JP2001091494A - Sensor device - Google Patents

Sensor device

Info

Publication number
JP2001091494A
JP2001091494A JP27087199A JP27087199A JP2001091494A JP 2001091494 A JP2001091494 A JP 2001091494A JP 27087199 A JP27087199 A JP 27087199A JP 27087199 A JP27087199 A JP 27087199A JP 2001091494 A JP2001091494 A JP 2001091494A
Authority
JP
Japan
Prior art keywords
lipid
membrane
lipid bilayer
sensor device
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27087199A
Other languages
Japanese (ja)
Other versions
JP3665720B2 (en
Inventor
Yoshio Ishimori
義雄 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27087199A priority Critical patent/JP3665720B2/en
Publication of JP2001091494A publication Critical patent/JP2001091494A/en
Application granted granted Critical
Publication of JP3665720B2 publication Critical patent/JP3665720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a maintenance-free poison sensor capable of determining the type and the quantity of poison at real time. SOLUTION: This poison biosensor using a lipid bilayer 2 is so formed that lipid solution fills a hole detecting the destruction of the bilayer and automatically forming a lipid bilayer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料中に存在する
毒物を測定するためのセンサデバイスに関する。
[0001] The present invention relates to a sensor device for measuring a poison present in a sample.

【0002】[0002]

【従来の技術】今日我々を取り巻く環境には、生体に有
害である物質(広義の毒物)が多数存在している。例え
ば、水道水中のトリハロメタンや大気中のダイオキシン
などが念頭に浮かぶが、その他にも例数こそ少ないが、
シアンやカドミウムと言ったいわゆる毒物による水道原
水や地下水の汚染も時たま新聞誌上を賑わしている。と
ころで、こうした毒物の検出はどのようにして行われて
いるのであろうか。浄水場での検査は、水道原水を流し
入れた水槽で魚を飼い、この魚の動きを画像解析して、
異常行動を取った時に毒物の混入を検知するシステムを
用いるものが多い。あるいは、富士電機が開発した、硝
化細菌を利用する毒物センサもある。これは、水道原水
中に硝化細菌の餌であるアンモニアを一定量添加した後
に、硝化細菌を電極表面に固定化した酸素センサと接触
させ、硝化細菌の活性度を溶存酸素濃度の減少量から見
積もり、活性度の低下により毒物混入を判定するもので
ある。ところがこれらの方法では、ほぼリアルタイムで
毒物の検出ができる反面、餌を与えるなどのメンテナン
スが必要であり、かつ毒物の種類や量を決定することは
困難であった。
2. Description of the Related Art In today's environment, there are many substances (toxic substances in a broad sense) that are harmful to living organisms. For example, trihalomethane in tap water and dioxin in the air come to mind, but there are few other cases,
Contamination of raw water and groundwater by so-called poisons such as cyanide and cadmium is also frequently appearing in newspapers. By the way, how are these poisons detected? Inspection at the water purification plant keeps fish in a water tank into which raw water from tap water is poured, analyzes the movement of this fish, and analyzes the image.
Many use a system that detects the incorporation of poison when taking abnormal behavior. Alternatively, there is a toxicant sensor utilizing nitrifying bacteria developed by Fuji Electric. This means that after adding a certain amount of ammonia, which is the food of nitrifying bacteria, to tap water, the nitrifying bacteria are brought into contact with an oxygen sensor immobilized on the electrode surface, and the activity of the nitrifying bacteria is estimated from the decrease in dissolved oxygen concentration. The determination of toxic contamination is based on the decrease in activity. However, these methods can detect a poison in almost real time, but require maintenance such as feeding, and it is difficult to determine the type and amount of the poison.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記問題点
を解決するためになされたものであり、メンテナンスフ
リーで、かつリアルタイムで高感度に毒物の種類と量を
決定することを可能にするものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and makes it possible to determine the type and amount of a toxic substance in a maintenance-free manner with high sensitivity in real time. Things.

【0004】[0004]

【課題を解決するための手段】本発明は、メンテナンス
フリーで、かつリアルタイムで毒物の種類と量を決定す
ることを可能にするセンサデバイスに関する。
SUMMARY OF THE INVENTION The present invention relates to a sensor device which enables maintenance-free and real-time determination of the type and amount of poisons.

【0005】ここではまず、毒物の作用から考えてみた
い。毒物とは、生体に害を及ぼす物質のことであるが、
突き詰めて考えると生体「細胞」に害を及ぼす物質であ
ると言い換えることもできる。従って毒物の作用も、
「細胞膜」に何らかの影響を及ぼすことと考えられるの
である。ここで言う「何らかの影響」とは、細胞膜に接
着・吸着されたり、細胞膜内に取り込まれたりすること
などを意味している。そこで、人工的に作製した擬似細
胞膜(人工膜)を電極などの表面に装着させることによ
り、擬似細胞膜への毒物の作用をリアルタイムで測定す
ることが可能となるのである。すなわち、毒物との反応
により変化する擬似細胞膜の物理情報(膜電位、電気容
量、イオン透過性、発光、発熱・吸熱など)を測定し、
毒物反応前後の出力値の差から毒物の混入が判定できる
のである。では、毒物の種類や量はいったいどのように
して決定されるのであろうか?一般に細胞膜は、リン脂
質を主成分とする脂質二分子膜に蛋白質や糖などの分子
が取り込まれたり、表面に接着したりして構成されてい
る。そこで擬似細胞膜は、脂質膜あるいはそれに代わる
高分子膜をベースに、毒物と作用する各種の蛋白質や糖
などの分子を配合することにより人工的に作製される
(なお、毒物の種類によっては脂質膜のみで応答を示す
場合もあるので、毒物と作用する物質を添加することは
本発明では必須条件ではない)。従って、用いる脂質や
蛋白質・糖などの種類や量、更には擬似細胞膜の作製方
法などを変化させることにより、各種の毒物センサを作
ることが可能となる。そして、予め個々の毒物センサの
毒物応答(毒物の種類と量に応じて出力値がどのように
変化するか)を求めておき、これらの応答パターンを基
に、実際の測定結果(複数のセンサからの出力値)から
毒物の種類と量を決定するのである。
First, let us consider the action of the poison. Toxic substances are substances that cause harm to living organisms,
When considered in depth, it can be rephrased as a substance that harms living "cells". So the effect of the poison is
It is thought to have some effect on the "cell membrane". The term “some influence” as used herein means, for example, adhesion or adsorption to a cell membrane, or incorporation into a cell membrane. Therefore, by attaching an artificially produced pseudo cell membrane (artificial membrane) to the surface of an electrode or the like, the effect of a toxic substance on the pseudo cell membrane can be measured in real time. That is, physical information (membrane potential, electric capacity, ion permeability, luminescence, heat generation / endotherm, etc.) of the simulated cell membrane that changes due to the reaction with the poison is measured,
Poisoning can be determined from the difference between the output values before and after the poisoning reaction. So how is the type and amount of poison determined? In general, cell membranes are constituted by incorporating molecules such as proteins and sugars into lipid bilayer membranes containing phospholipids as a main component, and adhering to the surface. Therefore, a simulated cell membrane is artificially prepared by blending various proteins such as proteins and sugars that act with a toxic substance on the basis of a lipid membrane or a polymer membrane that substitutes the lipid membrane. In some cases, the addition of a substance that interacts with a toxicant is not a prerequisite in the present invention, since a response may be exhibited only by a substance. Therefore, various types of toxic sensors can be produced by changing the types and amounts of lipids, proteins, sugars, and the like used, as well as the method of producing the pseudo cell membrane. Then, the poison response (how the output value changes according to the type and amount of poison) of each poison sensor is obtained in advance, and based on these response patterns, actual measurement results (a plurality of sensors) are obtained. The type and amount of the poison are determined from the output value of the poison.

【0006】以上のようにして構成される毒物センサに
おいては、ほぼリアルタイムで応答が得られる他、構成
物が生物あるいは微生物ではないために餌を与えるよう
なメンテナンスは全く必要ない。また、定常状態からの
ズレを出力値として用いることにより、広範囲な環境条
件でのセンサの使用を可能にしている。更に、各毒物セ
ンサからの出力値を無線で信号処理施設へ転送できるた
め、河川や海洋などでも自由に使用することができる。
なお、測定感度を考慮すると疑似細胞膜としては脂質二
分子膜が最適であることが本発明者らの検討により明ら
かになった。しかしながら、脂質二分子膜は物理的振動
や静電気などの外力に対して不安定であり、その寿命も
精々数日間程度であった。そこで、脂質二分子膜を利用
する毒物センサを実用化するにあたり、脂質二分子膜の
破壊を自動的に検知し、即座に、膜形成場所に再現性良
く脂質二分子膜を自動的に形成させるデバイスを考案す
るに至った。
In the toxicant sensor configured as described above, a response can be obtained almost in real time, and no maintenance such as feeding is required at all because the component is not an organism or a microorganism. Further, by using a deviation from the steady state as an output value, it is possible to use the sensor under a wide range of environmental conditions. Furthermore, since the output value from each toxicant sensor can be wirelessly transferred to the signal processing facility, it can be used freely in rivers and oceans.
In consideration of measurement sensitivity, the present inventors have found that a lipid bilayer membrane is optimal as a pseudo cell membrane. However, lipid bilayer membranes are unstable against external forces such as physical vibration and static electricity, and their lifespan is at most several days. Therefore, in putting a toxicant sensor using a lipid bilayer into practical use, the breakage of the lipid bilayer is automatically detected, and the lipid bilayer is automatically formed immediately and with good reproducibility at the film formation site. I came up with the device.

【0007】[0007]

【発明の実施の形態】(実施例)以下、実施例を用いて
詳細に本発明を説明する。 (実施例1)脂質二分子膜の作製 脂質二分子膜の作製方法(例)を以下に略述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Examples) The present invention will be described below in detail with reference to examples. (Example 1) Production of lipid bilayer membrane A method (example) of producing a lipid bilayer membrane is outlined below.

【0008】適当な脂質溶液(例えばn−デカンを溶媒
に使用、適当な毒物反応物質を含有していても良い)を
作製し、緩衝液中で微小シリンジを用いて一定量をテフ
ロン製の膜やテフロン被覆したニッケル基板(中央に直
径1mm以下の孔が空いている)に注入する。そのまま
放置すると、孔の部分に脂質二分子膜が自然に再構成さ
れ、同時に毒物反応物質(糖脂質など)もこの膜内に取
り込まれる。 (実施例2)脂質二分子膜を用いる毒物センサ(手動に
よる予備試験) (1)試薬 トリオレイン(別名:グリセリル トリオレエート、分
子量:885、融点:4〜5℃)及びトリクロロエチレ
ン(通称:トリクレン)は、和光純薬工業社製を使用し
た。モノオレイン(別名:グリセリル モノオレエー
ト、分子量:357、融点:33〜34℃)、n−デカ
ン及びアセトニトリルは、関東化学社製を用いた。ま
た、コレステロール(分子量:387、融点:149
℃)はシグマ社製を使用した。その他、実験に使用した
試薬は、全て市販特級品を特に精製せずにそのまま使用
した。水は、イオン交換水を超純水製造装置(ミリポア
社製、Milli−Q)を通して使用した。なお、脂質
二分子膜を形成するために用いる、単一の穴を有するニ
ッケル基板(孔径:0.2〜0.6mm,厚さ:10m
m)は、オプトニクス精密社製の特注品であり、表面を
テフロン(登録商標)膜で被覆した後に、穴の部分を針
で破壊して使用した。 (2)電極及び測定用セル 図1に、用いた測定装置の模式図を示した。石英ガラス
製の測定用セル(各パートの容量は約25mL、自社製
の特注品)10内にニッケル基板をシリコンパッキング
を用いて配置し、基板に開けた穴に刷毛塗法により脂質
二分子膜を作製した。刷毛塗法とは、脂質溶液を含ませ
た絵筆を用いて穴の中に脂質を入れ込み、自然放置する
ことで二分子膜を作製する手法である(自然薄化法とも
呼ばれる)。脂質二分子膜の作製状況は、キーエンス社
製のデジタルマイクロスコープ(VH−6300)を用
いて観察した。この膜を介して、測定極であるAg/A
gCl電極(東亜電波社製、特注品)11を溶液内に挿
入し、膜間の電位差(膜電位)をエレクトロメータ(ア
ドバンテスト社、TR8411)12で計測した。デー
タは横河ヒューレットパッカード社製の記録計(Typ
e:3047)13で記録した。なお測定用セル及び電
極は、防振台上に乗せ、物理的な振動を防ぐと共に、全
体を電気的絶縁箱の中に入れて測定を行った。 (3)実験方法 表面をテフロン膜で被覆したニッケル基板を測定用セル
にシリコン製パッキンを介してセットし、各パートにそ
れぞれ20mLの10mM食塩水溶液14を添加した
後、膜電位(この状態では脂質膜は形成されていない)
が安定するまで15分程度放置する。次に適当な脂質溶
液を含ませた絵筆(作業をし易くするために先端を少し
曲げてある)を用いて、ニッケル基板の穴の中に適量の
脂質を入れ込む。脂質が穴に入ると膜抵抗が生じるた
め、急激に膜電位が変化する。その後静かに放置する
と、膜電位が一定の値に落ち着き、脂質二分子膜が形成
される。その後、10μLのトリクロロエチレンあるい
はcis−1,2−ジクロロエチレン(各々アセトニト
リル溶液)を右側のパートに、左側のパートには同量の
アセトニトリルを添加した。なお、測定液の攪拌は行わ
なかった。これは、攪拌装置から出る電気的ノイズ及び
物理的振動の影響を懸念したためである。 (4)実験結果 図2にトリクロロエチレン(最終濃度:5ppm)の測
定結果の一例を示す。本実験では脂質としてモノオレイ
ンのみを用い、測定は全て室温で行った。ニッケル基板
の穴径は0.6mmであった。この結果から明らかなよ
うに、トリクロロエチレン溶液を添加すると、すぐに膜
電位は減少し最小値に達した後、徐々に増加して一定の
膜電位(初期の膜電位と比較すると約1mV変化)にな
ることが分かる。この場合、繰り返しトリクロロエチレ
ンを添加すると、添加の回数(トリクロロエチレン濃度
の増大)に伴って平衡電位が少しずつ変化することも明
らかになった。しかし4回目の添加では、殆ど膜電位の
変化は観測されなかった(4回目添加後に膜が破壊)。
なお、膜電位の絶対値の変化が重要であり、極性(+側
あるいは−側)の変化は使用する電極の特性に依存する
ので、あまり重要ではないと考えられる。以上から、モ
ノオレインという単一の脂質二分子膜で、トリクロロエ
チレンに対して膜電位応答を示すことが明らかになり、
脂質二分子膜を利用する毒物バイオセンサの基本原理が
確認できたと言える。しかしながら、脂質二分子膜の不
安定性も再確認されたのである。 (実施例3)脂質二分子膜を用いる毒物センサ(自動脂
質二分子膜作製デバイスの検討1) 自動二分子膜作製デバイスの模式図(例)を図3に示
す。本例では、実施例2の刷毛塗法を自動化することを
考えている。すなわち、一定量の脂質溶液を脂質膜を作
製する穴に自動注入するのである(数マイクロLレベ
ル)。吐出部1にはマイクロポンプの適用を想定してい
る。脂質溶液の注入のタイミングは、常時モニタしてい
る膜電位の消失時である。これは、脂質二分子膜2が破
壊されると、膜電位が消失するからである。光学的な検
出法に比べ、非常に簡便になる。脂質溶液が穴に注入さ
れると、±10mV以上の膜電位が発生し、安定な二分
子膜が形成されるに伴い、徐々に一定の電位に落ち着い
てくる。実際の毒物測定は、膜電位が一定になってから
実施される。貯留槽3には適当量の脂質溶液が貯えられ
ている。4はコントローラ、5はAg/AgCl電極、
6はテフロン皮膜ニッケル基板、7は液槽である。 (実施例4)脂質二分子膜を用いる毒物センサ(自動脂
質二分子膜作製デバイスの検討2) 実施例3の実施例において、吐出部をインクジェット方
式(圧電素子利用)のポンプを採用したものである。マ
イクロポンプと比較して、小型で安価であることが特徴
である。 (実施例5)脂質二分子膜を用いる毒物センサ(実際の
毒物測定結果) 実施例3の毒物センサデバイスを用いて、cis−ジク
ロロエチレン(DCE)を測定した結果を図4に示す。
本デバイスを使用して、50ppbオーダーでもDCE
が測定できることが明らかになった。
[0008] An appropriate lipid solution (for example, n-decane is used as a solvent, and may contain an appropriate toxic reactant) is prepared, and a certain amount of a Teflon membrane is used in a buffer solution using a small syringe. Or into a Teflon-coated nickel substrate (having a hole with a diameter of 1 mm or less in the center). If left as it is, the lipid bilayer is spontaneously reconstituted in the pores, and at the same time, toxic reactants (such as glycolipids) are also incorporated into this membrane. (Example 2) Toxicological sensor using lipid bilayer membrane (manual preliminary test) (1) Reagents Triolein (alias: glyceryl trioleate, molecular weight: 885, melting point: 4-5 ° C) and trichloroethylene (commonly known as trichlene) Manufactured by Wako Pure Chemical Industries, Ltd. was used. Monoolein (alias: glyceryl monooleate, molecular weight: 357, melting point: 33 to 34 ° C), n-decane and acetonitrile were manufactured by Kanto Chemical Co., Ltd. Cholesterol (molecular weight: 387, melting point: 149)
℃) was used from Sigma. In addition, the reagents used in the experiments were all commercial grade products without any particular purification. As the water, ion-exchanged water was used through an ultrapure water production device (Millipore, Milli-Q). A nickel substrate having a single hole (pore diameter: 0.2 to 0.6 mm, thickness: 10 m) used for forming a lipid bilayer membrane
m) is a custom-made product manufactured by Optonics Seimitsu Co., Ltd., whose surface was covered with a Teflon (registered trademark) film, and the hole was broken with a needle before use. (2) Electrode and Measurement Cell FIG. 1 shows a schematic diagram of the measurement device used. A nickel substrate is placed in a quartz glass measurement cell (each part has a capacity of about 25 mL, a custom-made product made by the company) 10 using a silicon packing, and a lipid bilayer membrane is formed in a hole formed in the substrate by brush coating. Was prepared. The brush coating method is a method in which lipid is put into a hole using a paintbrush containing a lipid solution, and left naturally to form a bilayer membrane (also called a natural thinning method). The production status of the lipid bilayer membrane was observed using a digital microscope (VH-6300) manufactured by Keyence Corporation. Through this film, the measurement electrode Ag / A
A gCl electrode (Toa Denki Co., Ltd., special order product) 11 was inserted into the solution, and the potential difference between the membranes (membrane potential) was measured with an electrometer (Advantest Corp., TR8411) 12. The data is a Yokogawa Hewlett-Packard recorder (Type
e: 3047) 13. The measurement cell and the electrode were placed on a vibration isolator to prevent physical vibration, and the whole was placed in an electrically insulating box for measurement. (3) Experimental method A nickel substrate whose surface was covered with a Teflon film was set in a measuring cell via a silicon packing, and 20 mL of a 10 mM saline solution 14 was added to each part, and then the membrane potential (in this state, lipid No film is formed)
Let stand for about 15 minutes until is stabilized. Next, an appropriate amount of lipid is put into the hole of the nickel substrate by using a paintbrush containing a suitable lipid solution (the tip is slightly bent for easy operation). When lipid enters the hole, membrane resistance is generated, so that the membrane potential changes rapidly. After that, when the mixture is left quietly, the membrane potential settles to a constant value, and a lipid bilayer is formed. Thereafter, 10 μL of trichloroethylene or cis-1,2-dichloroethylene (each acetonitrile solution) was added to the right part, and the same amount of acetonitrile was added to the left part. The measurement liquid was not stirred. This is because there was a concern about the influence of electrical noise and physical vibration from the stirrer. (4) Experimental Results FIG. 2 shows an example of the measurement results of trichlorethylene (final concentration: 5 ppm). In this experiment, only monoolein was used as a lipid, and all measurements were performed at room temperature. The hole diameter of the nickel substrate was 0.6 mm. As is clear from this result, when the trichloroethylene solution was added, the membrane potential immediately decreased and reached a minimum value, and then gradually increased to a constant membrane potential (about 1 mV change compared to the initial membrane potential). It turns out that it becomes. In this case, it was also clarified that when trichlorethylene was repeatedly added, the equilibrium potential gradually changed with the number of additions (increase in trichlorethylene concentration). However, in the fourth addition, almost no change in the membrane potential was observed (the membrane was broken after the fourth addition).
The change in the absolute value of the membrane potential is important, and the change in the polarity (+ side or − side) depends on the characteristics of the electrode to be used. From the above, it was clarified that a single lipid bilayer called monoolein shows a membrane potential response to trichlorethylene,
It can be said that the basic principle of the toxicant biosensor using the lipid bilayer was confirmed. However, the instability of the lipid bilayer was also confirmed. (Example 3) Toxicological sensor using lipid bilayer membrane (investigation of automatic lipid bilayer preparation device 1) A schematic diagram (example) of an automatic bilayer preparation device is shown in FIG. In this example, it is considered that the brush coating method of Example 2 is automated. That is, a certain amount of lipid solution is automatically injected into a hole for preparing a lipid membrane (a few micro L level). It is assumed that a micro pump is applied to the discharge unit 1. The timing of injecting the lipid solution is when the membrane potential, which is constantly monitored, disappears. This is because when the lipid bilayer 2 is broken, the membrane potential disappears. It is very simple compared to the optical detection method. When the lipid solution is injected into the hole, a membrane potential of ± 10 mV or more is generated, and gradually settles to a constant potential as a stable bilayer membrane is formed. The actual poison measurement is performed after the membrane potential becomes constant. The storage tank 3 stores an appropriate amount of lipid solution. 4 is a controller, 5 is an Ag / AgCl electrode,
6 is a Teflon-coated nickel substrate, and 7 is a liquid tank. (Example 4) A toxicant sensor using a lipid bilayer membrane (investigation of an automatic lipid bilayer preparation device 2) In the embodiment of the third embodiment, a discharge unit adopts an ink jet type (using a piezoelectric element) pump. is there. It is characterized in that it is smaller and less expensive than a micropump. (Example 5) Toxic sensor using lipid bilayer membrane (actual toxicant measurement result) The result of measuring cis-dichloroethylene (DCE) using the toxicant sensor device of Example 3 is shown in FIG.
Using this device, DCE even at 50 ppb order
It has been found that can be measured.

【0009】[0009]

【発明の効果】本発明のセンサデバイスを用いることに
より、メンテナンスフリーで、かつリアルタイムな広範
囲の毒物検出定量用のセンサを供給できる。
By using the sensor device of the present invention, it is possible to supply a maintenance-free and real-time sensor for toxic substance detection and quantification in a wide range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】測定装置の模式図。FIG. 1 is a schematic diagram of a measuring device.

【図2】5ppm(final)のトリクロロエチレン
(TCE)を繰り返し添加した時の膜電位応答例(刷毛
塗法適用、モノオレイン二分子膜使用)。
FIG. 2 shows an example of a membrane potential response when 5 ppm (final) of trichloroethylene (TCE) is repeatedly added (application of a brush coating method, use of a monoolein bilayer membrane).

【図3】自動二分子膜作製デバイスの模式図(例)。FIG. 3 is a schematic diagram (example) of an automatic bilayer membrane production device.

【図4】50ppb(最終濃度)cis−1,2−ジク
ロロエチレン(DCE)を添加した時の膜電位応答例
(モノオレイン/コレステロール二分子膜使用)[孔
径:0.2mm、自動脂質二分子膜デバイス使用]。
FIG. 4 shows an example of membrane potential response when 50 ppb (final concentration) cis-1,2-dichloroethylene (DCE) is added (using a monoolein / cholesterol bilayer membrane) [pore size: 0.2 mm, automatic lipid bilayer membrane] Device usage].

【符号の説明】[Explanation of symbols]

1 吐出部 2 脂質二分子膜 3 貯留槽 4 コントローラ 5 Ag/AgCl電極 6 テフロン皮膜ニッケル基板 7 液槽 DESCRIPTION OF SYMBOLS 1 Discharge part 2 Lipid bilayer membrane 3 Storage tank 4 Controller 5 Ag / AgCl electrode 6 Teflon-coated nickel substrate 7 Liquid tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 毒物が作用できる脂質二分子膜を具備す
る毒物センサにおいて、脂質二分子膜の破壊を自動的に
検知して、自動的に基板の穴内部に脂質膜を形成させる
ことを特徴とするセンサデバイス。
1. A toxicant sensor having a lipid bilayer capable of acting on a toxicant, wherein a lipid bilayer is automatically detected when a lipid bilayer is destroyed, and a lipid membrane is automatically formed inside a hole in a substrate. Sensor device.
【請求項2】 前記毒物センサは、前記脂質溶液を貯留
する容器、脂質溶液を吐出する機構、基板の穴に脂質溶
液を導入する機構及び脂質二分子膜の破壊を検知する機
構からなることを特徴とする請求項1記載のセンサデバ
イス。
2. The method according to claim 1, wherein the toxicant sensor comprises a container for storing the lipid solution, a mechanism for discharging the lipid solution, a mechanism for introducing the lipid solution into a hole in the substrate, and a mechanism for detecting breakage of the lipid bilayer. The sensor device according to claim 1, wherein:
【請求項3】 前記脂質溶液を吐出する機構に、脂質二
分子膜破壊の信号を検知して自動的に動作する機構を連
携させることを特徴とする請求項2記載のセンサデバイ
ス。
3. The sensor device according to claim 2, wherein a mechanism that detects a signal of lipid bilayer destruction and automatically operates is linked to the mechanism for discharging the lipid solution.
【請求項4】 前記吐出機構としてポンプあるいはイン
クジェット方式を適用することを特徴とする請求項3記
載のセンサデバイス。
4. The sensor device according to claim 3, wherein a pump or an ink jet system is applied as the discharge mechanism.
【請求項5】 前記検出信号として、膜電位変化を用い
ることを特徴とする請求項3記載のセンサデバイス。
5. The sensor device according to claim 3, wherein a change in membrane potential is used as the detection signal.
【請求項6】 前記異なる組成の脂質二分子膜から構成
されるセンサ単体を複数種類用いることを特徴とする請
求項1記載のセンサデバイス。
6. The sensor device according to claim 1, wherein a plurality of types of single sensors composed of the lipid bilayers having different compositions are used.
JP27087199A 1999-09-24 1999-09-24 Sensor device Expired - Lifetime JP3665720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27087199A JP3665720B2 (en) 1999-09-24 1999-09-24 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27087199A JP3665720B2 (en) 1999-09-24 1999-09-24 Sensor device

Publications (2)

Publication Number Publication Date
JP2001091494A true JP2001091494A (en) 2001-04-06
JP3665720B2 JP3665720B2 (en) 2005-06-29

Family

ID=17492136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27087199A Expired - Lifetime JP3665720B2 (en) 1999-09-24 1999-09-24 Sensor device

Country Status (1)

Country Link
JP (1) JP3665720B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029941A (en) * 2004-07-15 2006-02-02 Toshiba Corp Harmful substance detecting method and device
CN1327212C (en) * 2003-03-31 2007-07-18 株式会社东芝 Sample liquid analyzer
JP2008537106A (en) * 2005-03-23 2008-09-11 アイシス イノベーション リミテッド Delivery of molecules to the lipid bilayer
US7638092B2 (en) 2004-09-17 2009-12-29 Japan Science And Technology Agency Artificial lipid bilayer membrane lipid substitution method, artificial lipid bilayer membrane obtained by using lipid substitution method, artificial lipid bilayer membrane formation device and ion permeation measuring device
JP2012081405A (en) * 2010-10-10 2012-04-26 Kanagawa Acad Of Sci & Technol Method for forming lipid bilayer membrane, and apparatus for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327212C (en) * 2003-03-31 2007-07-18 株式会社东芝 Sample liquid analyzer
JP2006029941A (en) * 2004-07-15 2006-02-02 Toshiba Corp Harmful substance detecting method and device
JP4602018B2 (en) * 2004-07-15 2010-12-22 株式会社東芝 Hazardous substance detection method and apparatus
US7638092B2 (en) 2004-09-17 2009-12-29 Japan Science And Technology Agency Artificial lipid bilayer membrane lipid substitution method, artificial lipid bilayer membrane obtained by using lipid substitution method, artificial lipid bilayer membrane formation device and ion permeation measuring device
JP2008537106A (en) * 2005-03-23 2008-09-11 アイシス イノベーション リミテッド Delivery of molecules to the lipid bilayer
JP2012081405A (en) * 2010-10-10 2012-04-26 Kanagawa Acad Of Sci & Technol Method for forming lipid bilayer membrane, and apparatus for the same

Also Published As

Publication number Publication date
JP3665720B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
Adhikari et al. Polymers in sensor applications
EP0025110B1 (en) Electrochemical measuring apparatus provided with an enzyme electrode
JP2000509488A (en) Biosensor
GB2195450A (en) Sensor
US4350763A (en) Method for determining biochemical oxygen demand
JP2001091494A (en) Sensor device
WO1996033403A1 (en) Sensor
Cosofret et al. Aliphatic polyurethane as a matrix for pH sensors: effects of native sites and added proton carrier on electrical and potentiometric properties
US4349426A (en) Anion sensing electrode
EP0138150A2 (en) Diagnostic electrode membranes utilizing specific enzyme/Ionophore pairs
Tien Bilayer lipid membrane‐based electrochemical biosensors
Reidl et al. Mechanism of action of bacterial phytotoxin, syringomycin. Simultaneous measurement of early responses in yeast and maize
Siontorou et al. Flow injection monitoring of aflatoxin M1 in cheese using filter‐supported bilayer lipid membranes with incorporated DNA
US20100126858A1 (en) Chemical sensor type measuring apparatus
JP2009008618A (en) Lipid membrane sensor
JP4247249B2 (en) Lipid membrane sensor
US5304290A (en) Capacitively measuring chemical sensor system
Taguchi et al. Investigation of methods of enzyme immobilization on a coated-wire electrode for the development of micro-biosensors
Xu et al. Preparation of urea sensors with a series piezoelectric crystal device
CA1260538A (en) Biochemical detector
Katsu Determination of the pH difference across a cell membrane using a methylammonium-selective membrane electrode
JP4255323B2 (en) Sensor chip precursor, sensor chip and poison detection system
US7641784B2 (en) Method for measuring by means of chemical sensor, and chemical sensor type measuring apparatus
Ohashi et al. A new enzymatic receptor to be used in a biosensor
JP4535741B2 (en) Measuring method using chemical sensor and chemical sensor type measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R151 Written notification of patent or utility model registration

Ref document number: 3665720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

EXPY Cancellation because of completion of term