JP2001093765A - Method for manufacturing rear-earth permanent magnet - Google Patents

Method for manufacturing rear-earth permanent magnet

Info

Publication number
JP2001093765A
JP2001093765A JP27058999A JP27058999A JP2001093765A JP 2001093765 A JP2001093765 A JP 2001093765A JP 27058999 A JP27058999 A JP 27058999A JP 27058999 A JP27058999 A JP 27058999A JP 2001093765 A JP2001093765 A JP 2001093765A
Authority
JP
Japan
Prior art keywords
slurry
cavity
rare earth
molding
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27058999A
Other languages
Japanese (ja)
Other versions
JP4314541B2 (en
Inventor
Tsukasa Mikamoto
司 三家本
Tatsuya Sakurai
達也 櫻井
Hiroyuki Hagiwara
弘之 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27058999A priority Critical patent/JP4314541B2/en
Publication of JP2001093765A publication Critical patent/JP2001093765A/en
Application granted granted Critical
Publication of JP4314541B2 publication Critical patent/JP4314541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth magnet with little dispersion of weight by filling the cavity with slurry in every corner, even if it is a multi-cavity. SOLUTION: In manufacturing a rare-earth magnet by supplying the cavity of a molding machine with a slurry which is a mixture of magnetic powder for an R-T-B (R is one kind or two kinds or more of rare-earth elements including Y, and T is FE or Fe and Co) rare-earth magnet and a solvent, and pressurizes it for molding in a magnetic field, and sinters it after removal of the solvent contained in this molded item, the open section of the cavity being made with a die and a lower punch is sealed with a sliding member, and slurry is supplied to fill that cavity through the sliding member, filling the cavity by the relative movement of the dies and the lower punch.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類磁石用磁性
粉末を含む溶媒スラリーを成形キャビティに供給し、磁
場中で加圧成形する工程を含む希土類永久磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet including a step of supplying a solvent slurry containing a magnetic powder for a rare earth magnet to a molding cavity and press-molding in a magnetic field.

【0002】[0002]

【従来の技術】R−T−B系(RはYを含む希土類元素
のうち1種または2種以上、TはFe又はFeとCo)
希土類永久磁石は高磁気特性を得られる磁石として知ら
れており、原料合金を溶解し、鋳造して得られたインゴ
ットを粉砕、成形、焼結して製造される。原料粉末であ
る希土類永久磁石用粉末は、微粉砕後化学的に非常に活
性になるため、酸化を防止することが高い磁気特性を得
る上で重要であるが、乾式成形法によって製造した場合
には、焼結体の酸素含有量は少なくとも0.4%であ
る。これに対し、本出願人により開発された原料粉末と
鉱物油、合成油あるいは植物油からなる溶媒との混合物
(以下、スラリーと称す)を作成し、スラリー濃度を調
整後、金型のキャビティに供給し、混合物中の溶媒を濾
過しながら加圧成形を行う湿式成形法によって製造した
場合には、焼結体の酸素含有量を0.25%以下にする
ことが可能であり、適切な原料組成を選定することで、
高い保磁力iHcを維持しつつ、高い残留磁束密度Br
と最大エネルギー積(BH)maxを得ることができ
る。
2. Description of the Related Art RTB (R is one or more of rare earth elements including Y, T is Fe or Fe and Co)
Rare earth permanent magnets are known as magnets capable of obtaining high magnetic properties, and are manufactured by melting a raw material alloy, pulverizing, shaping, and sintering an ingot obtained by casting. Rare earth permanent magnet powder, which is a raw material powder, is chemically very active after pulverization, so it is important to prevent oxidation to obtain high magnetic properties. The sintered body has an oxygen content of at least 0.4%. On the other hand, a mixture (hereinafter, referred to as a slurry) of a raw material powder developed by the present applicant and a solvent composed of mineral oil, synthetic oil or vegetable oil is prepared, and the slurry concentration is adjusted before being supplied to the mold cavity. However, when the mixture is produced by a wet molding method in which the solvent in the mixture is subjected to pressure molding while filtering the solvent, the oxygen content of the sintered body can be reduced to 0.25% or less. By selecting
While maintaining a high coercive force iHc, a high residual magnetic flux density Br
And the maximum energy product (BH) max can be obtained.

【0003】希土類永久磁石の湿式成形装置として、特
開平9−94814号に開示されているものがある。こ
の装置は図3に示すように、ダイス51の上面に、配管
58を介してスラリー定量供給手段50に連結された供
給ノズル56と空気抜き(図示せず)を有しかつ駆動手
段54で摺動される供給ヘッド55を配設したものであ
る。この装置によれば、ダイス51と下パンチ52とで
所定寸法のキャビティ53を形成し、供給ヘッド55を
供給ノズル56がキャビティ53の開口部中央位置にく
るように移動し、次いで定量供給手段50を作動して、
容器57に収容されたスラリーをノズル56からキャビ
ティ53上方より供給し、供給終了後供給ヘッド55を
ダイス51上から退避させるものである。
As a wet molding apparatus for rare earth permanent magnets, there is one disclosed in JP-A-9-94814. As shown in FIG. 3, the apparatus has a supply nozzle 56 connected to a fixed amount slurry supply means 50 through a pipe 58 and an air vent (not shown) on the upper surface of a die 51, and slides with a drive means 54. A supply head 55 is provided. According to this apparatus, a cavity 53 having a predetermined size is formed by the die 51 and the lower punch 52, and the supply head 55 is moved so that the supply nozzle 56 is positioned at the center of the opening of the cavity 53. Activate,
The slurry contained in the container 57 is supplied from above the cavity 53 from the nozzle 56, and after the supply is completed, the supply head 55 is retracted from above the die 51.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記装置で
は、キャビティを満たしうる量のスラリーを供給して
も、キャビティの大きさや形状によっては、成形体の重
量に10%程度のバラツキが発生してしまう。これは、
スラリーに空気が巻込まれたり、あるいはキャビティ内
に空気が残存することによるもので、スラリーがキャビ
ティの隅々まで十分充填されないためである。特に、加
圧方向に直交する面の寸法が小さい薄肉品であったり、
あるいはリング状やアーク状の異形品に対応する形状を
有し、かつ加圧方向深さが深いようなキャビティにおい
てはこの傾向が大きい。しかも、成形時間を短縮するた
めにスラリーの供給速度を早くしようとすると一層大き
な問題となる。また、生産効率を高めるために、1つの
金型に複数のキャビティを形成した、いわゆるマルチキ
ャビティにおいて、単一の定量供給手段から分岐された
複数の供給ノズルから、マルチキャビティに同時にスラ
リーを供給する構造とした場合、各キャビティ間にスラ
リー供給量のばらつきが生じるという問題がある。これ
は、供給ノズル間ではどうしても供給速度が異なり、早
く満杯になるキャビティが出現するが、引続きスラリー
は空気抜き用隙間から漏出してしまい、他のキャビティ
への供給に供さないためである。従って本発明の目的
は、マルチキャビティであってもキャビティの隅々まで
スラリーを充填することができ、重量ばらつきのを少な
い希土類磁石を得ることのできる製造方法を提供するこ
とである。
However, in the above apparatus, even if an amount of slurry capable of filling the cavity is supplied, a variation of about 10% occurs in the weight of the compact depending on the size and shape of the cavity. I will. this is,
This is because air is trapped in the slurry or air remains in the cavity, and the slurry is not sufficiently filled to every corner of the cavity. In particular, it is a thin-walled product where the dimension of the surface orthogonal to the pressing direction is small,
Alternatively, this tendency is large in a cavity having a shape corresponding to a ring-shaped or arc-shaped deformed product and having a large depth in the pressing direction. In addition, increasing the slurry supply speed in order to shorten the molding time poses a greater problem. Further, in order to increase production efficiency, in a so-called multi-cavity in which a plurality of cavities are formed in one mold, slurry is simultaneously supplied to the multi-cavity from a plurality of supply nozzles branched from a single quantitative supply unit. In the case of the structure, there is a problem that the slurry supply amount varies among the cavities. This is because the supply speed differs between the supply nozzles and a cavity that fills quickly appears, but the slurry subsequently leaks from the air vent gap and is not supplied to another cavity. Therefore, an object of the present invention is to provide a manufacturing method capable of filling a slurry into every corner of a cavity even in a multi-cavity and obtaining a rare earth magnet with small weight variation.

【0005】[0005]

【課題を解決するための手段】本発明は、R−T−B系
(RはYを含む希土類元素のうち1種または2種以上、
TはFe又はFeとCo)希土類磁石用磁性粉末と溶媒
の混合物であるスラリーを成形機のキャビティに供給
し、磁場中で加圧成形し、この成形体に含まれる溶媒を
除去後焼結する希土類永久磁石の製造方法において、ダ
イスと下パンチで形成されるキャビティの開放部分を摺
動部材により密閉し、ダイスと下パンチの相対移動によ
りキャビティを形成しつつ、摺動部材から該キャビティ
を充填するようにスラリーを供給することを特徴として
いる。また、スラリー供給手段から密閉部材に連なる配
管内のスラリー圧力が所定値以上になった時スラリー供
給を停止するようにするとよい。なお、本発明におい
て、スラリーとは、酸化防止用に開発された前述した湿
式成形法に用いる不活性雰囲気下(窒素雰囲気など)で
溶媒中に微粉砕直後の原料粉末を投入して作成したもの
だけでなく、大気中で製造した例えば乾式成形用の乾粉
に溶媒を加えたようなものも含む。
According to the present invention, there is provided an R-T-B (R is one or more rare earth elements including Y,
T is a slurry of Fe or a mixture of Fe and Co) magnetic powder for a rare earth magnet and a solvent, is supplied to a cavity of a molding machine, is subjected to pressure molding in a magnetic field, and is sintered after removing the solvent contained in the molded body. In the method for manufacturing a rare earth permanent magnet, an open portion of a cavity formed by a die and a lower punch is sealed with a sliding member, and the cavity is filled from the sliding member while the cavity is formed by relative movement of the die and the lower punch. It is characterized in that the slurry is supplied in such a manner that Further, it is preferable that the slurry supply is stopped when the slurry pressure in the pipe connected from the slurry supply means to the sealing member becomes a predetermined value or more. In the present invention, the slurry is prepared by charging the raw powder immediately after pulverization into a solvent under an inert atmosphere (such as a nitrogen atmosphere) used in the above-mentioned wet molding method developed for preventing oxidation. Not only that, but also those obtained by adding a solvent to, for example, dry powder for dry molding produced in the atmosphere.

【0006】また、本発明においてスラリーはその濃度
が70〜85重量%のものを用いることが望ましい。ま
た、本発明は、成形機にキャビティが複数形成されるマ
ルチキャビティ方式で成形する場合にも有効に適用でき
る。なお、スラリー濃度は次の理由により上記の範囲で
あることが望ましい。スラリーの濃度が70%未満では
溶媒である油が多すぎて上澄みが生じ易くなり、原料粉
末の供給量が不安定となり、一方、85%を越えると供
給配管内で詰まりが生じやすくなるとともに、キャビテ
ィへの充填性が低下するという問題が生ずる。また、磁
気特性の点からもスラリー濃度は70〜85%の範囲が
望ましい。希土類磁石を磁場中で成形する場合、製品形
状と磁気特性に応じて横磁場成形又は縦磁場成形のいず
れかで成形が行われる。
In the present invention, it is desirable to use a slurry having a concentration of 70 to 85% by weight. Further, the present invention can be effectively applied to a case where molding is performed by a multi-cavity method in which a plurality of cavities are formed in a molding machine. The slurry concentration is desirably in the above range for the following reason. When the concentration of the slurry is less than 70%, the amount of oil as a solvent is too large, so that the supernatant is easily generated, and the supply amount of the raw material powder becomes unstable. On the other hand, when the concentration exceeds 85%, clogging easily occurs in the supply pipe, There is a problem that the filling property of the cavity is reduced. Further, from the viewpoint of magnetic properties, the slurry concentration is preferably in the range of 70 to 85%. When molding a rare earth magnet in a magnetic field, molding is performed by either horizontal magnetic field molding or vertical magnetic field molding according to the product shape and magnetic properties.

【0007】通常の加圧成形機では垂直方向から加圧す
るため、横磁場成形が適用される製品は、直方体などの
単純形状のものがほとんどであるが、縦磁場成形に比べ
て高磁気特性が得られやすい。しかし、スラリー濃度が
85%を越えると、印加磁界に対するスラリー中の微粉
の配向性が低下し、磁気特性の内特に残留磁束密度Br
が低下する。縦磁場成形では、扇形などの複雑形状の成
形体を得ることも可能であるが、横磁場成形ほどの磁気
特性を得難い。これは、磁界の印加方向と成形の加圧方
向が平行なため、いったん配向した微粉の配向性が加圧
成形時に乱されるためであり、横磁場成形に比べて残留
磁束密度Brは低いものとなるが、スラリー濃度が高い
ほど加圧成形から受ける配向の乱され方は少ないという
傾向にある。このため、縦磁場成形ではスラリー濃度が
高いほど得られる残留磁束密度Brが高くなり、特にス
ラリー濃度が70%以上でこの傾向が顕著になる。しか
し、スラリー濃度が85%を越えると、横磁場成形と同
じ理由で配向性が低下し、残留磁束密度Brは低下す
る。
[0007] Since a normal press forming machine presses in the vertical direction, most products to which the transverse magnetic field is applied have a simple shape such as a rectangular parallelepiped, but have higher magnetic characteristics than the vertical magnetic field. Easy to obtain. However, when the slurry concentration exceeds 85%, the orientation of the fine powder in the slurry with respect to the applied magnetic field decreases, and the magnetic properties, particularly the residual magnetic flux density Br
Decrease. In the vertical magnetic field molding, it is possible to obtain a molded article having a complicated shape such as a fan shape, but it is difficult to obtain magnetic properties as good as the horizontal magnetic field molding. This is because the direction of application of the magnetic field and the pressing direction of the molding are parallel, so that the orientation of the fine powder once oriented is disturbed at the time of the pressure molding, and the residual magnetic flux density Br is lower than that of the transverse magnetic field molding. However, there is a tendency that the higher the slurry concentration is, the less the disturbance of the orientation received from the pressure molding is. For this reason, in the vertical magnetic field molding, the higher the slurry concentration, the higher the obtained residual magnetic flux density Br, and especially when the slurry concentration is 70% or more, this tendency becomes remarkable. However, when the slurry concentration exceeds 85%, the orientation decreases and the residual magnetic flux density Br decreases for the same reason as in the transverse magnetic field molding.

【0008】[0008]

【発明の実施の形態】本発明の詳細を図面により説明す
る。図2に希土類永久磁石の製造工程の一例を示す。N
d−Fe−B系希土類永久磁石原料合金を微粉砕し、得
られた微粉を鉱物油の溶媒中に回収し、スラリーを作成
する。このスラリーを加圧成形に適したスラリー濃度に
調整し、成形機のキャビティに充填し、溶媒を濾過しな
がら加圧成形する。得られた成形体に含まれる溶媒を除
去後焼結し、希土類永久磁石の焼結体が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described with reference to the drawings. FIG. 2 shows an example of a manufacturing process of a rare earth permanent magnet. N
The d-Fe-B-based rare earth permanent magnet raw material alloy is finely pulverized, and the obtained fine powder is recovered in a solvent of mineral oil to prepare a slurry. This slurry is adjusted to a slurry concentration suitable for pressure molding, filled into a cavity of a molding machine, and subjected to pressure molding while filtering the solvent. After removing the solvent contained in the obtained molded body, sintering is performed to obtain a sintered body of a rare earth permanent magnet.

【0009】本発明の対象である成形工程におけるスラ
リーのキャビティへの充填方法について、マルチキャビ
ティに充填する場合を示す図1により説明する。ダイス
1には、複数(本例では4個)の下パンチ2が貫装さ
れ、下パンチとダイスの相対的移動により4個のキャビ
ティ3(3a、3b、3c、3d)が形成される。ダイ
ス1の上面には、供給ヘッド5がシリンダー等の移動手
段4によりスラリー供給位置と退避位置との間を、その
下面がダイス上面を摺動して移動するように配設され
る。
The method of filling the slurry into the cavities in the molding step, which is the subject of the present invention, will be described with reference to FIG. A plurality of (four in this example) lower punches 2 are inserted through the die 1, and four cavities 3 (3a, 3b, 3c, 3d) are formed by relative movement of the lower punch and the die. A supply head 5 is provided on the upper surface of the die 1 such that the lower surface thereof slides between the slurry supply position and the retracted position by the moving means 4 such as a cylinder, and slides on the upper surface of the die.

【0010】供給ヘッド5は、貫通した4個のスラリー
供給路6(6a、6b、6c、6d)を有する。スラリ
ー供給路6は、供給ヘッド5がダイス1上のスラリー供
給位置にある時、対応するキャビティ3に開放されるよ
うな位置に設けられる。スラリー供給手段10から供給
されるスラリーは、メイン配管11及びこれから分岐し
て各スラリー供給路6に接続された配管によりキャビテ
ィに注入することができる。スラリー供給手段10は例
えば定容積シリンダー又は容積式ポンプを用いればよ
く、スラリー100を収納した原料タンク13と連結
し、定容積シリンダーではピストンの移動量や速度、あ
るいは容積式ポンプでは原動機の回転数又は回転時間等
の作動量に応じたスラリー100を吐出することができ
る。制御装置12は、スラリー供給手段10から所望の
条件でスラリー100を供給できるように前記作動量を
設定し制御できるように構成される。すなわち、スラリ
ー供給手段10は、はぼ所定量のスラリーを所望の速度
で送り出すことができる。メイン配管11には、スラリ
ーの圧力を検出できる圧力スイッチ14が設けられてい
る。
The supply head 5 has four slurry supply paths 6 (6a, 6b, 6c, 6d) penetrating therethrough. The slurry supply path 6 is provided at a position where the supply head 5 is opened to the corresponding cavity 3 when the supply head 5 is at the slurry supply position on the die 1. The slurry supplied from the slurry supply means 10 can be injected into the cavity through the main pipe 11 and pipes branched from the main pipe 11 and connected to the respective slurry supply paths 6. The slurry supply means 10 may use, for example, a constant volume cylinder or a positive displacement pump. The slurry supply means 10 is connected to the raw material tank 13 containing the slurry 100. In the constant volume cylinder, the moving amount and speed of the piston, or in the positive displacement pump, the rotation speed of the motor Alternatively, the slurry 100 can be discharged according to an operation amount such as a rotation time. The control device 12 is configured to set and control the operation amount so that the slurry supply unit 10 can supply the slurry 100 under desired conditions. That is, the slurry supply means 10 can send out a predetermined amount of slurry at a desired speed. The main pipe 11 is provided with a pressure switch 14 capable of detecting the pressure of the slurry.

【0011】以下、上記の装置による成形動作について
説明する。この成形装置は、下パンチ2の上部がダイス
1の上面とほぼ一致し、キャビティ3が形成されていな
い状態をスラリー供給のための初期位置(図1(a))
とする。スラリー供給動作は、移動手段4を作動させ、
供給ヘッド5をスラリー供給のための所定位置に摺動す
ることから開始する。次いで、下パンチ2を下降させて
キャビティを形成する。ほぼ同じタイミングで、スラリ
ー供給手段10を作動させ、原料タンク13内のスラリ
ー100を、配管11を通じてスラリー供給路6からキ
ャビティ3に供給する。スラリー供給手段10からのス
ラリー供給速度を下パンチの下降速度に合せて調整し
て、キャビティの容量に対応する量のスラリーが供給さ
れるようにする。所定寸法のキャビティが形成されるま
での間、キャビティの容量は徐々に増加するが、それを
埋めるように刻々とスラリーが充填されていくので、キ
ャビティ内にほとんど空間は存しないことになる。即
ち、スラリー供給中には、キャビティの大きさや形状を
考慮する必要はなく、最終的なキャビティの大きさや形
状がいかなるものであっても対応することができる。ま
た、供給ヘッドには空気抜きを設けず、キャビティは密
閉状態になるようにしているので、形成されるキャビテ
ィは負圧となり、スラリーが吸引されるように充填され
ていく。
Hereinafter, the molding operation by the above-described apparatus will be described. In this molding apparatus, the state in which the upper part of the lower punch 2 substantially coincides with the upper surface of the die 1 and the cavity 3 is not formed is referred to as an initial position for slurry supply (FIG. 1A).
And In the slurry supply operation, the moving means 4 is operated,
It starts by sliding the supply head 5 to a predetermined position for slurry supply. Next, the lower punch 2 is lowered to form a cavity. At substantially the same timing, the slurry supply means 10 is operated to supply the slurry 100 in the raw material tank 13 from the slurry supply path 6 to the cavity 3 through the pipe 11. The slurry supply speed from the slurry supply means 10 is adjusted in accordance with the lowering speed of the lower punch so that an amount of slurry corresponding to the capacity of the cavity is supplied. Until a cavity having a predetermined size is formed, the volume of the cavity gradually increases, but since the slurry is gradually filled so as to fill the cavity, almost no space exists in the cavity. That is, during the slurry supply, it is not necessary to consider the size and shape of the cavity, and any size and shape of the final cavity can be handled. Further, since the supply head is not provided with an air vent and the cavity is kept in a closed state, the cavity formed has a negative pressure, and the slurry is filled so as to be sucked.

【0012】下パンチが所定位置(図1(b))まで下
降し、配管11に設けた圧力スイッチ14が所定圧に達
したら、スラリー供給手段10の動作を停止する。その
後、移動手段4を作動させ、供給ヘッド5をダイス1上
から退避させる。次いで、脱液口と瀘過フィルターを備
えた上パンチ(図示せず)が下降し、磁場中で加圧成形
が行われる。前述したように、分岐先の配管抵抗の違い
等でキャビティ間で充填速度が異なるが、スラリーで満
杯になったキャビティ内は圧力が高くなり、スラリーは
それ以上入ることができないので、必然的にまだ空間の
存する圧力の低いキャビティへとスラリーは流れを変
え、結果的にすべてのキャビティは満杯になる。また、
キャビティはほとんど密閉構造となっているため、キャ
ビティが満杯になると配管内のスラリー圧力が上昇し、
圧力スイッチで検知することができる。尚、本説明では
マルチキャビティの場合について述べたが、1個のキャ
ビティに対しても適用できることは言うまでもない。
When the lower punch descends to a predetermined position (FIG. 1B) and the pressure switch 14 provided on the pipe 11 reaches a predetermined pressure, the operation of the slurry supply means 10 is stopped. After that, the moving means 4 is operated to retract the supply head 5 from above the die 1. Next, an upper punch (not shown) provided with a drainage port and a filtration filter is lowered, and pressure molding is performed in a magnetic field. As described above, the filling speed differs between cavities due to the difference in pipe resistance at the branch destination, etc., but the pressure inside the cavity filled with slurry increases, and the slurry cannot enter any more. The slurry diverts to a low pressure cavity that still has space, resulting in all cavities being full. Also,
Since the cavity has almost a closed structure, when the cavity is full, the slurry pressure in the piping increases,
It can be detected with a pressure switch. In this description, the case of the multi-cavity has been described, but it is needless to say that the present invention can be applied to a single cavity.

【0013】[0013]

【発明の効果】以上述べたように、本発明は次の効果を
有する。 1)スラリーをキャビティの隅々まで充填することがで
きるので、形状の安定した重量バラツキの少ない希土類
永久磁石を製造することができる。 2)キャビティは徐々に大きくなるため、最終製品形状
によらない増加容量分だけスラリーを供給すればよいの
で、形状開口部が狭く深さの大きいようなキャビティに
もスラリーを隅々まで充填することができる。
As described above, the present invention has the following effects. 1) Since the slurry can be filled into every corner of the cavity, a rare-earth permanent magnet having a stable shape and a small weight variation can be manufactured. 2) Since the size of the cavity gradually increases, it is sufficient to supply the slurry in an amount corresponding to the increased capacity irrespective of the shape of the final product. Therefore, the slurry having a narrow shape opening and a large depth is filled with the slurry to every corner. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための成形装置の断面図。FIG. 1 is a sectional view of a molding apparatus for carrying out the present invention.

【図2】希土類永久磁石の製造工程図を示す。FIG. 2 shows a manufacturing process diagram of a rare earth permanent magnet.

【図3】従来の成形装置を示す断面図。FIG. 3 is a sectional view showing a conventional molding apparatus.

【符号の説明】[Explanation of symbols]

1…ダイス、 2…下パンチ、 3…キャビティ、 4
…移動手段、5…供給ヘッド、 6…スラリー供給管、
8…摺動板、10…スラリー供給手段、11…配管、
12…制御装置、13…原料タンク、 14…圧力ス
イッチ、55…従来の原料供給装置の供給ヘッド、56
…従来の原料供給装置の供給ノズル、 100…スラリ
1: die, 2: lower punch, 3: cavity, 4:
... moving means, 5 ... supply head, 6 ... slurry supply pipe,
8: sliding plate, 10: slurry supply means, 11: piping,
12: control device, 13: material tank, 14: pressure switch, 55: supply head of conventional material supply device, 56
... Supply nozzle of conventional material supply device, 100 ... Slurry

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R−T−B系(RはYを含む希土類元素
のうち1種または2種以上、TはFe又はFeとCo)
希土類磁石用磁性粉末と溶媒の混合物であるスラリーを
成形機のキャビティに供給し、磁場中で加圧成形し、こ
の成形体に含まれる溶媒を除去後焼結する希土類永久磁
石の製造方法において、 ダイスと下パンチで形成されるキャビティの開放部分を
摺動部材により密閉し、ダイスと下パンチの相対移動に
よりキャビティを形成しつつ、摺動部材から該キャビテ
ィを充填するようにスラリーを供給することを特徴とす
る希土類永久磁石の製造方法。
1. RTB system (R is one or more of rare earth elements including Y, T is Fe or Fe and Co)
A method for producing a rare earth permanent magnet, comprising: supplying a slurry, which is a mixture of a magnetic powder for a rare earth magnet and a solvent, to a cavity of a molding machine, performing pressure molding in a magnetic field, and sintering after removing a solvent contained in the molded body. Sealing the open part of the cavity formed by the die and the lower punch with a sliding member, and supplying the slurry so as to fill the cavity from the sliding member while forming the cavity by the relative movement of the die and the lower punch. A method for producing a rare earth permanent magnet, comprising:
【請求項2】 スラリー供給手段から摺動部材に連なる
配管内のスラリー圧力が所定値以上になった時スラリー
供給を停止する請求項1記載の希土類永久磁石の製造方
法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the slurry supply is stopped when a slurry pressure in a pipe connected to the sliding member from the slurry supply means becomes a predetermined value or more.
【請求項3】 スラリー濃度が70〜85重量%である
請求項1記載の希土類永久磁石の製造方法。
3. The method for producing a rare earth permanent magnet according to claim 1, wherein the slurry concentration is 70 to 85% by weight.
【請求項4】 キャビティがマルチキャビティである請
求項1乃至3のいずれかに記載の希土類永久磁石の製造
方法。
4. The method according to claim 1, wherein the cavity is a multi-cavity.
JP27058999A 1999-09-24 1999-09-24 Rare earth permanent magnet manufacturing method Expired - Lifetime JP4314541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27058999A JP4314541B2 (en) 1999-09-24 1999-09-24 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27058999A JP4314541B2 (en) 1999-09-24 1999-09-24 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2001093765A true JP2001093765A (en) 2001-04-06
JP4314541B2 JP4314541B2 (en) 2009-08-19

Family

ID=17488231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27058999A Expired - Lifetime JP4314541B2 (en) 1999-09-24 1999-09-24 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4314541B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243951A (en) * 2007-03-26 2008-10-09 Tdk Corp Manufacturing method of magnet
JP2008243845A (en) * 2007-03-23 2008-10-09 Tdk Corp Manufacturing method of magnet
JP2008243968A (en) * 2007-03-26 2008-10-09 Tdk Corp Manufacturing method of magnet
WO2014002983A1 (en) * 2012-06-29 2014-01-03 日立金属株式会社 Method for producing rare earth sintered magnets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119905A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Wet molding of thin magnet
JPH0336393U (en) * 1989-08-21 1991-04-09
JPH09293623A (en) * 1996-04-26 1997-11-11 Tdk Corp Forming method of magnetic particle
JPH11104895A (en) * 1997-09-30 1999-04-20 Aisin Seiki Co Ltd Device for supplying powder, method for supplying powder and powder compacting device
JPH11214216A (en) * 1998-01-27 1999-08-06 Hitachi Metals Ltd Rare earth permanent magnet and manufacture thereof
JPH11245092A (en) * 1998-03-04 1999-09-14 Hitachi Powdered Metals Co Ltd Feeder of powder supplying device in powdery forming press

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119905A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Wet molding of thin magnet
JPH0336393U (en) * 1989-08-21 1991-04-09
JPH09293623A (en) * 1996-04-26 1997-11-11 Tdk Corp Forming method of magnetic particle
JPH11104895A (en) * 1997-09-30 1999-04-20 Aisin Seiki Co Ltd Device for supplying powder, method for supplying powder and powder compacting device
JPH11214216A (en) * 1998-01-27 1999-08-06 Hitachi Metals Ltd Rare earth permanent magnet and manufacture thereof
JPH11245092A (en) * 1998-03-04 1999-09-14 Hitachi Powdered Metals Co Ltd Feeder of powder supplying device in powdery forming press

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243845A (en) * 2007-03-23 2008-10-09 Tdk Corp Manufacturing method of magnet
JP2008243951A (en) * 2007-03-26 2008-10-09 Tdk Corp Manufacturing method of magnet
JP2008243968A (en) * 2007-03-26 2008-10-09 Tdk Corp Manufacturing method of magnet
WO2014002983A1 (en) * 2012-06-29 2014-01-03 日立金属株式会社 Method for producing rare earth sintered magnets
JPWO2014002983A1 (en) * 2012-06-29 2016-06-02 日立金属株式会社 Manufacturing method of rare earth sintered magnet
CN104428854B (en) * 2012-06-29 2017-03-08 日立金属株式会社 The manufacture method of rare-earth sintered magnet
US10020113B2 (en) 2012-06-29 2018-07-10 Hitachi Metals, Ltd. Method for producing rare earth sintered magnet

Also Published As

Publication number Publication date
JP4314541B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CA2056690C (en) Method for producing permanent magnet and sintered compact as well as production apparatus of green compact
Sagawa et al. Novel processing technology for permanent magnets
US5672363A (en) Production apparatus for making green compact
CN101541451B (en) Process for producing oriented object, molded object, and sintered object and process for producing permanent magnet
CN101911226B (en) Permanent magnet manufacturing method
CN100528420C (en) press molding process for rare earth alloy powder and process for manufacturing rare earth alloy sintered body
CN102528029A (en) Pressing die and method for annular neodymium-iron-boron permanent magnet
Sagawa et al. Rubber isostatic pressing (RIP) of powders for magnets and other materials
JPH04363010A (en) Method and device for manufacture of permanent magnet and rubber mold for orientation formation in magnetic field
JPH05156307A (en) Lubrication of cold press machine die
JP4314541B2 (en) Rare earth permanent magnet manufacturing method
JP4759889B2 (en) Powder filling apparatus, press molding apparatus using the same, and sintered magnet manufacturing method
CN102107279A (en) Isostatic method for powder metallurgical process
JPWO2018056390A1 (en) Method for producing sintered body for forming sintered magnet and method for producing permanent magnet using sintered body for forming sintered magnet
JP3116885B2 (en) Manufacturing method of rare earth permanent magnet and rare earth permanent magnet
JPWO2002060677A1 (en) Powder molding method
JPH0543904A (en) Production of permanent magnet green compact
US20050006005A1 (en) Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact
JPH10241981A (en) Manufacture of rare earth metal permanent magnet and rare earth metal permanent magnet
JP2001192705A (en) Method of manufacturing for compact of rare earth alloy powder, compaction device, and rare earth magnet
CN106024366A (en) Primary molding magnetic field molding method and device
JPH07183148A (en) Manufacture of rare-earth permanent magnet
JPH07130566A (en) Method of compression-molding permanent magnet powder
JP2000197996A (en) Forming method and device therefor
JP4662030B2 (en) Molding method and molding apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Ref document number: 4314541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

EXPY Cancellation because of completion of term