAPANESE INTERMEDIATE CODE: A02 |