JP2001091503A - Ultrasonic probe-scanning device - Google Patents

Ultrasonic probe-scanning device

Info

Publication number
JP2001091503A
JP2001091503A JP26366199A JP26366199A JP2001091503A JP 2001091503 A JP2001091503 A JP 2001091503A JP 26366199 A JP26366199 A JP 26366199A JP 26366199 A JP26366199 A JP 26366199A JP 2001091503 A JP2001091503 A JP 2001091503A
Authority
JP
Japan
Prior art keywords
ultrasonic probe
tube
scanning device
support frame
rotatably supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26366199A
Other languages
Japanese (ja)
Inventor
Osamu Iwai
修 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26366199A priority Critical patent/JP2001091503A/en
Publication of JP2001091503A publication Critical patent/JP2001091503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably set a scan mechanism for automatically supporting an ultrasonic probe at the outer periphery of a pipe body. SOLUTION: The device is equipped with a support frame body 1 that is formed in a square, a plurality of magnet rollers 2 and 2 that are rotatably supported by the support frame body at specific distance while a pipe body 24 to be inspected is embraced, and an ultrasonic probe 9 that is mounted to an engagement member 5 being rotatably supported outside the support frame body for pressing onto the surface of the pipe body, the magnet rollers 2 and 2 are attracted to the pipe body to be inspected, at the same time the engagement member 5 is rotated, and the ultrasonic probe 9 is pressed onto the surface of the pipe body for contacting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として小径管等
の肉厚測定に利用される超音波探触子走査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe scanning apparatus mainly used for measuring the thickness of a small diameter pipe or the like.

【0002】[0002]

【従来の技術】通常,高層ビルのダクト、地下空洞路等
に空調用配管、上下水道用配管その他各種用途の配管が
配設されているが、これら配管が長期間の使用による腐
食等によって肉厚が変化してくると、所要とする機能が
保持できないとか、或いは事故を引き起こす危険性が高
くなることから、定期的或いは任意の時期に配管の肉厚
を測定することが行われている。
2. Description of the Related Art Normally, air-conditioning pipes, pipes for water supply and sewerage, and other pipes for various purposes are provided in ducts, underground cavities, and the like of high-rise buildings. If the thickness changes, the required function cannot be maintained or the risk of causing an accident increases. Therefore, the thickness of the pipe is measured periodically or at an arbitrary time.

【0003】そこで、従来、主として小径管の肉厚を測
定する場合、図5に示すように、測定者が超音波探触子
51を手52にもって小径管53の外周面に押し当てる
ことにより、肉厚を測定しているのが一般的である。
Therefore, conventionally, when mainly measuring the wall thickness of a small diameter tube, as shown in FIG. 5, a measurer presses an ultrasonic probe 51 with a hand 52 against the outer peripheral surface of a small diameter tube 53. In general, the thickness is measured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、小径管
53がダクトや空洞路の壁等のごとき障害物54の近く
に配設されている場合、超音波探触子51を適切に押し
当てることが困難な場合が多い。すなわち、小径管53
と障害物54との間に手52を挿入して超音波探触子5
1を押し当てるほどに十分な空間的な余裕がなかった
り、或いは超音波探触子51を何とか測定部位に接触さ
せたとしても、手作業で探触子51を適切な角度で押し
当てるのが困難な場合が多い。
However, when the small-diameter pipe 53 is disposed near an obstacle 54 such as a duct or a wall of a hollow passage, the ultrasonic probe 51 can be appropriately pressed. Often difficult. That is, the small-diameter pipe 53
The hand 52 is inserted between the ultrasonic probe 5 and the obstacle 54.
Even if there is not enough space to press the probe 1, or even if the ultrasonic probe 51 manages to come into contact with the measurement site, it is necessary to manually press the probe 51 at an appropriate angle. Often difficult.

【0005】その結果、小径管53を適切に設置できな
いとか、超音波探触子51を押し当てたとしても正確な
肉厚データを取得できないとか、或いは超音波探触子5
1を管体外周面にそって円滑に走査できないという問題
がある。
[0005] As a result, the small diameter tube 53 cannot be properly installed, the accurate thickness data cannot be obtained even if the ultrasonic probe 51 is pressed, or the ultrasonic probe 5 cannot be obtained.
1 cannot be smoothly scanned along the outer peripheral surface of the tubular body.

【0006】また、人間の手52によって探触子51を
押し当てることから、探触子51の押圧力が大きく変化
する恐れがあり、常に測定誤差が生じる可能性があり、
しかもその測定誤差範囲も大きく変化する問題がある。
[0006] Further, since the probe 51 is pressed by the human hand 52, the pressing force of the probe 51 may greatly change, and a measurement error may always occur.
In addition, there is a problem that the range of the measurement error greatly changes.

【0007】本発明は上記事情に鑑みてなされたもので
あって、障害物等による狭隘部分が存在する場合でも、
管体に超音波探触子を安定に押し当て可能とする超音波
探触子走査装置を提供することを目的とする。
[0007] The present invention has been made in view of the above circumstances, and even when there is a narrow portion due to an obstacle or the like,
It is an object of the present invention to provide an ultrasonic probe scanning device capable of stably pressing an ultrasonic probe against a tube.

【0008】本発明の他の目的は、超音波探触子を管体
外周面にそって円滑に走査可能とする超音波探触子走査
装置を提供することにある。
Another object of the present invention is to provide an ultrasonic probe scanning device which enables an ultrasonic probe to scan smoothly along the outer peripheral surface of a tube.

【0009】本発明のさらに他の目的は、超音波探触子
の押圧力をほぼ一定に保持して測定精度の向上を図る超
音波探触子走査装置を提供することにある。
It is still another object of the present invention to provide an ultrasonic probe scanning apparatus which maintains the pressing force of the ultrasonic probe at a substantially constant level and improves the measurement accuracy.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る超音波探触子走査装置は、方形状に形
成された支持枠体と、被検査用管体を抱き込むように所
定の距離をもって前記支持枠体に回転可能に支持された
複数のマグネットローラと、支持枠体の外側に回動可能
に支持された係合部材に取り付けられこの係合部材の回
動によって前記管体表面に押圧される超音波探触子とを
備えた構成である。
In order to solve the above problems, an ultrasonic probe scanning apparatus according to the present invention includes a rectangular support frame and a tube to be inspected. A plurality of magnet rollers rotatably supported by the support frame at a predetermined distance, and an engagement member rotatably supported outside the support frame and attached to the engagement member by rotation of the engagement member. And an ultrasonic probe pressed against the surface of the tubular body.

【0011】本発明は以上のような手段を講じたことに
より、複数のマグネットローラが被検査用管体を抱き込
むように吸着するので、手で押さえることなく超音波探
触子を確実に管体外周に設定できる。
According to the present invention, by taking the above measures, the plurality of magnet rollers are attracted so as to embrace the tube to be inspected, so that the ultrasonic probe can be securely held without being pressed by hand. Can be set around the body.

【0012】また、本発明に係る超音波探触子走査装置
は、相対する支持辺がスライド可能に設けられた方形状
の支持枠体と、この支持枠体の相対する非スライド支持
辺側に回転可能に支持された主マグネットローラと、こ
の主マグネットローラの両側に等距離をもって配置され
ている前記スライド支持辺に回転可能に支持された補助
マグネットローラと、被検査用管体の径に応じて前記ス
ライド支持辺を所定方向にスライドし前記補助マグネッ
トローラの間隔を調整するスライド機構と、前記支持枠
体の外側に回動可能に支持された係合部材に取り付けら
れ当該係合部材の回動によって前記管体表面に押圧され
る超音波探触子とを備えた構成である。
Further, the ultrasonic probe scanning device according to the present invention has a rectangular support frame provided with slidable support sides, and a non-slide support side of the support frame opposite to the support frame. The main magnet roller rotatably supported, the auxiliary magnet roller rotatably supported on the slide supporting side disposed at equal distances on both sides of the main magnet roller, and the diameter of the tube to be inspected. A slide mechanism that slides the slide support side in a predetermined direction to adjust a distance between the auxiliary magnet rollers, and a rotation mechanism that is attached to an engagement member rotatably supported outside the support frame and rotates the engagement member. An ultrasonic probe pressed against the surface of the tubular body by movement.

【0013】本発明は以上のような手段を講じたことに
より、被検査用管体の外径の大きさにより、スライド機
構によってスライド支持辺を所定方向にスライドすれ
ば、補助マグネットローラの間隔を調整でき、よって補
助マグネットローラが大きな接触面積で管体外周に接触
可能となり、走査機構を管体表面に安定な状態で設置可
能となる。
According to the present invention, by taking the above measures, if the slide support side is slid in a predetermined direction by the slide mechanism depending on the outer diameter of the tube to be inspected, the distance between the auxiliary magnet rollers can be reduced. It can be adjusted, so that the auxiliary magnet roller can contact the outer periphery of the tube with a large contact area, and the scanning mechanism can be stably installed on the surface of the tube.

【0014】なお、前記支持枠体およびマグネットロー
ラで構成される走査機構と前記超音波探触子とを含む構
成体の幅は被検査用管体の直径とほぼ等しいか、或いは
当該直径よりも小さく形成すれば、障害物等による狭隘
部分が存在する場合でも、管体表面に超音波探触子を安
定に押し当てて管体の肉厚が測定可能となる。
The width of the structure including the scanning mechanism including the support frame and the magnet roller and the ultrasonic probe is substantially equal to the diameter of the tube to be inspected, or is smaller than the diameter. If the tube is formed small, the wall thickness of the tube can be measured by stably pressing the ultrasonic probe against the surface of the tube even when there is a narrow portion due to an obstacle or the like.

【0015】さらに、本発明は、支持枠体と前記係合部
材との間にばね機構を介在し、そのばねの一端部を支持
枠体側に固定し、当該ばねの他端部を係合部材に回動可
能に取り付ければ、超音波探触子を管体外周に均一な押
圧力で押し当て可能となり、ひいては管体の肉厚を高精
度に測定可能となる。
Further, according to the present invention, a spring mechanism is interposed between the support frame and the engaging member, one end of the spring is fixed to the support frame, and the other end of the spring is connected to the engaging member. If the ultrasonic probe is rotatably mounted on the tube, the ultrasonic probe can be pressed against the outer periphery of the tube with a uniform pressing force, and the wall thickness of the tube can be measured with high accuracy.

【0016】さらに、本発明は、マグネットローラと直
交する側の支持枠体を構成する両支持辺にワイヤ取付け
部材を取り付け、これらワイヤ取付け部材にワイヤを結
束し、その一方のワイヤを巻き取り、他方のワイヤを繰
り出すように操作すれば、超音波探触子を管体表面に対
し時計方向または反時計方向に旋回走査でき、狭隘部分
であってもスムーズに作業を進めることが可能となる。
Further, according to the present invention, a wire attachment member is attached to both support sides constituting a support frame on a side orthogonal to the magnet roller, the wires are bound to these wire attachment members, and one of the wires is wound up. If the operation is performed so that the other wire is extended, the ultrasonic probe can be rotated and scanned clockwise or counterclockwise with respect to the surface of the tubular body, and the work can be smoothly performed even in a narrow portion.

【0017】さらに、本発明は、係合部材に超音波探触
子のホルダーを取り付け、このホルダに超音波探触子の
超音波入射角度を調整する角度調整機構を設ければ、管
体の管径の大小に拘らず、超音波の入射方向を管体中心
に送波可能となり、管体の肉厚が高精度に測定可能とな
る。
Further, according to the present invention, if the holder of the ultrasonic probe is attached to the engaging member and the holder is provided with an angle adjusting mechanism for adjusting the ultrasonic incident angle of the ultrasonic probe, Irrespective of the diameter of the tube, the direction of incidence of the ultrasonic wave can be transmitted to the center of the tube, and the thickness of the tube can be measured with high accuracy.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明に係る超音波探触子の一実施
の形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an ultrasonic probe according to the present invention.

【0020】同図において1は方形状の支持枠体であっ
て、この支持枠体1内には管体(図示せず)を抱き込み
可能な所定の距離をもって平行に配置された2本のマグ
ネットローラ2,2が回転可能に軸支されている。
In FIG. 1, reference numeral 1 denotes a rectangular support frame, and two support frames 1 are arranged in parallel in the support frame 1 at a predetermined distance capable of holding a tube (not shown). The magnet rollers 2 are rotatably supported.

【0021】この支持枠体1の幅(正面から見た奥行き
方向幅)はマグネットローラ2,2が支持可能な幅であ
ればよく、またマグネットローラ2,2は充実体よりも
筒状とするのが軽量化および操作性等の面から好まし
い。また、マグネットローラ2,2は、ローラ全体をマ
グネット材料で形成してもよいが、材料の節減および操
作性を考慮すると、ローラ基体の周方向に少なくとも1
つ以上のリング状マグネット12aを設けた方が望まし
い。3はマグネットローラ2の両側縁に付設されたつば
部である。
The width of the support frame 1 (the width in the depth direction as viewed from the front) may be any width as long as the magnet rollers 2 and 2 can be supported, and the magnet rollers 2 and 2 are cylindrical rather than solid. This is preferable from the viewpoint of weight reduction and operability. Further, the magnet rollers 2 and 2 may be formed entirely of a magnet material. However, in consideration of material saving and operability, at least one magnet roller is provided in the circumferential direction of the roller base.
It is desirable to provide one or more ring-shaped magnets 12a. Reference numeral 3 denotes a flange provided on both side edges of the magnet roller 2.

【0022】前記2本のマグネットローラ2,2のほぼ
中央部分には支持枠体1を補強する役割およびローラ回
転時の振動を抑制するための軸体4が配置され、その軸
体両端部は支持枠体1を貫通されてねじ等によって固定
されている。
At substantially the center of the two magnet rollers 2, 2, a shaft body 4 for reinforcing the support frame 1 and suppressing vibration during rotation of the roller is disposed. The support frame 1 is penetrated and fixed by screws or the like.

【0023】この支持枠体1から外部に突出される軸体
4の一端部には、回動可能に係合部材5が取り付けら
れ、かつ、当該係合部材4の外部への抜けを防止するた
めにねじ6が螺着されている。
An engaging member 5 is rotatably attached to one end of the shaft 4 protruding from the support frame 1 to the outside, and prevents the engaging member 4 from being pulled out. For this purpose, a screw 6 is screwed.

【0024】前記支持枠体1と係合部材5とは所要の間
隙を有して配置され、この間隙部分には例えば渦巻き状
または板状等のばね機構7が介在されている。このばね
機構7は、その一端部側が支持部材1から外部に突出す
るピン8に係止され、他端部はばね機構7のばね力で係
合部材5を所定方向に回動させるように係りあってい
る。
The support frame 1 and the engaging member 5 are arranged with a required gap, and a spiral mechanism 7 such as a spiral or a plate is interposed in the gap. One end of the spring mechanism 7 is engaged with a pin 8 protruding outside from the support member 1, and the other end is engaged to rotate the engaging member 5 in a predetermined direction by the spring force of the spring mechanism 7. Yes.

【0025】この係合部材5の端部外側には送波素子お
よび受波素子をもつ超音波探触子9を保持する探触子ホ
ルダ10が取り付けられ、超音波探触子9にはコネクタ
(図示せず)を介してケーブル11が接続されている。
A probe holder 10 for holding an ultrasonic probe 9 having a transmitting element and a receiving element is attached to the outside of the end of the engaging member 5, and the ultrasonic probe 9 has a connector. The cable 11 is connected via a cable (not shown).

【0026】図1において、12は超音波探触子9を所
要とする角度に調整する探触子角度調整機構である。ま
た、図1に示す構成要素1〜4は、被検査用管体外周に
超音波探触子9を安定に支持旋回させるために用いられ
ることから走査機構と呼ぶ。
In FIG. 1, reference numeral 12 denotes a probe angle adjusting mechanism for adjusting the ultrasonic probe 9 to a required angle. The components 1 to 4 shown in FIG. 1 are referred to as a scanning mechanism because they are used for stably supporting and turning the ultrasonic probe 9 around the outer periphery of the tube to be inspected.

【0027】なお、走査機構1〜4と超音波探触子9と
を含む紙面奥行方向幅Wは、図2に示すように被検査用
管体と障害物との間の狭隘部分で走査可能とするため
に、被検査用管体の直径とほぼ等しくするか、或いは被
検査用管体の直径よりも小さい値に形成するものとす
る。因みに、直径15mmの小径管の場合、奥行方向幅
Wは15mmとなるように形成されている。
The width W in the depth direction of the paper including the scanning mechanisms 1 to 4 and the ultrasonic probe 9 can scan a narrow portion between the tube to be inspected and the obstacle as shown in FIG. Therefore, the diameter of the tube to be inspected is set to be substantially equal to or smaller than the diameter of the tube to be inspected. Incidentally, in the case of a small-diameter pipe having a diameter of 15 mm, the width W in the depth direction is formed to be 15 mm.

【0028】次に、以上のような走査装置の動作につい
て説明する。
Next, the operation of the above-described scanning device will be described.

【0029】例えば人手などによって支持枠体1の一部
を把持し、両マグネットローラ2,2により被検査用管
体(図示せず)を抱え込ませるような状態に管体外周面
に設定すれば、両ローラ2,2のリング状マグネット2
a,2aが管体外周に吸着され、安定に定置させること
ができる。このとき、ばね機構7は管体面と対峙する方
向に係合部材5を回動させているので、このばね機構7
のばね力により、超音波探触子9を管体外周に安定、か
つ、所定の押圧力で押し当てることができる。
For example, by setting a part of the support frame 1 by hand or the like and setting the outer peripheral surface of the tube in such a state that the tube to be inspected (not shown) is held by the two magnet rollers 2 and 2. , Ring-shaped magnet 2 of both rollers 2
a and 2a are adsorbed on the outer periphery of the tubular body and can be stably fixed. At this time, the spring mechanism 7 is rotating the engagement member 5 in a direction facing the tube body surface.
By the spring force, the ultrasonic probe 9 can be stably pressed against the outer periphery of the tube with a predetermined pressing force.

【0030】そして、以上のように超音波探触子9を設
定した後、ケーブル11を通して探触子励起信号を受け
ると、探触子超音波探触子9は、管体に対して所要周波
数の超音波を入射し、その管内からの反射波を受信し、
超音波の入反射時間から管体の肉厚を測定できる。
After setting the ultrasonic probe 9 as described above, when the probe excitation signal is received through the cable 11, the probe ultrasonic probe 9 moves the required frequency to the tube. Of ultrasonic waves and receives reflected waves from inside the tube,
The wall thickness of the tube can be measured from the ultrasonic reflection time.

【0031】従って、以上のような実施の形態によれ
ば、所定の距離をもった2つのマグネットローラ2,2
が被検査用管体を抱き込むように吸着するので、走査機
構を安定した状態で設置でき、ひいては超音波探触子9
を管体外周面に接触させつつ安定に移動走査できる。
Therefore, according to the above-described embodiment, two magnet rollers 2, 2 having a predetermined distance are provided.
Is adsorbed so as to embrace the tube to be inspected, so that the scanning mechanism can be installed in a stable state, and as a result, the ultrasonic probe 9
Can be stably moved and scanned while contacting the outer peripheral surface of the tube.

【0032】また、支持枠体1と係合部材5との間隙部
分にばね機構7を介在させ、このばね機構7のばね力に
よって係合部材5を所定方向に回動させる構成としたの
で、係合部材5に支持される超音波探触子9を管体外周
面にほぼ一定の押圧力をもって押圧でき、よって超音波
探触子9による測定誤差を大幅に低減でき、ひいては測
定精度の向上を図ることができる。
The spring mechanism 7 is interposed in the gap between the support frame 1 and the engaging member 5, and the engaging member 5 is rotated in a predetermined direction by the spring force of the spring mechanism 7. The ultrasonic probe 9 supported by the engaging member 5 can be pressed against the outer peripheral surface of the tube with a substantially constant pressing force, so that a measurement error by the ultrasonic probe 9 can be significantly reduced, and thus the measurement accuracy is improved. Can be achieved.

【0033】さらに、走査機構1〜4および超音波探触
子9を含む構成体の奥行方向幅Wが被検査用管体の直径
とほぼ等しく形成することにより、管体の周囲に障害物
がある狭隘部分であっても、人手を必要とせずに安定し
た状態で移動走査させることができる。
Further, since the width W in the depth direction of the structure including the scanning mechanisms 1 to 4 and the ultrasonic probe 9 is formed to be substantially equal to the diameter of the tube to be inspected, an obstacle is formed around the tube. Even in a narrow portion, it is possible to move and scan in a stable state without requiring any manpower.

【0034】図2は、本発明に係る超音波探触子走査装
置の他の実施形態を示す構成図であり、さらに詳しくは
図1の紙面下側から上側方向を見たときの図である。
FIG. 2 is a configuration diagram showing another embodiment of the ultrasonic probe scanning device according to the present invention, and more specifically, is a diagram when viewed from below in FIG. .

【0035】この実施の形態は図1に示す超音波探触子9
を含む走査機構を旋回走査させるための牽引機構を設け
た例であって、この牽引機構は、マグネットローラ2の
軸方向と直交する方向の支持枠体1の両外側に取り付け
られたワイヤ取付け部材21,21(図1参照)と、各
ワイヤ取付け部材21,21にそれぞれ一端部が結束さ
れ前記走査機構を旋回走査させるための旋回走査用ワイ
ヤ22,22と、これら旋回走査用ワイヤ22,22の
他端部が巻回され、ワイヤの巻取り・繰出し操作を行う
牽引機23,23とによって構成されている。
In this embodiment, the ultrasonic probe 9 shown in FIG.
This is an example in which a pulling mechanism for rotating and scanning the scanning mechanism including the above is provided, and the pulling mechanism is a wire mounting member mounted on both outer sides of the support frame 1 in a direction orthogonal to the axial direction of the magnet roller 2. 21 and 21 (see FIG. 1), turning scanning wires 22 and 22 each having one end bound to each wire mounting member 21 and 21 for turning and scanning the scanning mechanism, and these turning scanning wires 22 and 22. Is wound around, and is constituted by traction machines 23, 23 which perform winding and unwinding operations of the wire.

【0036】これら牽引機23,23は、その一方側が
所定周期ごと或いは任意の速度で旋回走査用ワイヤ22
を巻き取るとき、他方側は旋回走査用ワイヤ22に所要
の張力を与えつつ繰り出す機能をもっている。
One of the towing machines 23, 23 has a turning scanning wire 22 at predetermined intervals or at an arbitrary speed.
Is wound, the other side has a function of feeding the revolving scanning wire 22 while applying a required tension.

【0037】同図において24は被検査用管体、25は
障害物であって、図示するごとく被検査用管体21の近
くに障害物22が存在し、人手によって超音波探触子9
を管体に押し当てつつ旋回させるに十分に余裕のない狭
隘部分となっている。
In the figure, reference numeral 24 denotes a tube to be inspected, and 25 denotes an obstacle. As shown in the drawing, an obstacle 22 exists near the tube 21 to be inspected.
It is a narrow part that does not have enough room to turn while pressing against the tube.

【0038】次に、以上のような走査装置の動作につい
て説明する。
Next, the operation of the above-described scanning device will be described.

【0039】今、図示下側の索引機23にてワイヤ22
を所定の周期ごとに所定距離ずつ巻き取り、図示上側の
索引機23にてワイヤ22を一定の張力をかけつつ繰り
出すように索引操作を行うと、超音波探触子9を支持す
る走査機構が被検査用管体24の外周面を図示右側方
向,つまり時計方向に旋回しつつ超音波探触子9から超
音波を送受波すれば、時計方向に旋回走査しながら管体
24の肉厚を測定でき、また逆に図示上側の索引機23
にてワイヤ22を所定の周期ごとに所定距離ずつ巻き取
り、図示下側の索引機23にてワイヤ22を一定の張力
をかけつつ繰り出すような索引操作すれば、超音波探触
子9を支持する走査機構が被検査用管体24の外周面を
図示左側方向,つまり反時計方向に旋回しつつ超音波探
触子9から超音波を送受波すれば、反時計方向に旋回走
査しながら管体24の肉厚を測定できる。
At this time, the wire 22 is
Is wound by a predetermined distance every predetermined period, and an indexing operation is performed by applying a constant tension to the wire 22 with the indexing device 23 on the upper side of the drawing, and the scanning mechanism that supports the ultrasonic probe 9 If ultrasonic waves are transmitted and received from the ultrasonic probe 9 while rotating the outer peripheral surface of the tube 24 to be inspected rightward in the drawing, that is, clockwise, the wall thickness of the tube 24 can be reduced while rotating clockwise. The indexer 23 on the upper side of the figure can be measured.
The ultrasonic probe 9 is supported by winding the wire 22 by a predetermined distance at predetermined intervals at a predetermined interval, and performing an indexing operation such that the wire 22 is unwound while applying a constant tension by a lower indexer 23 in the drawing. When the scanning mechanism transmits and receives ultrasonic waves from the ultrasonic probe 9 while rotating the outer peripheral surface of the tube 24 to be inspected in the leftward direction in the drawing, that is, in the counterclockwise direction, the tube rotates while scanning counterclockwise. The thickness of the body 24 can be measured.

【0040】従って、以上のような実施の形態によれ
ば、索引機23,23によって索引操作を行うことによ
り、走査機構部分が管体24の外周面にそって時計方向
または反時計方向に自在に旋回走査でき、狭隘部分に手
を入れて超音波探触子9を押し当てる従来測定に比べ
て、狭隘部分での管体外周の測定作業をスムーズに進め
ることができる。
Therefore, according to the above-described embodiment, the indexing operation is performed by the indexers 23, 23, so that the scanning mechanism can be moved clockwise or counterclockwise along the outer peripheral surface of the tube 24. As compared with the conventional measurement in which a hand is put into a narrow portion and the ultrasonic probe 9 is pressed against the tube, the measurement operation of the outer periphery of the tube in the narrow portion can be smoothly performed.

【0041】また、マグネットローラ2,2およびばね
機構7を用いて超音波探触子9を管体表面に所定の接触
圧を維持しつつ旋回走査可能であるので、安定かつ高精
度に被検査用管体24の肉厚を測定できる。
Further, since the ultrasonic probe 9 can be rotated and scanned using the magnet rollers 2 and 2 and the spring mechanism 7 while maintaining a predetermined contact pressure on the surface of the tube, the inspection can be performed stably and with high accuracy. The thickness of the tube 24 can be measured.

【0042】図3は本発明に係る超音波探触子走査装置
の他の実施形態を示す構成図である。なお、同図におい
て図1と同一部分には同一符号を付してその詳しい説明
は省略する。
FIG. 3 is a block diagram showing another embodiment of the ultrasonic probe scanning device according to the present invention. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0043】この実施の形態は、被検査用管体24の直
径が比較的大きく、かつ、変化する場合に有効な適用例
である。
This embodiment is an effective example when the diameter of the tube 24 to be inspected is relatively large and changes.

【0044】この走査装置は、特に走査機構部分を改良
したものであって、図示(イ)矢印方向にスライドする
方形状のスライド支持枠体31と、この支持枠体31の
スライド方向と直交する方向に配置され、かつ、支持枠
体31のほぼ中央部分に回転可能に支持されている主マ
グネットローラ32と、この主マグネットローラ32と
平行に位置するスライド支持辺側に取り付けられ、支持
枠体31のスライド動作に伴って前記主マグネットロー
ラ32から等距離で可動する補助マグネットローラ33
とによって構成されている。
This scanning device has a particularly improved scanning mechanism, and has a rectangular slide support frame 31 that slides in the direction of the arrow (a) in the drawing, and a direction perpendicular to the sliding direction of the support frame 31. A main magnet roller 32 disposed in the direction of rotation and rotatably supported at a substantially central portion of the support frame 31, and attached to a slide support side positioned in parallel with the main magnet roller 32; An auxiliary magnet roller 33 movable at an equal distance from the main magnet roller 32 with the sliding operation of the main magnet roller 32
And is constituted by.

【0045】前記スライド支持枠体31は、図示上下方
向に相対して配置され例えばほぼへ字状または逆山形状
に形成された非スライド支持辺となる筒状基体34a,
34bと、ほぼコ字状に形成され、その両端部が前記基
体34a,34bの筒状部分にスライド可能に挿通さ
れ、かつ、胴部分に1個以上の補助マグネットローラ3
3を回転可能に支持するスライド支持辺となるコ字形支
持体35,35から成っている。
The slide support frame 31 is disposed opposite to the vertical direction in the figure, and is a cylindrical base 34a, which is a non-slide support side formed in, for example, a substantially V-shape or inverted mountain shape.
34b is formed in a substantially U-shape, and both ends thereof are slidably inserted into the cylindrical portions of the bases 34a and 34b, and one or more auxiliary magnet rollers 3 are inserted into the body portion.
3 comprises U-shaped supports 35 which serve as slide support sides for rotatably supporting 3.

【0046】前記基体34aの筒状部分にスライド可能
に内装されているコ字形支持体35,35の図示上端部
には、同図(b)に示すようにそれぞれラック36,3
6が形成され、これらラック36,36間に歯車37が
噛合されている。この歯車37の回転軸は基体34aの
外部に突出され、モータまたは人為的に回転力を歯車3
7に伝達する操作体38が設けられている。
As shown in FIG. 3B, racks 36, 3 are provided at upper ends of the U-shaped supports 35, 35, respectively, which are slidably mounted on the cylindrical portion of the base 34a.
A gear 37 is meshed between the racks 36. The rotating shaft of the gear 37 protrudes out of the base 34a, and applies a rotating force to the gear 3 by a motor or artificially.
7 is provided.

【0047】また、他方の基体34b側には図1と同様
に係合部材5を介して超音波探触子9が設けられてい
る。この探触子9はばね機構7のばね力を受けて係合部
材5が回動し、管体に対して均一の押圧力で押圧される
構成となっている。
An ultrasonic probe 9 is provided on the other base 34b via an engaging member 5 as in FIG. The probe 9 has a configuration in which the engagement member 5 rotates by receiving the spring force of the spring mechanism 7 and is pressed against the tube with a uniform pressing force.

【0048】この走査装置においては、被検査用管体の
外径が大きいとき、操作体38にて歯車37を所要方向
に回転させると、主マグネットローラ32を支持する基
体34a,34bに対し、コ字状支持体35,35が外
側方向にスライドするので、両側の補助マグネットロー
ラ33,33の間隔が広くなり、各補助マグネットロー
ラ33,33の管体に対する接触面積が大きくなり、走
査機構を管体表面に安定な状態で設置できる。
In this scanning device, when the gear 37 is rotated in a required direction by the operation body 38 when the outer diameter of the tube to be inspected is large, the bases 34a and 34b supporting the main magnet roller 32 are moved. Since the U-shaped supports 35, 35 slide outward, the distance between the auxiliary magnet rollers 33, 33 on both sides is widened, the contact area of the auxiliary magnet rollers 33, 33 with the tube is increased, and the scanning mechanism is reduced. Can be installed in a stable state on the tube surface.

【0049】この状態において例えば外径の小さな被検
査用管体に適用するとき、補助マグネットローラ33,
33が当該管体表面に接触しなくなるが、このとき操作
体38を介して前述とは逆方向に歯車37を回転させる
ことにより、両側の補助マグネットローラ33,33の
間隔が狭くなり、管体の外周に対し各補助マグネットロ
ーラ33,33の接触面積が大きくなり、同様に走査機
構を管体表面に安定な状態で設置できる。
In this state, for example, when applied to a tube to be inspected having a small outer diameter, the auxiliary magnet roller 33,
33 is no longer in contact with the surface of the tube, but at this time, by rotating the gear 37 through the operating body 38 in a direction opposite to the above, the distance between the auxiliary magnet rollers 33 on both sides is reduced, and the tube The contact area of each of the auxiliary magnet rollers 33 with respect to the outer periphery of the tube becomes large, and the scanning mechanism can be similarly stably installed on the surface of the tube.

【0050】なお、この実施形態の走査装置は、図2に
示す牽引機構を用いて旋回走査することは言うまでもな
い。
It is needless to say that the scanning device of this embodiment performs a turning scan using the traction mechanism shown in FIG.

【0051】また、この走査装置においても、走査機構
31〜33および超音波探触子9を含む構成体の奥行方
向幅Wが被検査用管体の直径とほぼ等しく形成すれば、
管体の周囲に障害物がある狭隘部分であっても、人手を
必要とせずに走査機構,ひいては超音波探触子9を安定
に移動走査できる。
Also in this scanning device, if the width W in the depth direction of the structure including the scanning mechanisms 31 to 33 and the ultrasonic probe 9 is substantially equal to the diameter of the tube to be inspected,
Even in a narrow portion where there is an obstacle around the tube, the scanning mechanism and, by extension, the ultrasonic probe 9 can be stably moved and scanned without requiring any manual operation.

【0052】図4は本発明に係る超音波探触子走査装置
の一部である超音波探触子の角度を調整する角度調整機
構22の一具体例を示す図であって、同図(a)は管体
の長手方向と対面する方向から見た図、同図(b)は管
体の軸方向から見た図である。
FIG. 4 is a view showing a specific example of the angle adjusting mechanism 22 for adjusting the angle of the ultrasonic probe which is a part of the ultrasonic probe scanning device according to the present invention. (a) is a diagram viewed from the direction facing the longitudinal direction of the tube, and (b) is a diagram viewed from the axial direction of the tube.

【0053】この角度調整機構12は、管体の周方向に
位置する超音波探触子9の外側面に対し、多少の隙間1
2aをもって当該超音波探触子9を包み込むように保持
してなる探触子ホルダ10の一側部,つまり同図(b)
の前面側に螺子溝(図示せず)が形成され、この螺子溝
には角度調整用ねじ体12bが螺合され、そのねじ体後
端部は探触子9に固着されている。
The angle adjusting mechanism 12 has a small gap 1 with respect to the outer surface of the ultrasonic probe 9 located in the circumferential direction of the tube.
One side of a probe holder 10 holding the ultrasonic probe 9 so as to enclose it with 2a, that is, FIG.
A screw groove (not shown) is formed on the front surface of the probe. An angle adjusting screw 12b is screwed into the screw groove, and the rear end of the screw is fixed to the probe 9.

【0054】なお、ねじ体12bの頭部と探触子ホルダ
9との間には弾性部材を介在するようにすれば、走査装
置本体部分の動きによる振動が超音波探触子9に伝達す
ることを抑制できる。
If an elastic member is interposed between the head of the screw body 12b and the probe holder 9, vibration caused by the movement of the scanning device main body is transmitted to the ultrasonic probe 9. Can be suppressed.

【0055】なお、同図(a)において9aは超音波を
送波する超音波送波素子、9bは超音波を受波する超音
波受波素子、41はケーブル11を接続するコネクタ部
分を示している。
In FIG. 9A, 9a is an ultrasonic wave transmitting element for transmitting ultrasonic waves, 9b is an ultrasonic wave receiving element for receiving ultrasonic waves, and 41 is a connector for connecting the cable 11. ing.

【0056】従って、このような構成によれば、ドライ
バーを用いて角度調整用ねじ体12bを時計方向または
反時計方向に回転すれば、超音波探触子9の角度が変化
し、被測定管体24に対して適正な入射角で超音波を入
射するように設定できる。
Therefore, according to such a configuration, when the screw 12b for angle adjustment is rotated clockwise or counterclockwise using a driver, the angle of the ultrasonic probe 9 changes, and the tube to be measured is changed. The ultrasonic wave can be set to enter the body 24 at an appropriate incident angle.

【0057】すなわち、角度調整用ねじ体12bを時計
方向(D方向)に回転させると、探触子9の超音波入射
方向の向きがCを中心としてL方向に可変され、逆に角
度調整用ねじ体12bを反時計方向(U方向)に回転さ
せると、探触子9の超音波入射方向の向きがL方向とは
逆にCを中心にR方向に可変できる。このことは、超音
波探触子9の超音波入射方向が管径その他の要因によっ
て管中心軸からずれた場合でも、角度調整用ねじ体12
bを所要とする方向に回転すれば、超音波探触子9の超
音波入射方向を管中心軸に調整でき、管体の厚さを高精
度に測定可能となる。
That is, when the angle adjusting screw body 12b is rotated in the clockwise direction (D direction), the direction of the ultrasonic wave incident direction of the probe 9 is changed in the L direction about C, and conversely, When the screw body 12b is rotated in the counterclockwise direction (U direction), the direction of the ultrasonic wave incident direction of the probe 9 can be changed in the R direction around the C opposite to the L direction. This means that even when the ultrasonic wave incident direction of the ultrasonic probe 9 is deviated from the tube center axis due to the tube diameter or other factors, the angle adjusting screw 12
By rotating b in the required direction, the ultrasonic wave incident direction of the ultrasonic probe 9 can be adjusted to the center axis of the tube, and the thickness of the tube can be measured with high accuracy.

【0058】なお、本発明は、上記実施の形態に拘ら
ず、その要旨を逸脱しない範囲で種々変形して実施でき
ることは言うまでもない。
It is needless to say that the present invention can be carried out in various modifications without departing from the gist thereof, irrespective of the above embodiment.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、障
害物等による狭隘部分が存在する場合でも、走査機構を
管体表面に安定に設定でき、また超音波探触子を均一の
押圧力で押し当てることができる。
As described above, according to the present invention, the scanning mechanism can be stably set on the surface of the tube even when a narrow portion due to an obstacle or the like exists, and the ultrasonic probe can be pressed uniformly. Can be pressed with pressure.

【0060】また、本発明は、両補助マグネットローラ
の間隔を自在に調整可能とすることにより、任意の管径
の管体表面に対し、各補助マグネットローラの接触面積
を大きくでき、走査機構を管体表面に安定な状態に設定
できる。
Further, according to the present invention, by making the distance between the two auxiliary magnet rollers freely adjustable, the contact area of each auxiliary magnet roller can be increased with respect to the surface of the tube body having an arbitrary diameter. It can be set to a stable state on the tube surface.

【0061】さらに、牽引機構を用いて超音波探触子を
含む走査機構を旋回走査するので、管体外周に対して超
音波探触子を時計方向または反時計方向に旋回でき、狭
隘部分であってもスムーズに測定作業を進めることがで
きる。
Further, since the scanning mechanism including the ultrasonic probe is rotated and scanned by using the pulling mechanism, the ultrasonic probe can be rotated clockwise or counterclockwise with respect to the outer periphery of the tubular body, and can be rotated at a narrow portion. Even if there is, the measurement work can proceed smoothly.

【0062】さらに、超音波探触子の超音波入射方向角
度を調整可能としたことにより、管形の状況が変化して
も、超音波探触子を適切に設定でき、高精度に管体の肉
厚を測定できる。
Further, by making the angle of the ultrasonic wave incident direction of the ultrasonic probe adjustable, the ultrasonic probe can be appropriately set even when the condition of the tube shape changes, and the tube body can be accurately adjusted. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る超音波探触子走査装置の一実施
の形態を示す正面から見た構成図。
FIG. 1 is a configuration diagram viewed from the front showing an embodiment of an ultrasonic probe scanning device according to the present invention.

【図2】 図1に示す走査装置に牽引機構を設けたとき
の走査装置の一側面側から見た構成図。
FIG. 2 is a configuration diagram of one side of the scanning device when a traction mechanism is provided in the scanning device illustrated in FIG. 1;

【図3】 本発明に係る超音波探触子走査装置の他の実
施形態を示す構成図であって、同図(a)は正面図、同
図(b)は同図(a)の筒状基体の内部構成を説明する
図。
3 is a configuration diagram showing another embodiment of the ultrasonic probe scanning device according to the present invention, wherein FIG. 3 (a) is a front view, and FIG. 3 (b) is a tube of FIG. 3 (a). FIG. 3 is a view for explaining the internal configuration of a substrate.

【図4】 本発明に係る超音波探触子走査装置の一部構
成部分である超音波探触子の角度調整機構を説明する図
であって、同図(a)は管体外周に超音波探触子を設置
したときの管体長手方向から角度調整機構を見た図、同
図(b)は管体軸方向から角度調整機構を見た図。
FIG. 4 is a view for explaining an angle adjusting mechanism of the ultrasonic probe, which is a part of the ultrasonic probe scanning device according to the present invention, and FIG. The figure which looked at the angle adjustment mechanism from the longitudinal direction of the tube when the acoustic probe was installed, and the figure (b) which looked at the angle adjustment mechanism from the tube axial direction.

【図5】 従来の管体肉厚を測定する作業状況を説明す
る図。
FIG. 5 is a view for explaining a conventional work condition for measuring the wall thickness of a pipe.

【符号の説明】[Explanation of symbols]

1…支持枠体 2…マグネットローラ 5…係合部材 7…ばね機構 9…超音波探触子 10…探触子ホルダ 12…探触子角度調整機構 22…旋回走査用ワイヤ 23…牽引機 24…被検査用管体 25…障害物 31…スライド支持枠体 32…主マグネットローラ 33…補助マグネットローラ 34a,34b…筒状基体(非スライド支持辺) 35…支持体(スライド支持辺) 36…ラック 37…歯車 38…操作体 DESCRIPTION OF SYMBOLS 1 ... Support frame 2 ... Magnet roller 5 ... Engaging member 7 ... Spring mechanism 9 ... Ultrasonic probe 10 ... Probe holder 12 ... Probe angle adjustment mechanism 22 ... Rotation scanning wire 23 ... Pulling machine 24 ... Tube to be inspected 25. Obstacle 31. Slide support frame 32. Main magnet roller 33. Rack 37 ... gear 38 ... operation body

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検査用管体の肉厚を測定する超音波探
触子走査装置において、 方形状に形成された支持枠体と、 前記管体を抱き込むように所定の距離をもって前記支持
枠体に回転可能に支持された複数のマグネットローラ
と、 前記支持枠体の外側に回動可能に支持された係合部材に
取り付けられ、この係合部材の回動によって前記管体表
面に押圧される超音波探触子とを備えたことを特徴とす
る超音波探触子走査装置。
1. An ultrasonic probe scanning device for measuring the thickness of a tube to be inspected, wherein the supporting frame is formed at a predetermined distance so as to embrace the rectangular support frame and the tube. A plurality of magnet rollers rotatably supported by the frame; and an engagement member rotatably supported outside the support frame, and pressed against the surface of the tube by rotation of the engagement member. An ultrasonic probe scanning device comprising: an ultrasonic probe to be used.
【請求項2】 被検査用管体の肉厚を測定する超音波探
触子走査装置において、 相対する支持辺がスライド可能に設けられた方形状の支
持枠体と、 この支持枠体の相対する非スライド支持辺側に回転可能
に支持された主マグネットローラと、 この主マグネットローラの両側に等距離をもって配置さ
れている前記スライド支持辺に回転可能に支持された補
助マグネットローラと、 前記管体の径に応じて前記スライド支持辺を所定方向に
スライドし前記補助マグネットローラの間隔を調整する
スライド機構と、 前記支持枠体の外側に回動可能に支持された係合部材に
取り付けられ、この係合部材の回動によって前記管体表
面に押圧される超音波探触子とを備えたことを特徴とす
る超音波探触子走査装置。
2. An ultrasonic probe scanning device for measuring the thickness of a tube to be inspected, comprising: a rectangular support frame having opposing support sides slidably provided; A main magnet roller rotatably supported on the side of the non-slide support side, an auxiliary magnet roller rotatably supported on the slide support side disposed at equal distances on both sides of the main magnet roller, and the tube A slide mechanism that slides the slide support side in a predetermined direction in accordance with the diameter of the body to adjust a distance between the auxiliary magnet rollers, and is attached to an engagement member rotatably supported outside the support frame, An ultrasonic probe which is pressed against the surface of the tubular body by the rotation of the engagement member.
【請求項3】 請求項1または請求項2に記載の超音波
探触子走査装置において、 前記支持枠体およびマグネットローラで構成される走査
機構と前記超音波探触子とを含む構成体の幅は前記管体
の直径とほぼ等しいか、或いは当該直径よりも小さく形
成することを特徴とする超音波探触子走査装置。
3. The ultrasonic probe scanning device according to claim 1, wherein a scanning mechanism including the support frame and a magnet roller and the ultrasonic probe are included. An ultrasonic probe scanning device characterized in that the width is substantially equal to or smaller than the diameter of the tube.
【請求項4】 請求項1ないし請求項3の何れか1つに
記載の超音波探触子走査装置において、 前記支持枠体と前記係合部材との間に介在され、一端部
が前記支持枠体側に固定され、他端部が前記係合部材に
対し回動可能に取り付けられ、前記超音波探触子を前記
管体表面に押圧させるばね機構を設けたことを特徴とす
る超音波探触子走査装置。
4. The ultrasonic probe scanning device according to claim 1, wherein the ultrasonic probe is interposed between the support frame and the engaging member, and one end of the ultrasonic probe is supported by the support frame. An ultrasonic probe fixed to the frame side, the other end portion of which is rotatably attached to the engaging member, and a spring mechanism for pressing the ultrasonic probe against the surface of the tubular body is provided. Tactile scanning device.
【請求項5】 請求項1ないし請求項4の何れか1つに
記載の超音波探触子走査装置において、 前記マグネットローラと直交する側の支持枠体を構成す
る両支持辺に取付けられたワイヤ取付け部材と、これら
ワイヤ取付け部材に結束されたワイヤのうち、一方のワ
イヤを巻き取り、他方のワイヤを繰り出すように操作す
る牽引機とを設け、前記超音波探触子を前記管体表面に
対して旋回走査可能にしたことを特徴とする超音波探触
子走査装置。
5. The ultrasonic probe scanning device according to claim 1, wherein the ultrasonic probe is attached to both support sides of a support frame on a side orthogonal to the magnet roller. A wire attachment member, and a traction device for operating one of the wires bound to the wire attachment member to take up one of the wires and unwind the other wire; An ultrasonic probe scanning device, characterized in that it can be rotated and scanned with respect to.
【請求項6】 請求項1ないし請求項5の何れか1つに
記載の超音波探触子走査装置において、 前記係合部材に取り付けらる超音波探触子のホルダーに
設けられ、当該超音波探触子の超音波入射角度を調整す
る角度調整機構を設けたことを特徴とする超音波探触子
走査装置。
6. The ultrasonic probe scanning device according to claim 1, wherein the ultrasonic probe scanning device is provided on a holder of the ultrasonic probe attached to the engaging member. An ultrasonic probe scanning device, comprising an angle adjusting mechanism for adjusting an ultrasonic incident angle of the ultrasonic probe.
JP26366199A 1999-09-17 1999-09-17 Ultrasonic probe-scanning device Pending JP2001091503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26366199A JP2001091503A (en) 1999-09-17 1999-09-17 Ultrasonic probe-scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26366199A JP2001091503A (en) 1999-09-17 1999-09-17 Ultrasonic probe-scanning device

Publications (1)

Publication Number Publication Date
JP2001091503A true JP2001091503A (en) 2001-04-06

Family

ID=17392584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26366199A Pending JP2001091503A (en) 1999-09-17 1999-09-17 Ultrasonic probe-scanning device

Country Status (1)

Country Link
JP (1) JP2001091503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828032A (en) * 2019-02-25 2019-05-31 山东科技大学 Prestressing force rotation wetting acoustic sensitivity monitor
JP6647476B1 (en) * 2019-06-14 2020-02-14 三菱電機株式会社 Rotary electric machine wedge looseness inspection device, rotary electric machine wedge looseness inspection system, and rotary electric machine wedge looseness inspection method
CN111398430A (en) * 2020-04-09 2020-07-10 吴本节 Device for assisting ultrasonic thickness gauge probe in thickness measurement
CN112304261A (en) * 2020-05-26 2021-02-02 张生阳 Automatic thickness measuring and marking device for building floor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828032A (en) * 2019-02-25 2019-05-31 山东科技大学 Prestressing force rotation wetting acoustic sensitivity monitor
CN109828032B (en) * 2019-02-25 2021-07-09 山东科技大学 Prestress rotary wetting acoustic wave sensitivity monitor
JP6647476B1 (en) * 2019-06-14 2020-02-14 三菱電機株式会社 Rotary electric machine wedge looseness inspection device, rotary electric machine wedge looseness inspection system, and rotary electric machine wedge looseness inspection method
WO2020250431A1 (en) * 2019-06-14 2020-12-17 三菱電機株式会社 Device for inspecting wedge looseness of rotary electric machine, system for inspecting wedge looseness of rotary electric machine, and method for inspecting wedge looseness of rotary electric machine
CN113924484A (en) * 2019-06-14 2022-01-11 三菱电机株式会社 Rotary motor wedge loosening inspection device, rotary motor wedge loosening inspection system and rotary motor wedge loosening inspection method
CN111398430A (en) * 2020-04-09 2020-07-10 吴本节 Device for assisting ultrasonic thickness gauge probe in thickness measurement
CN111398430B (en) * 2020-04-09 2023-08-04 山西诚尔信工程检测有限公司 Device for assisting probe thickness measurement of ultrasonic thickness gauge
CN112304261A (en) * 2020-05-26 2021-02-02 张生阳 Automatic thickness measuring and marking device for building floor
CN112304261B (en) * 2020-05-26 2021-12-17 浙江兴舟纸业有限公司 Automatic thickness measuring and marking device for building floor

Similar Documents

Publication Publication Date Title
JP2895217B2 (en) Measuring device for simultaneously measuring cylindrical holes located one after another
JP2004533347A5 (en)
JP3117234B2 (en) Antenna radiation efficiency measurement device
JP2001091503A (en) Ultrasonic probe-scanning device
JPH10197498A (en) Inspection device
US3863858A (en) Tensioning apparatus
JP6691956B1 (en) Pipe thickness measuring device
CN116837703A (en) Flatness measurement system for long road section
JPH01203938A (en) Flexural loss measuring instrument for optical fiber
JP2705860B2 (en) Extra fine wire tension measuring device
JP3128450B2 (en) Pipe thickness measuring device
CN211060880U (en) Ovality measuring device for metal bent pipe
JPH01219506A (en) Thickness measuring instrument for facility piping
CN219161162U (en) Civil engineering building material length detection device
JPH056842B2 (en)
JP2020134219A (en) Ultrasonic wave measurement system, ultrasonic wave measurement method and ultrasonic wave probe-loaded unit
JP2975364B1 (en) Apparatus and method for measuring thickness of polygonal pipe
US3621708A (en) Appparatus for detecting interfaces in a body
CN218403458U (en) Transducer drive for acoustic transmission
JPH056532Y2 (en)
KR100244683B1 (en) Acoustic measuring apparatus
CN217222161U (en) Coating gap adjusting device
CN219121481U (en) Mining liquid level sensor
CN220018481U (en) Portable pressure pipeline detection device
US5377526A (en) Traction analyzer