JP2001099770A - Heat cycle testing device for shape memory alloy - Google Patents

Heat cycle testing device for shape memory alloy

Info

Publication number
JP2001099770A
JP2001099770A JP27501399A JP27501399A JP2001099770A JP 2001099770 A JP2001099770 A JP 2001099770A JP 27501399 A JP27501399 A JP 27501399A JP 27501399 A JP27501399 A JP 27501399A JP 2001099770 A JP2001099770 A JP 2001099770A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
alloy member
resistance value
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27501399A
Other languages
Japanese (ja)
Inventor
Kazuhiro Abe
一博 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP27501399A priority Critical patent/JP2001099770A/en
Publication of JP2001099770A publication Critical patent/JP2001099770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily perform in a short time heat cycle tests of a shape memory alloy member repeated a multiplicity of times. SOLUTION: This device has a holding means 2 holding a shape memory alloy member 1 which is a measurement objective and an energized heating control means 3 directly energizing the shape memory alloy member 1 itself. Furthermore, an electric resistance of the shape memory alloy member 1 changed by energized heating is measured by a resistance measuring means 6 and sent to the energized heating control means 3 as a signal E.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状記憶合金の熱
サイクル試験装置に関する。
The present invention relates to an apparatus for testing a heat cycle of a shape memory alloy.

【0002】[0002]

【従来の技術】形状記憶合金に熱を加えたときに、形状
記憶合金がどの程度の力を発生するか、又は、どの程度
動くかを、測定する試験───即ち、「形状記憶合金の
熱サイクル試験」───が、形状記憶合金等の動作性の
品質保証の面から行われてきた。
2. Description of the Related Art A test for measuring how much force a shape memory alloy generates or moves when heat is applied to the shape memory alloy. The thermal cycle test ”has been performed from the aspect of quality assurance of operability of shape memory alloys and the like.

【0003】従来、このような形状記憶合金の熱サイク
ル試験は、外部的に熱を加える方法が一般的であって、
例えば、図3に示すように、測定対象としての形状記憶
合金部材31を、貯溜容器33内の温水32と冷水に、交互に
浸して、形状記憶合金部材31の温度を上下させる方法、
あるいは、形状記憶合金部材を恒温槽内に設置して、槽
内温度を上下させる方法が、用いられてきた。
Conventionally, a heat cycle test of such a shape memory alloy is generally performed by externally applying heat.
For example, as shown in FIG. 3, a method of immersing a shape memory alloy member 31 as a measurement target in hot water 32 and cold water in a storage container 33 alternately to raise and lower the temperature of the shape memory alloy member 31,
Alternatively, a method has been used in which a shape memory alloy member is placed in a constant temperature bath to raise and lower the temperature in the bath.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の従来の
熱サイクル試験装置では、1サイクルの測定に長時間を
要するという問題があった。特に、数千回〜数十万回の
繰返し試験(例えば特性劣化試験や寿命試験等)に採用
することは不適当であった。
However, the above-mentioned conventional thermal cycle test apparatus has a problem that one cycle of measurement requires a long time. In particular, it is not suitable to be used for a repeated test of several thousand to several hundred thousand times (for example, a characteristic deterioration test or a life test).

【0005】本発明は上記1サイクルを例えば数秒以内
で行うことを可能として、熱機械分析計(TMA)等の
高精度な抵抗値測定装置の補助機器として、多数回(例
えば数千回〜数十万回)の加熱・冷却サイクルを実行す
ることが可能な試験装置の提供を、目的とする。
The present invention enables the above-described one cycle to be performed within, for example, a few seconds, and is used as an auxiliary device of a high-precision resistance measuring device such as a thermomechanical analyzer (TMA) many times (for example, several thousand times to several times). It is an object of the present invention to provide a test apparatus capable of executing 100,000 heating / cooling cycles.

【0006】[0006]

【課題を解決するための手段】そこで、本発明に係る形
状記憶合金の熱サイクル試験装置は、測定対象としての
形状記憶合金部材を保持する保持手段と;該形状記憶合
金部材自身に通電して加熱する通電加熱制御手段と;上
記通電による加熱によって変化する上記形状記憶合金部
材の電気抵抗値を、測定して、上記通電加熱制御手段に
信号を送る抵抗値測定手段と;を備えている。
SUMMARY OF THE INVENTION Therefore, a heat cycle test apparatus for a shape memory alloy according to the present invention comprises: holding means for holding a shape memory alloy member to be measured; Heating control means for heating; and resistance measuring means for measuring an electric resistance value of the shape memory alloy member changed by the heating by the current supply and sending a signal to the current control means.

【0007】[0007]

【発明の実施の形態】以下、実施の形態を示す図面に基
づき、本発明を詳説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing embodiments.

【0008】図1に於て、1は測定対象としての形状記
憶合金部材を示し、この発明に於ては、発生力(又は変
形量)と、電気抵抗値の間に、相関関係を示すような相
変態を起こす形状記憶合金部材を、測定対象とする。
In FIG. 1, reference numeral 1 denotes a shape memory alloy member to be measured, and in the present invention, a correlation is shown between the generated force (or deformation) and the electric resistance value. A shape memory alloy member that undergoes a phase transformation is an object to be measured.

【0009】2は上記形状記憶合金部材1を着脱可能に
取付けて保持する保持手段であり、例えば、コの字型の
取付本体2aと、形状記憶合金部材1の両端を、取付時
の長さを(ネジ部の螺進退等にて)、調整自在として固
着する固着部2b,2bと、から構成される。
Reference numeral 2 denotes holding means for detachably attaching and holding the shape memory alloy member 1. For example, a U-shaped attachment main body 2 a and both ends of the shape memory alloy member 1 are attached to each other at the time of attachment. (Fixed portions 2b, 2b) which are fixed so as to be adjustable (by screwing back and forth of the screw portion).

【0010】3は、形状記憶合金部材自身に通電して加
熱する通電加熱制御手段であり、配線4,5にて、形状
記憶合金部材1の両端に電気的に接続される。例えば、
マルテンサイト変態を起こす形状記憶合金では、マルテ
ンサイト相から母相へ、上記通電加熱制御手段3は相変
態させ得る加熱能力を具備している。
Reference numeral 3 denotes an energization heating control means for energizing and heating the shape memory alloy member itself, and is electrically connected to both ends of the shape memory alloy member 1 via wires 4 and 5. For example,
In a shape memory alloy that causes martensitic transformation, the heating control means 3 has a heating capacity capable of causing a phase transformation from a martensitic phase to a parent phase.

【0011】6は、上述の通電による加熱によって変化
する形状記憶合金部材1の電気抵抗値を、測定して、上
記通電加熱制御手段3に、信号Eを送る抵抗値測定手段
である。この抵抗値測定手段6は、抵抗値測定器6a
と、形状記憶合金部材1の両端に電気的に接続する配線
7,8と、上記信号Eを送るために通電加熱制御手段3
と接続する配線9とを、備える。
Reference numeral 6 denotes a resistance value measuring means for measuring an electric resistance value of the shape memory alloy member 1 which changes due to the heating by the above-described electric current and sending a signal E to the electric heating control means 3. This resistance value measuring means 6 includes a resistance value measuring device 6a
And wires 7 and 8 electrically connected to both ends of the shape memory alloy member 1, and an electric heating control means 3 for transmitting the signal E.
And a wiring 9 connected thereto.

【0012】図1に示した実施の形態に於ては、保持手
段2は、一旦取付けた形状記憶合金部材1の寸法を一定
に保持する構成である。従って、形状記憶合金部材1の
温度変化に伴って発生力が(増減)変化するが、本発明
ではこの発生力と、電気抵抗値との間の相関関係が既知
であるから、その相関データに基づいて、発生力自身を
測定することなく、電気抵抗値をウォッチングして形状
記憶合金部材の動作性を、知見できる。
In the embodiment shown in FIG. 1, the holding means 2 is configured to hold the dimensions of the shape memory alloy member 1 once fixed. Therefore, the generated force changes (increases or decreases) with the temperature change of the shape memory alloy member 1. In the present invention, since the correlation between this generated force and the electric resistance value is known, the correlation data is used. Based on this, the operability of the shape memory alloy member can be found by watching the electrical resistance value without measuring the generated force itself.

【0013】例えば、形状記憶合金部材1が圧縮状態を
形状記憶させたコイルの場合、圧縮するに伴ってこのコ
イルの電気抵抗値が減少するという特性が予め既知であ
れば、実際のコイルの発生力(変形量)を測定せずと
も、このコイルの発生力(変形量)を推定可能である。
For example, in the case where the shape memory alloy member 1 is a coil whose shape is stored in a compressed state, if the characteristic that the electric resistance value of this coil decreases with compression is known in advance, the actual coil Even without measuring the force (deformation amount), the generated force (deformation amount) of this coil can be estimated.

【0014】このようにして、形状記憶合金の電気抵抗
値を、抵抗値測定手段6にて測定して通電加熱制御手段
3に信号Eとして送信し、通電加熱制御手段3にて形状
記憶合金部材1への通電をON・OFF制御(及び恒温
槽の低温による冷却又は送風による冷却等による冷却制
御)によって、形状記憶合金部材1の発生力(又は後述
の図2に示した実施の形態での変形量)を、フィードバ
ック制御できる。
In this way, the electric resistance value of the shape memory alloy is measured by the resistance value measuring means 6 and transmitted as a signal E to the energization heating control means 3, and the shape memory alloy member is 1 by ON / OFF control (and cooling control by cooling at a low temperature or cooling by blowing air) of the shape memory alloy member 1 (or in the embodiment shown in FIG. 2 to be described later). (Deformation amount) can be feedback controlled.

【0015】しかも、測定対象(形状記憶合金部材1)
自身を直接的に通電加熱するため、1サイクルを数秒以
内で行うことが可能となり、数千回〜数十万回の寿命試
験の測定等に好適である。
Moreover, the object to be measured (shape memory alloy member 1)
Since the self-heating is carried out directly by itself, one cycle can be performed within several seconds, which is suitable for measurement of thousands to hundreds of thousands of life tests.

【0016】また、本発明では試験中に抵抗値を測定し
ているため、簡易的に測定対象(形状記憶合金部材1)
の特性評価───所定の電気抵抗値に至るならば正常と
して扱う───が可能である(図3のような従来の熱サ
イクル試験装置では不可能であった)。
In the present invention, since the resistance value is measured during the test, the object to be measured (shape memory alloy member 1) can be simplified.
(It can be treated as normal if the electrical resistance value reaches a predetermined value) (this was not possible with the conventional thermal cycle test apparatus as shown in FIG. 3).

【0017】次に、図2は本発明の他の実施の形態を示
す。形状記憶合金部材1自身に通電して加熱する通電加
熱制御手段3と、この通電加熱によって変化する形状記
憶合金部材1の電気抵抗値を測定して、通電加熱制御手
段3に信号Eを送る抵抗値測定手段6と、を具備する点
は、前述の実施の形態と同様である。しかしながら、こ
の図2では、測定対象としての形状記憶合金部材1を保
持する保持手段2が、相違している。
Next, FIG. 2 shows another embodiment of the present invention. An electric heating control means 3 for energizing and heating the shape memory alloy member 1 itself, and a resistance for sending a signal E to the electric heating control means 3 by measuring an electric resistance value of the shape memory alloy member 1 changed by the electric heating. The point including the value measuring means 6 is the same as that of the above-described embodiment. However, in FIG. 2, the holding means 2 for holding the shape memory alloy member 1 to be measured is different.

【0018】即ち、保持手段2は、形状記憶合金部材1
の両端を、(固定せずに)自由に伸縮可能に保持する構
造であって、例えば、伸縮自在な伸縮杆11から成る取付
本体2aと、上記通電加熱によって伸長(又は、逆に短
縮)した形状記憶合金部材1を、逆方向に短縮(又は伸
長)させるための復元用アクチュエータ12とを、備え
る。
That is, the holding means 2 comprises the shape memory alloy member 1
Is a structure for holding the both ends of the body freely (without fixing) so as to be able to freely expand and contract. And a restoring actuator 12 for shortening (or extending) the shape memory alloy member 1 in the opposite direction.

【0019】形状記憶合金部材1としては、その変形量
と、電気抵抗値との間に、相関関係を示すような相変態
を起こすものに、適用できる。
The shape memory alloy member 1 can be applied to a member that undergoes a phase transformation that shows a correlation between the deformation amount and the electric resistance value.

【0020】前記復元用アクチュエータ12としては、電
気で作動する往復動機構のものが好適であり、しかも、
2点鎖線にて示すように、抵抗値測定手段6の測定器6
aから信号Gを送って、復元作動させるようにするのが
望ましい。
As the restoring actuator 12, an electrically operated reciprocating mechanism is preferable.
As indicated by the two-dot chain line, the measuring device 6 of the resistance value measuring means 6
It is desirable to send the signal G from a to perform the restoration operation.

【0021】上述の図2のような構成の試験装置に於
て、通電加熱手段3によって形状記憶合金部材1に通電
されると、温度上昇して、形状記憶合金部材1の取付長
さが増加(又は減少)する。形状記憶合金部材1の取付
長さと、電気抵抗値との間の相関関係が、既知であるか
ら、その相関データに基づいて、長さ寸法(の増減)を
測定することなく、電気抵抗値をウォッチングして、形
状記憶合金部材1の動作性を、知見できる。
In the test apparatus having the structure as shown in FIG. 2, when the shape memory alloy member 1 is energized by the electric heating means 3, the temperature rises and the mounting length of the shape memory alloy member 1 increases. (Or decrease). Since the correlation between the mounting length of the shape memory alloy member 1 and the electric resistance value is known, the electric resistance value can be calculated based on the correlation data without measuring the length dimension (increase / decrease). The operability of the shape memory alloy member 1 can be found by watching.

【0022】このようにして、形状記憶合金の電気抵抗
値を、抵抗値測定手段6にて測定し、通電加熱制御手段
3に信号Eとして送信し、上記相関データに基づいて変
形量を判別し、形状記憶合金部材1への通電をON・O
FF制御し、及び、図2に例示するような冷却ファン13
による送風等にて冷却制御することで、形状記憶合金部
材1の変形量を、フィードバック制御できる。
In this way, the electric resistance value of the shape memory alloy is measured by the resistance value measuring means 6, transmitted to the electric heating control means 3 as a signal E, and the amount of deformation is determined based on the correlation data. ON / O the energization of the shape memory alloy member 1
FF control and a cooling fan 13 as illustrated in FIG.
The cooling amount is controlled by air blowing or the like, whereby the deformation amount of the shape memory alloy member 1 can be feedback controlled.

【0023】しかも、測定対象(形状記憶合金部材1)
自身を直接的に通電加熱するため、1サイクルを数秒以
内で行うことが可能となり、数千回〜数十万回の寿命試
験の測定等に好適である。そして、試験中に抵抗値を測
定しているので、簡易的に形状記憶合金部材1の特性評
価が可能である。
Moreover, the object to be measured (shape memory alloy member 1)
Since the self-heating is carried out directly by itself, one cycle can be performed within several seconds, which is suitable for measurement of thousands to hundreds of thousands of life tests. Since the resistance value is measured during the test, the characteristics of the shape memory alloy member 1 can be easily evaluated.

【0024】なお、図2に於て、復元用アクチュエータ
12の代りに、重錘(一定負荷)を用いたり、可変負荷を
用いて、形状記憶合金部材1を変形させるような熱サイ
クル試験を行うようにすることも、可能である。
Note that, in FIG.
Instead of 12, it is also possible to use a weight (constant load) or use a variable load to perform a heat cycle test that deforms the shape memory alloy member 1.

【0025】[0025]

【発明の効果】本発明は上述の構成により、1サイクル
の測定時間を、短秒間とすることが可能となって、(熱
機械分析計等の高精度な抵抗値測定装置の補助機器とし
て、)多数個の繰返しテスト(加熱・冷却サイクルテス
ト)を、短期間で可能とできる。例えば、数千回〜数十
万回の寿命試験、動作性の確認試験等を、短期間にて行
うことを可能とした。さらに、試験途中での特性評価を
行うことができる。
According to the present invention, it is possible to shorten the measurement time of one cycle to a short time by the above configuration. 2.) Multiple repetitive tests (heating / cooling cycle tests) can be performed in a short period of time. For example, thousands to hundreds of thousands of life tests and operability confirmation tests can be performed in a short period of time. Further, characteristic evaluation during the test can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention.

【図2】他の実施の形態を示す構成説明図である。FIG. 2 is a configuration explanatory view showing another embodiment.

【図3】従来例を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 形状記憶合金部材 2 保持手段 3 通電加熱制御手段 6 抵抗値測定手段 E 信号 DESCRIPTION OF SYMBOLS 1 Shape memory alloy member 2 Holding means 3 Electric heating control means 6 Resistance measuring means E signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象としての形状記憶合金部材を保
持する保持手段と、 該形状記憶合金部材自身に通電して加熱する通電加熱制
御手段と、 上記通電による加熱によって変化する上記形状記憶合金
部材の電気抵抗値を、測定して、上記通電加熱制御手段
に信号を送る抵抗値測定手段と、 を備えたことを特徴とする形状記憶合金の熱サイクル試
験装置。
1. A holding means for holding a shape memory alloy member to be measured, an energization heating control means for energizing and heating the shape memory alloy member itself, and the shape memory alloy member changed by heating by the energization. And a resistance value measuring means for measuring the electric resistance value and sending a signal to the electric heating control means.
JP27501399A 1999-09-28 1999-09-28 Heat cycle testing device for shape memory alloy Pending JP2001099770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27501399A JP2001099770A (en) 1999-09-28 1999-09-28 Heat cycle testing device for shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27501399A JP2001099770A (en) 1999-09-28 1999-09-28 Heat cycle testing device for shape memory alloy

Publications (1)

Publication Number Publication Date
JP2001099770A true JP2001099770A (en) 2001-04-13

Family

ID=17549673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27501399A Pending JP2001099770A (en) 1999-09-28 1999-09-28 Heat cycle testing device for shape memory alloy

Country Status (1)

Country Link
JP (1) JP2001099770A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075823A1 (en) * 2004-02-09 2005-08-18 The Australian National University A shape memory alloy actuator
JP2009042169A (en) * 2007-08-10 2009-02-26 Shindengen Electric Mfg Co Ltd Thermal shock test device
US8706305B2 (en) 2008-02-21 2014-04-22 Canadian Space Agency Feedback control for shape memory alloy actuators
JP2016104893A (en) * 2013-02-26 2016-06-09 ザ・ボーイング・カンパニーThe Boeing Company Systems and methods for shape memory alloy structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075823A1 (en) * 2004-02-09 2005-08-18 The Australian National University A shape memory alloy actuator
JP2009042169A (en) * 2007-08-10 2009-02-26 Shindengen Electric Mfg Co Ltd Thermal shock test device
US8706305B2 (en) 2008-02-21 2014-04-22 Canadian Space Agency Feedback control for shape memory alloy actuators
JP2016104893A (en) * 2013-02-26 2016-06-09 ザ・ボーイング・カンパニーThe Boeing Company Systems and methods for shape memory alloy structures

Similar Documents

Publication Publication Date Title
US7183784B2 (en) Integrated circuit burn-in test system and associated methods
US3652969A (en) Method and apparatus for stabilizing and employing temperature sensitive materials exhibiting martensitic transitions
US6265688B1 (en) Method of welding metals and apparatus for use therefor
JP2007522373A (en) Shape memory alloy actuator
JP7316799B2 (en) Electronic component handling equipment and electronic component testing equipment
US6593761B1 (en) Test handler for semiconductor device
JP2008182011A (en) Device and method for evaluating reliability on thermoelectric conversion system
CN108140507A (en) For the method and apparatus of test temperature compensation, barometric gradient control pressure switch
JP2001099770A (en) Heat cycle testing device for shape memory alloy
US20240248005A1 (en) Test system for evaluating thermal performance of a heatsink
JP2005189064A (en) Small-sized fatigue tester and fatigue test method
JPH09178639A (en) Device and method for thermal fatigue test
CN110431304A (en) The control method of movable device, the manufacturing method of movable device and movable device
Tuttle et al. Vibration-heating in ADR Kevlar suspension systems
US20080129322A1 (en) Soak profiling
Lagoudas et al. Experiments of thermomechanical fatigue of SMAs
JP2003042917A (en) Device for testing fatigue in miniature thermal machine
JPH03183930A (en) Energizing type heat cycle fatigue testing device for shape memory alloy
Motzki et al. Experimental investigation of high-speed/high-voltage SMA actuation
US20240361198A1 (en) Contactless device for generating compression or tension steps
JPS6146475A (en) Shape memory alloy device
US2956397A (en) hottenroth
JP3670757B2 (en) Sample temperature control method and apparatus
JP2002181679A (en) Elevated temperature hardness meter
JP3880448B2 (en) Semiconductor test apparatus and semiconductor test method