JP2001099620A - Device and method for sample inspection - Google Patents

Device and method for sample inspection

Info

Publication number
JP2001099620A
JP2001099620A JP28109199A JP28109199A JP2001099620A JP 2001099620 A JP2001099620 A JP 2001099620A JP 28109199 A JP28109199 A JP 28109199A JP 28109199 A JP28109199 A JP 28109199A JP 2001099620 A JP2001099620 A JP 2001099620A
Authority
JP
Japan
Prior art keywords
sample
light
phase
changing
projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28109199A
Other languages
Japanese (ja)
Other versions
JP3441408B2 (en
Inventor
Koji Osawa
孝治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP28109199A priority Critical patent/JP3441408B2/en
Publication of JP2001099620A publication Critical patent/JP2001099620A/en
Application granted granted Critical
Publication of JP3441408B2 publication Critical patent/JP3441408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To qualitatively inspect thickness unevenness of a sample without flawing the sample reverse surface. SOLUTION: The coherence light from a measuring light source is projected obliquely on a sample and interference fringes generated with lights reflected by the top, and reverse surfaces of the sample are inputted while shifted in phase; and thickness unevenness of the sample is analyzed by a phase shift method according to interference fringe images which are inputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェハやガ
ラスディスク等の検査試料の形状を測定する試料検査装
置に係り、殊に薄板状の検査試料の厚さむら測定に好適
な試料検査装置及び試料検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample inspection apparatus for measuring the shape of an inspection sample such as a semiconductor wafer or a glass disk, and more particularly to a sample inspection apparatus suitable for measuring thickness unevenness of a thin plate-shaped inspection sample. It relates to a sample inspection method.

【0002】[0002]

【従来技術】従来、半導体素子製造過程における半導体
ウェハ等の検査試料の厚さむらを測定するものとして
は、高精度に平面研磨された基準平面を持つ吸着台に検
査試料の裏面を密着させることにより試料の裏面と基準
平面とを一致させ、試料の表面に可干渉光を投光し、表
面と参照基準面から反射される反射光により形成される
干渉縞から表面形状を得る検査装置が知られている。
2. Description of the Related Art Conventionally, in order to measure the thickness unevenness of a test sample such as a semiconductor wafer in a semiconductor device manufacturing process, the back surface of the test sample is brought into close contact with a suction table having a highly polished reference plane. Inspection apparatuses that align the back surface of the sample with the reference plane, project coherent light onto the surface of the sample, and obtain the surface shape from interference fringes formed by the reflected light reflected from the front surface and the reference reference surface are known. Have been.

【0003】このような装置ではピエゾ素子を用いて参
照基準面を移動させ、参照基準面と試料表面の距離を変
化させることで参照光と反射光により形成される干渉縞
の位相を変化させる。そして、位相の異なる複数の干渉
縞像を基に位相シフト法により表面形状を定量的に演算
解析している。
In such an apparatus, the phase of the interference fringe formed by the reference light and the reflected light is changed by moving the reference reference plane using a piezo element and changing the distance between the reference reference plane and the sample surface. Then, based on a plurality of interference fringe images having different phases, the surface shape is quantitatively calculated and analyzed by a phase shift method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、試料裏
面を基準平面に密着させて試料を保持する場合、吸着台
と試料裏面との間に異物が混入すると、これにより表面
形状測定の誤差となったり、試料裏面に損傷を生じさせ
るという問題があった。また、接触面が多いためダスト
の付着や接触による汚れなどの化学的汚染の可能性が大
きくなる。微細なパターンを形成する半導体素子製造に
おいては、これらをできるだけ低減することが望まれて
いる。
However, when a sample is held with the back surface of the sample in close contact with the reference plane, if foreign matter enters between the suction table and the back surface of the sample, this may cause an error in surface shape measurement. However, there is a problem that the back surface of the sample is damaged. Further, since there are many contact surfaces, the possibility of chemical contamination such as adhesion of dust and dirt due to contact increases. In the manufacture of semiconductor devices for forming fine patterns, it is desired to reduce these as much as possible.

【0005】これに対し、試料を透過する光を用いるこ
とで試料表面と裏面での反射光により形成される干渉縞
を基に厚さむらを検査する検査装置が案出されている。
この装置では試料裏面を基準平面に密着させることな
く、厚さむら情報を干渉縞として検査することができ
る。
On the other hand, there has been proposed an inspection apparatus for inspecting uneven thickness based on interference fringes formed by reflected light on the front and back surfaces of a sample by using light transmitted through the sample.
In this apparatus, the thickness unevenness information can be inspected as interference fringes without bringing the back surface of the sample into close contact with the reference plane.

【0006】しかしながら、位相シフト法を用いて定量
解析を行うには位相の異なる複数の干渉縞像が必要であ
るが、試料の表裏面反射により形成される干渉縞検査の
場合、前述の検査装置のように参照基準面を移動させて
光路長を変化させることができないため、位相シフト法
を利用することは難しかった。
However, in order to perform quantitative analysis using the phase shift method, a plurality of interference fringe images having different phases are necessary. In the case of an interference fringe inspection formed by reflection on the front and back surfaces of a sample, the above-described inspection apparatus is used. As described above, it is difficult to change the optical path length by moving the reference plane, so that it was difficult to use the phase shift method.

【0007】本発明は上記従来技術を鑑み、試料裏面を
傷付けることなく、試料の厚さむらを位相シフト法によ
り定量的に検査することのできる試料検査装置及び試料
検査方法を提供することを技術課題とする。
In view of the above prior art, the present invention provides a sample inspection apparatus and a sample inspection method capable of quantitatively inspecting uneven thickness of a sample by a phase shift method without damaging the back surface of the sample. Make it an issue.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のような構成を備えることを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, the present invention is characterized by having the following configuration.

【0009】(1) 測定光源からの可干渉光を試料に
向けて斜め方向から投光する投光手段と、可干渉光の投
光によって前記試料の表面と裏面での反射光により形成
される干渉縞の位相を変化させる位相変化手段と、該位
相変化手段によって位相が変えられて形成される各干渉
縞画像を取り込む画像取得手段と、取り込んだ複数の干
渉縞画像に基づいて位相シフト法によって前記試料の厚
さむらを解析する解析手段と、を備えることを特徴とす
る。
(1) Light projecting means for projecting coherent light from a measuring light source toward a sample from an oblique direction, and formed by reflected light on the front and back surfaces of the sample by projecting the coherent light. Phase changing means for changing the phase of the interference fringes, image acquiring means for capturing each interference fringe image formed by changing the phase by the phase changing means, and a phase shift method based on the plurality of captured interference fringe images. Analyzing means for analyzing the thickness unevenness of the sample.

【0010】(2) (1)の位相変化手段は、所定の
位相変化が得られるように前記投光手段による可干渉光
の投光角度を変更する投光角度変更手段であることを特
徴とする。
(2) The phase changing means of (1) is a light projecting angle changing means for changing the light projecting angle of the coherent light by the light projecting means so as to obtain a predetermined phase change. I do.

【0011】(3) (2)の投光角度変更手段は、前
記投光手段の投光光路に配置された光学素子を駆動させ
ることで光学的に投光角度を変更することを特徴とす
る。
(3) The light projecting angle changing means of (2) optically changes the light projecting angle by driving an optical element arranged in the light projecting optical path of the light projecting means. .

【0012】(4) (2)の試料検査装置のおいて、
前記投光角度変更手段は前記照明光源を移動する移動手
段を有し、該移動手段により前記照明光源を移動させる
ことで投光角度を変更することを特徴とする。
(4) In the sample inspection apparatus of (2),
The light projecting angle changing means has a moving means for moving the illumination light source, and the light projecting angle is changed by moving the illumination light source by the moving means.

【0013】(5) (1)の位相変化ステップは、所
定の位相変化が得られるように可干渉光の投光角度を変
更することを特徴とする。
(5) In the phase changing step (1), the projection angle of the coherent light is changed so as to obtain a predetermined phase change.

【0014】(6) 測定光源からの可干渉光を試料に
向けて斜め方向から投光する投光ステップと、可干渉光
の投光によって前記試料の表面と裏面での反射光により
形成される干渉縞の位相を変化させる位相変化ステップ
と、位相が変えられて形成される各干渉縞画像を取り込
む画像取得ステップと、取り込んだ複数の干渉縞画像に
基づいて位相シフト法によって前記試料の厚さむらを解
析する解析ステップと、を備えることを特徴とする。
(6) A projecting step of projecting the coherent light from the measuring light source toward the sample from an oblique direction, and formed by reflected light from the front and back surfaces of the sample by projecting the coherent light. A phase changing step of changing the phase of the interference fringes, an image acquiring step of capturing each interference fringe image formed by changing the phase, and a thickness of the sample by a phase shift method based on the captured plurality of interference fringe images. Analysis step for analyzing unevenness.

【0015】[0015]

【発明の実施の形態】本発明について一実施形態を挙
げ、図面に基づいて以下に説明する。図1は実施形態で
ある試料検査装置の要部概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment and drawings. FIG. 1 is a schematic view of a main part of a sample inspection apparatus according to an embodiment.

【0016】測定光源1から出射される可干渉光は試料
5を透過する特性(波長)を有しており、例えば、半導
体ウェハの場合は波長が1200nm以上の赤外光を発
する半導体レーザが利用でき、ガラスディスクや石英基
板の場合は可視光を発するHe-Neレーザが利用でき
る。光源1より出射した光はエキスパンダレンズ2を通
過した後、コリメータレンズ3により平行光束にされ、
ロータリープリズム4を介して試料5に斜め方向から投
光される。ロータリープリズム4は制御部11により駆
動制御され、ロータリープリズム4の駆動により測定光
の試料5への入射角(投光角度)が変更される。試料5
は載置台12に吸着保持されるのではなく、試料5の端
部が数箇所で保持されるように載置される。
The coherent light emitted from the measuring light source 1 has a characteristic (wavelength) that transmits through the sample 5. For example, in the case of a semiconductor wafer, a semiconductor laser emitting infrared light having a wavelength of 1200 nm or more is used. In the case of a glass disk or a quartz substrate, a He—Ne laser that emits visible light can be used. The light emitted from the light source 1 passes through the expander lens 2 and is then converted into a parallel light beam by the collimator lens 3.
The light is projected from the oblique direction onto the sample 5 via the rotary prism 4. The drive of the rotary prism 4 is controlled by the control unit 11, and the angle of incidence (projection angle) of the measurement light on the sample 5 is changed by driving the rotary prism 4. Sample 5
The sample 5 is not adsorbed and held on the mounting table 12, but is mounted so that the end of the sample 5 is held at several places.

【0017】試料5に投光された光の一部は試料表面5
aで反射し、残りの測定光は試料表面5aを透過して試
料裏面5bに至る。試料裏面5bではさらに透過光の一
部が反射する。スクリーン6には試料表面5a及び試料
裏面5bでの反射光による干渉縞が形成される。
A part of the light projected on the sample 5 is
a, and the remaining measurement light passes through the sample front surface 5a and reaches the sample back surface 5b. A part of the transmitted light is further reflected on the sample back surface 5b. Interference fringes are formed on the screen 6 by light reflected on the sample front surface 5a and the sample back surface 5b.

【0018】スクリーン6上に形成された干渉縞像は撮
像レンズ7によりCCDカメラ8の撮像面に結像し、撮
像される。CCDカメラ8で撮像された干渉縞像は解析
装置9に送信され、メモリ15に記憶される。解析装置
9では記憶された干渉縞を基に位相シフト法によって試
料厚さ情報を得るための演算解析等が行われる。
The interference fringe image formed on the screen 6 is formed on the image pickup surface of the CCD camera 8 by the image pickup lens 7 and is picked up. The interference fringe image picked up by the CCD camera 8 is transmitted to the analyzer 9 and stored in the memory 15. The analysis device 9 performs arithmetic analysis and the like for obtaining sample thickness information by the phase shift method based on the stored interference fringes.

【0019】以上のような構成を備える試料検査装置に
おいて、以下にその動作を説明する。図2は測定動作の
フローチャート図である。
The operation of the sample inspection apparatus having the above configuration will be described below. FIG. 2 is a flowchart of the measurement operation.

【0020】載置台13に試料5を配置して検査を開始
する。制御部10の制御により光源1を発光させ、試料
表面5aと裏面5bで反射する反射光による干渉縞をス
クリーン6上に形成させる。スクリーン6上に形成され
た干渉縞像はCCDカメラ8で撮像され、解析装置9の
メモリ15に記憶される。
The inspection is started by placing the sample 5 on the mounting table 13. The light source 1 is caused to emit light under the control of the control unit 10, and interference fringes due to light reflected by the sample front surface 5 a and the back surface 5 b are formed on the screen 6. The interference fringe image formed on the screen 6 is captured by the CCD camera 8 and stored in the memory 15 of the analyzer 9.

【0021】1つ目の干渉縞像がメモリ15に記憶され
ると、制御部10は干渉縞の位相を変化させるべく、ロ
ータリープリズム3を駆動させ、光源1から発せられた
可干渉光の試料4への入射角度を順次変化させる。干渉
縞の強度は正弦波変化を示しているので、この場合の角
度変化は、スクリーン5上に形成される干渉縞がπ/2
分の位相だけ移動するように制御する。このようにして
干渉縞の位相をπ/2分ずつ変化させた干渉縞画像を順
次撮像し、これをメモリ15に記憶する。
When the first interference fringe image is stored in the memory 15, the control unit 10 drives the rotary prism 3 to change the phase of the interference fringe, and the sample of the coherent light emitted from the light source 1. 4 is sequentially changed. Since the intensity of the interference fringes indicates a sine wave change, the angle change in this case is such that the interference fringes formed on the screen 5 are π / 2.
It is controlled so as to move by the minute phase. In this way, the interference fringe images in which the phase of the interference fringes are changed every π / 2 are sequentially captured, and the images are stored in the memory 15.

【0022】干渉縞の位相変化と測定光の入射角度との
関係について図3を使用して説明する。図3において、
αは試料内に測定光の屈折角度、βは入射角度、λは測
定光の波長、nは試料の屈折率、tは試料厚さ、a,b
は光路長とする。
The relationship between the phase change of the interference fringes and the incident angle of the measuring light will be described with reference to FIG. In FIG.
α is the refraction angle of the measurement light in the sample, β is the incident angle, λ is the wavelength of the measurement light, n is the refractive index of the sample, t is the sample thickness, and a and b.
Is the optical path length.

【0023】光路ACBでの波数m2aと光路DBでの波
数mbでの光路差による波数差mは、
The wave number difference m by the optical path difference between the wave number m b in the wave number m 2a and the optical path DB in the optical path ACB is

【数1】 で表され、干渉縞像の移動縞数Δmは、屈折角度変更前
の波数差mと、屈折角度をΔα変化させたときの波数差
m′から、
(Equation 1) The moving fringe number Δm of the interference fringe image is represented by the wave number difference m before the refraction angle is changed and the wave number difference m ′ when the refraction angle is changed by Δα.

【数2】 となる。(Equation 2) Becomes

【0024】この式より、From this equation,

【数3】 となり、(Equation 3) Becomes

【数4】 となる。(Equation 4) Becomes

【0025】また、屈折角度α(変化量Δα)と、入射
角度β(変化量Δβ)との関係は、
The relationship between the refraction angle α (variation Δα) and the incident angle β (variation Δβ) is as follows:

【数5】 で表される。(Equation 5) It is represented by

【0026】これらの,式から、干渉縞の移動縞数
Δmに1/4,1/2,3/4,1を代入することによ
り、干渉縞の初期位相をπ/2ずつ移動させるための屈
折角度変化量Δα及び入射角度の変化量Δβが得られ
る。
From these equations, by substituting 1/4, 1/2, 3/4, 1 for the number of moving fringes .DELTA.m of the interference fringes, the initial phase of the interference fringes can be moved by .pi. / 2. The refraction angle variation Δα and the incident angle variation Δβ are obtained.

【0027】なお、入射角度を変化させることによって
測定感度も変化するが、干渉縞の1縞分を位相変化させ
るだけの入射角度変化量Δβ(Δα)では、以下に説明
するように測定感度への影響は実用上無視することがで
きる。
Note that the measurement sensitivity also changes by changing the incident angle. However, the incident angle change amount Δβ (Δα), which only changes the phase of one interference fringe, decreases the measurement sensitivity as described below. Can be neglected in practical use.

【0028】測定感度Sは、The measurement sensitivity S is

【数6】 である。1縞分(Δm=1)を位相変化させた時の測定
感度S′は、
(Equation 6) It is. The measurement sensitivity S ′ when the phase of one fringe (Δm = 1) is changed is

【0029】 となり、この式に式を代入すると、[0029] And substituting the expression into this expression,

【数8】 となる。(Equation 8) Becomes

【0030】ここで、半導体ウェハやガラスディスク等
の試料の厚さtが数百μmであるのに対して、測定光源
の波長は約600〜1300nm程度であるので、λ/
tは10-3の位の値となり、2ncosαに対して十分に
小さい。したがって、干渉縞の位相を変化させるために
入射角度を変更しても、測定感度への影響は実用上無視
できるといえる。
Here, while the thickness t of a sample such as a semiconductor wafer or a glass disk is several hundred μm, and the wavelength of the measurement light source is about 600 to 1300 nm, λ /
t is a value of the order of 10 -3 , which is sufficiently small for 2 n cos α. Therefore, even if the incident angle is changed in order to change the phase of the interference fringes, the effect on the measurement sensitivity can be practically ignored.

【0031】以上のようにして順次π/2分ずつ移動し
て得られた4つの初期位相φ(0,π/2,π,3π/
2)の異なる干渉縞像を基に、解析装置9は位相シフト
法を用いて厚さむらを測定する。
As described above, the four initial phases φ (0, π / 2, π, 3π /
Based on the different interference fringe images in 2), the analyzer 9 measures the thickness unevenness using the phase shift method.

【0032】位相シフト法は物体の二面間の変位及び、
3次元形状を非接触で計測する手法の1つである。4ス
テップの位相シフト法の場合、光強度分布が正弦波状態
となる干渉縞像を干渉縞ピッチの1/4周期(位相のπ
/2周期)ずつシフト(縞走査)させ、計4つの干渉縞
像における各画素の光強度値から干渉縞像の位相値を計
算した後、各画素で観測される高さ、変位に応じた干渉
縞像の位相変調を基に、既知の幾何関係式に代入するこ
とによって二面間の変位量を求める方法である。
The phase shift method uses a displacement between two surfaces of an object and
This is one of the methods for measuring a three-dimensional shape in a non-contact manner. In the case of the 4-step phase shift method, an interference fringe image in which the light intensity distribution is in a sinusoidal state is formed by a quarter period of the interference fringe pitch (phase π).
/ 2 periods), and after calculating the phase value of the interference fringe image from the light intensity value of each pixel in a total of four interference fringe images, it is adjusted according to the height and displacement observed at each pixel. In this method, a displacement amount between two surfaces is obtained by substituting a known geometric relational expression based on the phase modulation of an interference fringe image.

【0033】各画像(初期位相φ:0,π/2,π,3
π/2)での光強度をI0〜I3とすると、位相θは、
Each image (initial phase φ: 0, π / 2, π, 3
Assuming that the light intensity at (π / 2) is I0 to I3, the phase θ is

【数9】 であり、試料厚さtは、(Equation 9) And the sample thickness t is

【数10】 で表される。このように、位相シフト法により初期位相
の異なる4つの干渉縞像を用いて厚さむらを高さ情報と
して定量的に得ることができる。
(Equation 10) It is represented by As described above, thickness unevenness can be quantitatively obtained as height information using four interference fringe images having different initial phases by the phase shift method.

【0034】この場合も測定感度の時と同様に、1縞分
(Δm=1)を位相変化させた時の試料厚さt′は、
In this case, as in the case of the measurement sensitivity, the sample thickness t 'when the phase of one fringe (Δm = 1) is changed is:

【数11】 で表され、式を代入することで、[Equation 11] By substituting the expression,

【数12】 となる。ここでも、λ/2ntは10-3の位の値とな
り、実用領域の屈折角をαとした場合のcosαに対して
十分に小さいので、その影響は実用上無視できる程度で
ある。
(Equation 12) Becomes Also here, λ / 2nt is a value of the order of 10 −3 , which is sufficiently small with respect to cos α when the refraction angle in the practical area is α, so that the effect is practically negligible.

【0035】上述の説明ではロータリープリズム4を用
いて試料5に投光される測定光の入射角度を変更した
が、ロータリープリズム4を用いなくとも入射角度が変
化するように光源1の位置を移動させることで、同様の
効果を得ることができる。例えば、図4の変容例の概略
構成図に示すように、光源1には移動装置14が設けら
れ、制御部10により駆動制御される。光源1の移動は
コリメータレンズ3の光軸に対して垂直方向で、入射角
度が変化するように移動される。
In the above description, the incident angle of the measurement light projected on the sample 5 is changed by using the rotary prism 4, but the position of the light source 1 is moved so that the incident angle changes without using the rotary prism 4. By doing so, a similar effect can be obtained. For example, as shown in a schematic configuration diagram of a modification example of FIG. 4, the light source 1 is provided with a moving device 14, and is driven and controlled by the control unit 10. The light source 1 is moved in a direction perpendicular to the optical axis of the collimator lens 3 so that the incident angle changes.

【0036】あるいは、コリメータレンズ3によって平
行光束とされた光を試料に向けて反射するミラーを設
け、このミラーの反射角度を変化させることでも良い。
Alternatively, a mirror that reflects the light converted into a parallel light beam by the collimator lens 3 toward the sample may be provided, and the reflection angle of the mirror may be changed.

【0037】また、入射角度を変化させる代わりに、測
定光の波長を変化させることで、初期位相の異なる干渉
縞を得た後、定量解析により厚さむらを得るようにして
もよい。
Instead of changing the incident angle, the wavelength of the measurement light may be changed to obtain interference fringes having different initial phases, and then the thickness unevenness may be obtained by quantitative analysis.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、試
料裏面を傷付けることなく、試料の厚さむらを位相シフ
ト法により定量的に演算解析することができる。
As described above, according to the present invention, the thickness unevenness of the sample can be quantitatively analyzed and analyzed by the phase shift method without damaging the back surface of the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態である試料検査装置の要部概略図であ
る。
FIG. 1 is a schematic view of a main part of a sample inspection apparatus according to an embodiment.

【図2】測定動作のフローチャート図である。FIG. 2 is a flowchart of a measurement operation.

【図3】干渉縞の位相変化と測定光の入射角度との関係
を説明する図である。
FIG. 3 is a diagram illustrating a relationship between a phase change of an interference fringe and an incident angle of measurement light.

【図4】変容例の概略構成図である。FIG. 4 is a schematic configuration diagram of a modification.

【符号の説明】[Explanation of symbols]

1 光源 4 ロータリープリズム 5 試料 5a 試料表面 5b 試料裏面 8 CCDカメラ 9 解析装置 10 制御部 14 移動装置 15 メモリ Reference Signs List 1 light source 4 rotary prism 5 sample 5a sample surface 5b sample back surface 8 CCD camera 9 analyzer 10 control unit 14 moving device 15 memory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定光源からの可干渉光を試料に向けて
斜め方向から投光する投光手段と、可干渉光の投光によ
って前記試料の表面と裏面での反射光により形成される
干渉縞の位相を変化させる位相変化手段と、該位相変化
手段によって位相が変えられて形成される各干渉縞画像
を取り込む画像取得手段と、取り込んだ複数の干渉縞画
像に基づいて位相シフト法によって前記試料の厚さむら
を解析する解析手段と、を備えることを特徴とする試料
検査装置。
1. A light projecting means for projecting coherent light from a measurement light source toward a sample from an oblique direction, and interference formed by reflected light on the front and back surfaces of the sample by projecting the coherent light. Phase changing means for changing the phase of the fringe, image acquiring means for capturing each interference fringe image formed by changing the phase by the phase changing means, and a phase shift method based on the plurality of captured interference fringe images. A sample inspection apparatus, comprising: analysis means for analyzing unevenness in thickness of the sample.
【請求項2】 請求項1の位相変化手段は、所定の位相
変化が得られるように前記投光手段による可干渉光の投
光角度を変更する投光角度変更手段であることを特徴と
する試料検査装置。
2. The phase changing means according to claim 1, wherein said phase changing means changes a light projecting angle of the coherent light by said light projecting means so as to obtain a predetermined phase change. Sample inspection device.
【請求項3】 請求項2の投光角度変更手段は、前記投
光手段の投光光路に配置された光学素子を駆動させるこ
とで光学的に投光角度を変更することを特徴とする試料
検査装置。
3. The sample according to claim 2, wherein the light projecting angle changing means optically changes the light projecting angle by driving an optical element arranged in a light projecting optical path of the light projecting means. Inspection equipment.
【請求項4】 請求項2の試料検査装置のおいて、前記
投光角度変更手段は前記照明光源を移動する移動手段を
有し、該移動手段により前記照明光源を移動させること
で投光角度を変更することを特徴とする試料検査装置。
4. The sample inspection apparatus according to claim 2, wherein said light projection angle changing means has a moving means for moving said illumination light source, and said light source is moved by said moving means. A sample inspection apparatus characterized by changing the following.
【請求項5】 請求項1の位相変化ステップは、所定の
位相変化が得られるように可干渉光の投光角度を変更す
ることを特徴とする試料検査装置。
5. The sample inspection apparatus according to claim 1, wherein the phase changing step changes the projection angle of the coherent light so as to obtain a predetermined phase change.
【請求項6】 測定光源からの可干渉光を試料に向けて
斜め方向から投光する投光ステップと、可干渉光の投光
によって前記試料の表面と裏面での反射光により形成さ
れる干渉縞の位相を変化させる位相変化ステップと、位
相が変えられて形成される各干渉縞画像を取り込む画像
取得ステップと、取り込んだ複数の干渉縞画像に基づい
て位相シフト法によって前記試料の厚さむらを解析する
解析ステップと、を備えることを特徴とする試料検査方
法。
6. A light projecting step of projecting coherent light from a measurement light source toward a sample from an oblique direction, and interference formed by reflected light on the front and back surfaces of the sample by projecting the coherent light. A phase changing step of changing the phase of the fringe, an image obtaining step of capturing each interference fringe image formed by changing the phase, and a thickness unevenness of the sample by a phase shift method based on the captured plurality of interference fringe images. An analysis step of analyzing the sample.
JP28109199A 1999-10-01 1999-10-01 Sample inspection device and sample inspection method Expired - Fee Related JP3441408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28109199A JP3441408B2 (en) 1999-10-01 1999-10-01 Sample inspection device and sample inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28109199A JP3441408B2 (en) 1999-10-01 1999-10-01 Sample inspection device and sample inspection method

Publications (2)

Publication Number Publication Date
JP2001099620A true JP2001099620A (en) 2001-04-13
JP3441408B2 JP3441408B2 (en) 2003-09-02

Family

ID=17634222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28109199A Expired - Fee Related JP3441408B2 (en) 1999-10-01 1999-10-01 Sample inspection device and sample inspection method

Country Status (1)

Country Link
JP (1) JP3441408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266958A (en) * 2005-03-25 2006-10-05 Tosoh Corp Method and instrument for measuring unevenness in thickness of flat plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266958A (en) * 2005-03-25 2006-10-05 Tosoh Corp Method and instrument for measuring unevenness in thickness of flat plate
JP4559271B2 (en) * 2005-03-25 2010-10-06 東ソー株式会社 Method and apparatus for measuring thickness unevenness of flat plate

Also Published As

Publication number Publication date
JP3441408B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
KR100490325B1 (en) Apparatus for measuring characteristics of thin film by means of two-dimensional detector and method of measuring the same
TWI420068B (en) Interferometry for lateral metrology
JP4242767B2 (en) Thin film characteristic measuring apparatus using two-dimensional detector and measuring method thereof
JP4521028B2 (en) Dual-use optical side meter
TWI445919B (en) System of 2d code detection and thickness measurement for glass substrate, and method of the same
JP2004138519A (en) Film thickness measuring device, reflectivity measuring device, foreign matter inspection device, reflectivity measuring method and foreign matter inspection method
TWI394946B (en) Method and device for measuring object defect
JP3511097B2 (en) Shape measuring method and shape measuring device using optical interference
WO2009112704A1 (en) Device for the inspection of semiconductor wafers
JP2012164801A (en) Inspection apparatus and inspection method
JPH03115834A (en) Method of inspecting physical characteris- tics of thin layer
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
TW201704733A (en) Interferometric roll-off measurement using a static fringe pattern
JP3441408B2 (en) Sample inspection device and sample inspection method
JP6142996B2 (en) Via shape measuring device and via inspection device
JP2000002514A (en) Film thickness measuring apparatus, alignment sensor and alignment apparatus
JP2002296020A (en) Surface shape measuring instrument
JP3533195B2 (en) Coherent beam device for sample observation measurement
JP4255586B2 (en) Sample inspection equipment
JP4988577B2 (en) Interference system with a reference surface having a specular area
JP2003139511A (en) Interference fringe analyzing method for surface shape measurement and thickness ununiformity measurement of transparent parallel flat plate
JP4112072B2 (en) Optical measuring device and optical measuring adapter
JP3848586B2 (en) Surface inspection device
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
JP2003014433A (en) Shape measuring apparatus, control device for shape measuring apparatus, and control program for shape measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees