JP2001090506A - Stationary blade and stream turbine - Google Patents

Stationary blade and stream turbine

Info

Publication number
JP2001090506A
JP2001090506A JP26816099A JP26816099A JP2001090506A JP 2001090506 A JP2001090506 A JP 2001090506A JP 26816099 A JP26816099 A JP 26816099A JP 26816099 A JP26816099 A JP 26816099A JP 2001090506 A JP2001090506 A JP 2001090506A
Authority
JP
Japan
Prior art keywords
stationary blade
blade
drain
steam
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26816099A
Other languages
Japanese (ja)
Other versions
JP3815143B2 (en
Inventor
Yasushi Kawase
裕史 川瀬
Takeshi Sato
武 佐藤
Yoshiaki Yamazaki
義昭 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26816099A priority Critical patent/JP3815143B2/en
Publication of JP2001090506A publication Critical patent/JP2001090506A/en
Application granted granted Critical
Publication of JP3815143B2 publication Critical patent/JP3815143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce degradation of turbine performance caused by a humid loss and erosion of a moving blade tip positioned in the downstream, by effectively capturing drain generated in stream by a stationary blade to discharge the drain. SOLUTION: This steam turbine is provided with the stationary blade 1 formed inside an enlarged flow passage through which steam passes, an outer ring 3 for fixing a tip of the stationary blade 1, an inner ring 4 for fixing a root end of the stationary blade 1, a moving blade 2 arranged in a down stream of the stationary blade 1, of which the root end is fixed to a rotary shaft, drain discharge grooves 7, 8 formed in a surface of a root part of the stationary blade 1 to be extend along a substantially blade-longitudinal direction of the blade 1, and drain collectors 9, 10 formed inside the inner ring 4 to be communicated with the grooves 7, 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービンの蒸
気流路に配置される静翼及び静翼を備えた蒸気タービン
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stationary blade arranged in a steam passage of a steam turbine and a steam turbine provided with the stationary blade.

【0002】[0002]

【従来の技術】大容量の蒸気タービンにおいては、低圧
部での圧力変化に対する流体の容積変化が大きいことか
ら、一般には蒸気流路は急激な拡大流路となる。このよ
うな拡大流路に設けられるタービン段落は、流路に合致
した静翼と動翼とから構成されなければならないが、こ
れらの翼を通過する蒸気(膨張流体)は三次元の流れと
なり、非常に複雑な流れとなる。さらに、低圧段落後半
部においては、ノズルの役目をなす静翼を通過して膨張
する蒸気中にドレンが発生するが、このドレンによる湿
り損失は各段落における全内部損失の約30%を占めて
おり、効率低下の大きな原因となっている。また、静翼
後縁から下流側へ向かって飛散するドレンは動翼先端部
分の侵食(エロージョン)の原因ともなる。以上のこと
から、湿り損失の低減を図ることはタービン効率向上の
大きな要素となる。
2. Description of the Related Art In a large-capacity steam turbine, since a volume change of a fluid is large with respect to a pressure change in a low-pressure section, a steam flow path generally becomes a rapid expansion flow path. The turbine stage provided in such an enlarged flow path must be composed of stationary blades and moving blades that match the flow path, but steam (expanding fluid) passing through these blades becomes a three-dimensional flow, It becomes a very complicated flow. Furthermore, in the latter half of the low-pressure paragraph, drain is generated in the steam that expands through the stationary vanes serving as nozzles, and the wet loss due to this drain accounts for about 30% of the total internal loss in each paragraph. This is a major cause of efficiency reduction. In addition, the drain scattered from the trailing edge of the stationary blade toward the downstream side causes erosion of the tip portion of the rotor blade. From the above, reducing the wet loss is a major factor in improving turbine efficiency.

【0003】以上のような環状をなしている拡大流路に
おける膨張流体の流動状況の改善および拡大流路内部で
発生するドレンの除去についての検討は従来より種々な
されている。
[0003] Various studies have been made on improving the flow state of the inflation fluid in the above-described annular expansion channel and removing drain generated inside the expansion channel.

【0004】拡大流路における膨張流体の流動状況の改
善については、特開平7−19004号公報に記載されている
ように、環状をなしている拡大流路において、静翼1の
翼先端部を半径方向線に対して回転方向側(+側)に傾
斜または湾曲させ、かつタービンの軸方向に対しても静
翼と動翼との軸方向間隔を径方向の内側より外側の方が
大きくなるように傾斜または湾曲させて配置させたもの
がある。
As described in Japanese Patent Application Laid-Open No. 7-19004, the improvement of the flow condition of the expanding fluid in the enlarged flow passage is performed by removing the tip of the vane 1 in the annular enlarged flow passage. The blade is inclined or curved in the rotation direction (+ side) with respect to the radial line, and the axial distance between the stationary blade and the moving blade in the axial direction of the turbine is larger on the outer side than on the radially inner side. Some are arranged so as to be inclined or curved.

【0005】また、拡大流路内部にて発生するドレンの
除去については、特開平6−173607号公報に記載
されているように、静翼翼面上にスリットを設け、中空
とした静翼内部を経由して流路外部へとドレンを除去す
るものや、特開平6−123202号公報,特開平8−61006号
公報に記載されているように、静翼と流路外周壁との接
合部または静翼翼間の外周壁上においてドレンガイド溝
やドレン捕獲孔を穿設したものがある。
As for the removal of the drain generated inside the enlarged flow passage, a slit is provided on the vane blade surface and the inside of the hollow vane is removed as described in JP-A-6-173607. A device that removes drain to the outside of the flow path via a passage, or as described in JP-A-6-123202, JP-A-8-61006, a junction between a stationary blade and a flow path outer peripheral wall or There is one in which a drain guide groove and a drain capture hole are formed on the outer peripheral wall between the stationary blades.

【0006】[0006]

【発明が解決しようとする課題】以上のような段落装置
およびドレン除去装置は、蒸気タービンの低圧段落にお
ける効率の向上および動翼先端部のエロージョン防止に
はある程度の効果を発揮することが判明している。
SUMMARY OF THE INVENTION It has been found that the above stage device and drain removal device have a certain effect in improving the efficiency in the low pressure stage of the steam turbine and preventing erosion at the blade tip. ing.

【0007】しかし、特開平7−19004号公報に記載され
ている段落装置については、拡大流路内であっても蒸気
の三次元流れを適正化し、流体損失を低減させてタービ
ン効率を向上させることを目的とするものであるが、ド
レンの発生による湿り損失および下流側に位置する動翼
に対するエロージョンを低減させることは考慮されてい
ない。
However, with respect to the paragraph device described in Japanese Patent Application Laid-Open No. 7-19004, the three-dimensional flow of steam is optimized even in the enlarged flow passage, the fluid loss is reduced, and the turbine efficiency is improved. However, it is not considered to reduce the wet loss due to the generation of the drain and the erosion of the rotor blade located on the downstream side.

【0008】また、静翼翼表面上にドレン除去スリット
を設けたドレン除去装置や、静翼と流路外周壁との接合
部または静翼翼間の外周壁上においてドレンガイド溝や
ドレン捕獲孔を穿設したドレン除去装置については、静
翼翼表面上および外周壁上を流れるドレンの除去につい
てのみ考慮されており、外周壁に付着するドレン量を増
加させるような段落構造や、外周壁に付着しない流路内
周側の蒸気流動を含めたドレン除去方法、および静翼根
元部にドレン回収溝・スリット等を設けた構造等は考慮
されていない。
In addition, a drain removal device provided with a drain removal slit on the surface of the stationary blade, a drain guide groove or a drain capture hole is formed on the joint between the stationary blade and the outer peripheral wall of the flow passage or on the outer peripheral wall between the stationary blades. With regard to the drain removal device installed, only removal of drain flowing on the surface of the stationary vane blade and on the outer peripheral wall is considered. The drain removal method including the steam flow on the inner circumferential side of the road, the structure in which a drain recovery groove, a slit, and the like are provided at the base portion of the stationary blade, and the like are not considered.

【0009】本発明は、蒸気中に生じるドレンを静翼に
おいて効率よく捕獲し、ドレンを排除することにより、
湿り損失によるタービン性能の低下と下流側に位置する
動翼先端の浸食を低減できる静翼及び蒸気タービンを提
供することを目的とする。
According to the present invention, the drain generated in the steam is efficiently captured by the stationary vanes, and the drain is eliminated, whereby
It is an object of the present invention to provide a stationary blade and a steam turbine that can reduce turbine performance deterioration due to wet loss and erosion of a moving blade tip located downstream.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の静翼は、その根元部表面に、略翼長方向に
伸びる溝を備える。そして、好ましくは、前記溝は、凸
面側の前縁部又は凹面側の後縁部の少なくとも一方に形
成される。
In order to achieve the above object, a vane according to the present invention is provided with a groove extending substantially in a blade length direction on a surface of a root portion thereof. Preferably, the groove is formed on at least one of the front edge on the convex side or the rear edge on the concave side.

【0011】又は、上記目的を達成するために、本発明
の蒸気タービンは、蒸気が通過する拡大流路内に形成さ
れた静翼と、前記静翼の先端を固定する外輪と、前記静
翼の根元端を固定する内輪と、前記静翼の下流側に配置
されその根元端が回転軸に固定された動翼と、前記静翼
の根元部表面に形成され前記静翼の略翼長方向に伸びる
溝と、前記内輪内でかつ前記溝に連通するように形成さ
れた空間とを備える。そして、好ましくは、前記溝は、
前記静翼の先端側から根元側へ向かうに伴い、前記蒸気
の流れの下流側に傾斜するように形成される。
Alternatively, in order to achieve the above object, a steam turbine according to the present invention comprises: a stationary blade formed in an enlarged flow passage through which steam passes; an outer ring for fixing a tip of the stationary blade; An inner ring that fixes the root end of the stationary blade, a moving blade that is disposed downstream of the stationary blade and whose root end is fixed to the rotating shaft, and a substantially blade-length direction of the stationary blade that is formed on the surface of the root portion of the stationary blade. And a space formed in the inner race and communicating with the groove. And preferably, the groove is
It is formed so as to be inclined toward the downstream side of the flow of the steam as it goes from the tip side to the root side of the vane.

【0012】又は、上記目的を達成するために、本発明
の蒸気タービンは、膨張流体が通過する拡大流路を有す
るケーシングと、前記拡大流路の壁部に固定保持され、
径方向に延びて配置されている静翼と、該静翼の下流側
に配置され、回転軸とともに回転する動翼とを備え、前
記静翼を回転軸の回転方向に傾斜させて配置するととも
に、該静翼と前記動翼との軸方向間隔を径方向内側より
外側の方が大きくなるように形成させ、該静翼の下流側
外周壁上にドレン捕獲装置を、かつ、該静翼根元部及び
先端部における入口部腹側翼面上及び出口部背側翼面上
にドレン捕獲溝を、かつ、該静翼の外周部及び内周部に
前記ドレン捕獲溝に連通するドレン補集室を設ける。
Alternatively, in order to achieve the above object, a steam turbine according to the present invention comprises a casing having an enlarged flow passage through which an expansion fluid passes, and a fixedly held wall of the enlarged flow passage.
A stationary blade arranged to extend in the radial direction, and a moving blade arranged downstream of the stationary blade and rotating together with the rotating shaft, wherein the stationary blade is arranged so as to be inclined in the rotating direction of the rotating shaft. The axial distance between the stationary blade and the moving blade is formed to be larger on the outer side than on the radially inner side, and a drain capture device is provided on a downstream outer peripheral wall of the stationary blade, and A drain trapping groove is provided on the inlet abdominal wing surface and the outlet dorsal wing surface at the part and the tip part, and a drain collection chamber communicating with the drain trapping groove is provided on the outer peripheral portion and the inner peripheral portion of the stationary blade. .

【0013】[0013]

【発明の実施の形態】以下に図示した実施例に基づいて
本発明の詳細を説明する。図13には本発明の要部が示
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on embodiments shown in the drawings. FIG. 13 shows a main part of the present invention.

【0014】蒸気タービンは、主としてタービンのケー
シング20と回転体21とにより形成されており、この
回転体21はタービン軸22と、このタービン軸22に
その根元端が固定され、タービン軸22とともに回転す
る動翼2とを備えている。
The steam turbine is mainly formed of a turbine casing 20 and a rotating body 21. The rotating body 21 has a turbine shaft 22 and a root end fixed to the turbine shaft 22, and rotates together with the turbine shaft 22. And a moving blade 2.

【0015】静翼1は、前記動翼2の蒸気の流れ方向上
流側に配置され、前記ケーシング20に支持されてい
る。この静翼1および動翼2は、ケーシング20とター
ビン軸22の間に形成された拡大流通路23内に配置さ
れる。
The stationary blade 1 is disposed upstream of the moving blade 2 in the flow direction of steam, and is supported by the casing 20. The stationary blade 1 and the moving blade 2 are arranged in an enlarged flow passage 23 formed between the casing 20 and the turbine shaft 22.

【0016】この構成において、ケーシング20の内部
に供給された蒸気は、図中中央部から両端部へ向かって
拡大流通路23を膨張しながら流れ、静翼1を通過噴出
される蒸気により動翼2が作動され、回転体21を回転
させるように構成されている。
In this configuration, the steam supplied to the inside of the casing 20 flows while expanding through the enlarged flow passage 23 from the center to the both ends in the figure, and is moved by the steam ejected through the stationary blade 1 by the steam. 2 is operated to rotate the rotating body 21.

【0017】図1には、この静翼1,動翼2からなる段
落装置の上半部分の詳細が示されている。この段落部に
は、ケーシング20に保持され、内壁面に傾斜角θを有
する外輪3と、静翼1を保持している内輪4とがあり、
この外輪3と内輪4とで拡大流通路23が形成されてい
る。また、この拡大流通路23の外周壁面上の動翼2前
縁部直前にはドレン捕獲装置5が形成されている。
FIG. 1 shows the details of the upper half part of the paragraph device composed of the stationary blade 1 and the moving blade 2. In this paragraph, there are an outer ring 3 held by the casing 20 and having an inclination angle θ on the inner wall surface, and an inner ring 4 holding the stationary blade 1.
The outer race 3 and the inner race 4 form an enlarged flow passage 23. A drain capture device 5 is formed immediately before the leading edge of the bucket 2 on the outer peripheral wall surface of the enlarged flow passage 23.

【0018】この拡大流通路内に配置されている静翼1
は、タービン軸22まわりに放射状に複数本配置されて
いる。この静翼1は、拡大流通路を形成している外輪3
と内輪4との両者にその両端部で保持されている。即
ち、外輪3は、静翼1の先端を固定し、内輪4は、静翼
1の根元端を固定する。径方向直立線rに対して軸方向
の上流側に後縁1aが角度ε傾斜して配置されている。
さらに、静翼1の翼面上には外周および内周壁側におい
て静翼前縁部腹側(凹面側)にドレン排出溝7が穿設さ
れており、静翼後縁部背側(凸面側)においても同じよ
うにドレン排出溝8が穿設されている。尚、静翼1の後
縁1aとは、静翼1のうち蒸気の流れの下流端をいい、
静翼1の前縁とは、静翼1のうち蒸気の流れの上流端を
いう。
The stationary blade 1 arranged in the enlarged flow passage
Are radially arranged around the turbine shaft 22. The stationary blade 1 is provided with an outer race 3 forming an enlarged flow passage.
And the inner ring 4 at both ends thereof. That is, the outer ring 3 fixes the tip of the stationary blade 1, and the inner ring 4 fixes the root end of the stationary blade 1. A trailing edge 1a is disposed at an angle ε inclined upstream of the radial upright line r in the axial direction.
Further, a drain discharge groove 7 is formed on the wing surface of the stationary blade 1 on the outer peripheral side and the inner peripheral wall side on the abdomen side (concave side) of the leading edge of the stationary blade, and on the back side (convex side) of the trailing edge of the stationary blade. In the same manner, the drain discharge groove 8 is formed in the same manner. The trailing edge 1a of the stationary blade 1 refers to the downstream end of the steam flow in the stationary blade 1,
The leading edge of the stationary blade 1 refers to the upstream end of the steam flow in the stationary blade 1.

【0019】また、静翼1の下流側には動翼2が回転デ
ィスク6に植えられているわけであるが、この動翼2の
前縁2aと静翼1の後縁1aとの軸方向距離δが、根元
側から先端側に向かって、すなわち径方向内側から外側
に向かって次第に大きくなるよう(δt>δr)に配置
されている。
A moving blade 2 is planted on the rotating disk 6 on the downstream side of the stationary blade 1. An axial direction between a leading edge 2 a of the moving blade 2 and a trailing edge 1 a of the stationary blade 1 is set. The distance δ is arranged so that the distance gradually increases from the root side to the tip side, that is, from the radially inner side to the outer side (δt> δr).

【0020】さらに、この静翼1は周方向にも傾斜して
配置されている。図2はその傾斜状態を明らかにするた
めに蒸気の流れに対して下流側から見た図で、静翼1
は、翼長中央で径方向直立線rに対して軸の回転方向
(矢印31)側に後縁1aが角度φ傾斜して配置されて
いる。
Further, the stationary blade 1 is also arranged inclined in the circumferential direction. FIG. 2 is a view of the steam flow viewed from the downstream side in order to clarify the inclined state.
In the center of the blade length, the trailing edge 1a is arranged at an angle φ in the rotation direction (arrow 31) of the axis with respect to the radial upright line r.

【0021】このように静翼1は、周方向および軸方向
に傾斜して外輪3および内輪4に保持されているわけで
あるが、この傾斜角φは、一般的な蒸気タービンでは外
輪3の広がり角θによって異なるものの、翼長の中央で
φ=5°〜20°になるように形成するのがよく、εは
ε=3°〜10°と周方向傾斜角の約1/2に設定する
と良好な流れを得ることができる。
As described above, the stationary blade 1 is held by the outer ring 3 and the inner ring 4 while being inclined in the circumferential direction and the axial direction. This inclination angle φ is equal to that of the outer ring 3 in a general steam turbine. Although it depends on the divergence angle θ, it is preferable to form it so that φ = 5 ° to 20 ° at the center of the blade length, and ε is set to ε = 3 ° to 10 ° and about 1/2 of the circumferential inclination angle. Then, a good flow can be obtained.

【0022】また、拡大流通路外周壁上の動翼2前縁部
の直前にはドレン捕獲装置5が開口形成されており、静
翼1の翼面上には外周および内周壁側において静翼前縁
部腹側にドレン排出溝7が、静翼後縁部背側においても
同じようにドレン排出溝8が穿設されている。ドレン排
出溝7及びドレン排出溝8は何れも静翼1の略翼長方向
に形成されている。ドレン排出溝7の内周側における静
翼1と内輪4との固定部にはドレン補集装置9が、ドレ
ン排出溝8の外周側における静翼1と外輪3との固定部
にはドレン補集装置10が形成されており、ドレン補集
装置9,10には流路外周および内周側にリング状に形
成されたドレン補集室11および12に連通するドレン
通路が形成されており、ドレン排出溝7,8で捕獲され
たドレンはこの通路を通じてドレン補集室11,12へ
と導かれる。
A drain catching device 5 is formed on the outer peripheral wall of the enlarged flow passage immediately before the leading edge of the moving blade 2. A drain discharge groove 7 is formed on the front edge abdominal side, and a drain discharge groove 8 is formed on the rear side of the stationary blade rear edge. Both the drain discharge groove 7 and the drain discharge groove 8 are formed substantially in the blade length direction of the stationary blade 1. A drain collection device 9 is provided at a fixed portion between the stationary blade 1 and the inner ring 4 on the inner peripheral side of the drain discharge groove 7, and a drain supplementary device is provided at a fixed portion between the stationary blade 1 and the outer ring 3 on the outer peripheral side of the drain discharge groove 8. And a drain passage communicating with the drain collection chambers 11 and 12 formed in a ring shape on the outer circumference and the inner circumference side of the flow path. The drain captured in the drain discharge grooves 7 and 8 is guided to the drain collection chambers 11 and 12 through this passage.

【0023】さらに、流路内周側のドレン補集室12に
回収されたドレンは図3に示すように、タービン軸周り
に放射状に配置された静翼1の最も下に位置する1本の
内部に形成されたドレン通路13を通じて流路外周側ド
レン補集室11へ回収される。この場合、最下部に位置
する静翼1にドレン通路を設けた方が差圧に加えて重力
の効果も得られるので高いドレン排出効果が得られる。
このドレン通路は静翼断面図で示すと図15に示すよう
になるが、ドレン通路13は複数設けても一つでもその
効果が得られるだけの断面積を有していればよい。
Further, as shown in FIG. 3, the drain collected in the drain collection chamber 12 on the inner peripheral side of the flow path is one of the lowermost vanes 1 radially arranged around the turbine axis. The liquid is collected in the drain collection chamber 11 on the outer peripheral side of the flow passage through the drain passage 13 formed inside. In this case, when the drain passage is provided in the stationary blade 1 located at the lowermost portion, the effect of gravity can be obtained in addition to the differential pressure, so that a high drain discharge effect can be obtained.
This drain passage is as shown in FIG. 15 in a sectional view of the stationary blade, but a plurality of drain passages 13 may be provided or at least one having a sectional area sufficient to obtain the effect.

【0024】これらのドレン捕獲装置は開口表面より圧
力が低い復水器(図示せず)等の低圧部に直接または間
接的に連通しており、静翼1下流側の拡大流通路上を流
れるドレンおよび翼表面上根元および先端側を流れるド
レンはこれらドレン捕獲装置によって吸い込まれ、流路
外部に排出される。流路外部へのドレン排出方法の具体
例としては、図3に示すようにドレン捕獲装置5と外周
側ドレン補集室11とを連結させ、流路外周側ドレン捕
集室11の最下部において復水器と連通するドレン排出
孔14を設けることによりドレンを復水器へと排出する
方法がある。他にもドレン捕獲装置5および外周側ドレ
ン補集室11から別々にドレンを復水器へと排出する方
法がある。いずれの場合においても、復水器側はドレン
捕獲装置5およびドレン補集室11よりも圧力が低い状
態となっているため、それぞれの圧力差からドレンはド
レン排出孔14を通じて復水器へと排出されることにな
る。
These drain catchers are in direct or indirect communication with a low-pressure part such as a condenser (not shown) having a lower pressure than the opening surface, and drains on the enlarged flow passage downstream of the stationary blade 1. The drain flowing on the root and the tip side on the blade surface is sucked by the drain capturing device and discharged to the outside of the flow path. As a specific example of the drain discharge method to the outside of the flow path, as shown in FIG. 3, the drain capture device 5 and the outer-side drain collection chamber 11 are connected to each other. There is a method of discharging the drain to the condenser by providing a drain discharge hole 14 communicating with the condenser. In addition, there is a method of separately discharging the drain from the drain capturing device 5 and the outer peripheral side drain collection chamber 11 to the condenser. In any case, since the condenser side has a lower pressure than the drain capture device 5 and the drain collection chamber 11, the drain is discharged from the respective pressure differences to the condenser through the drain discharge holes 14. Will be discharged.

【0025】図4は図1および図3中のC−C断面にお
いて流れ方向より下流側から見た断面図であるが、この
図に示す通りリング状の内周側ドレン補集室11に補集
されたドレンは最下部に位置する静翼内に設けられたド
レン通路13を通じて外周側ドレン補集室12へと導か
れ、ドレン排出孔14より復水器へと排出されることに
なる。
FIG. 4 is a cross-sectional view taken along the line CC in FIGS. 1 and 3 as viewed from the downstream side in the flow direction. As shown in FIG. 4, the ring-shaped inner drain collection chamber 11 is supplemented. The collected drain is guided to the outer peripheral side drain collection chamber 12 through the drain passage 13 provided in the lowermost stationary blade, and is discharged from the drain discharge hole 14 to the condenser.

【0026】また、ドレン排出装置は図1に示すような
もののみならず、図11に示すように静翼1の下流側の
外周壁一面に溝を形成させ、その溝内にドレン排出孔を
穿設したものや、図12に示すように静翼1の下流側の
外周壁に複数の溝とドレン排出孔を形成させたものでも
よい。さらに、図14に示すようにドレン排出溝7は静
翼外周および内周壁側における静翼前縁部腹側に、ドレ
ン排出溝8は静翼外周および内周壁側における後縁部背
側に穿設されている。
A drain discharge device is formed not only as shown in FIG. 1 but also as shown in FIG. 11, a groove is formed on the entire outer peripheral wall on the downstream side of the stationary blade 1, and a drain discharge hole is formed in the groove. A plurality of grooves and a drain discharge hole may be formed in the outer peripheral wall on the downstream side of the stationary blade 1 as shown in FIG. Further, as shown in FIG. 14, the drain discharge groove 7 is formed in the outer periphery and the inner peripheral wall of the stationary blade in the front side of the leading edge of the stationary blade, and the drain discharge groove 8 is formed in the outer periphery of the stationary blade and in the rear side of the rear edge in the inner peripheral wall. Has been established.

【0027】ここで、図9は図8に示す従来の静翼構造
における流体の流動状況を流線で図示したものである
が、この場合では静翼1の先端部側(図中上側)に低流
量部分(A1部)が発生し外輪3の広がり形状に沿わな
い流れとなってしまい、動翼先端部に急激な三次元流れ
が発生する。このような部分には、渦が発生する場合も
あり、蒸気中のドレンを効率よく外周壁面上に付着させ
ることは困難となる。
Here, FIG. 9 shows the flow state of the fluid in the conventional stationary blade structure shown in FIG. 8 by streamlines. In this case, the state is located at the tip end side (upper side in the figure) of the stationary blade 1. A low flow rate portion (A1 portion) is generated and the flow does not follow the spread shape of the outer ring 3, and a sharp three-dimensional flow is generated at the tip of the bucket. A vortex may be generated in such a portion, and it becomes difficult to efficiently attach the drain in the steam to the outer peripheral wall surface.

【0028】図10は静翼を周方向及び軸方向に傾斜さ
せて配置させた静翼構造における流体の流動状況を流線
で図示したものであるが、この場合においては、外周壁
側に向かうにしたがって静翼と動翼の軸方向距離(間
隙)を広くすることにより、静翼から流出する旋回流れ
による遠心力の効果によって、内向き流れから拡大壁に
沿った外向き流れにスムースに変えることができ、前述
したような動翼先端部の急激な三次元流れの発生を抑え
ることができる。
FIG. 10 shows, by streamlines, the flow state of the fluid in the stationary blade structure in which the stationary blades are arranged inclined in the circumferential direction and the axial direction. In this case, the fluid flows toward the outer peripheral wall. , The axial distance (gap) between the stationary blade and the moving blade is increased, and the effect of the centrifugal force caused by the swirling flow flowing out of the stationary blade smoothly changes the inward flow to the outward flow along the enlarged wall. As a result, it is possible to suppress the generation of the rapid three-dimensional flow at the tip of the bucket as described above.

【0029】一方、蒸気中の湿り度の翼長方向に対する
分布を示したものが図5であるが、この図に示すように
翼中央から先端部分にかけてドレンが集中していること
が分かる。そのため、静翼1の先端を起点にして径方向
内側に向かってより広範囲にわたって、流出するドレン
を外周壁に付着させることができれば、蒸気中のドレン
をより多量に排除することができ、タービン段落効率を
向上させることができる。
On the other hand, FIG. 5 shows the distribution of the wetness in the steam in the blade length direction. It can be seen from FIG. 5 that the drain is concentrated from the center to the tip of the blade. Therefore, if the drain that flows out can be attached to the outer peripheral wall over a wider area radially inward from the tip of the stationary blade 1 as a starting point, a larger amount of drain in the steam can be removed, and the turbine stage Efficiency can be improved.

【0030】前述のような流れ場において、蒸気流中の
湿り分である水滴の挙動を説明すると以下のようにな
る。図6(a)において、図1の静翼1をタービン軸に
直角である半径方向の外周側から見た状況を示したのが
静翼1′であり、静翼1′の出口流れは、タービン軸方
向の周方向より角度αだけ軸方向に向かって流出する。
したがって、静翼の出口ではタービン軸方向の速度成分
よりもはるかに大きな周方向速度成分(旋回成分)のあ
る状態になっている。水滴は、この旋回成分による遠心
力の作用を受けることになり、この結果として、水滴の
軌跡は図6(b)に示す同心円状(32)ではなく、タ
ービンの外周側へ向かう(33)のような軌跡になり、
外周壁に付着することになる。これを静翼出口端と動翼
入口端との距離δとの関係で示すと、図6において静翼
の長さLの点bから流出した水滴が静翼出口端と動翼入
口端との距離δの位置で外周壁に付着することになる。
これから明らかなように、点bから先端側の範囲Bにお
ける水滴は距離δを移動する以前に外周壁に付着する。
このような水滴の外周壁に付着する静翼翼長方向の範囲
Bとの関係を示したのが図7である。この図から明らか
なように、静翼出口端と動翼入口端との距離δが大きい
ほど、先端からの範囲Bが広くなり、図5に示す翼長方
向の湿り度分布の多くの部分を外周壁に付着させて捕獲
できることになる。
In the flow field as described above, the behavior of water droplets, which are wet components in the steam flow, will be described as follows. In FIG. 6 (a), the stationary blade 1 'of FIG. 1 is viewed from the radially outer circumferential side perpendicular to the turbine axis, and the stationary blade 1' is shown. It flows out in the axial direction by an angle α from the circumferential direction in the turbine axial direction.
Therefore, at the exit of the stationary blade, there is a state in which there is a circumferential speed component (swirl component) much larger than the speed component in the turbine axial direction. The water droplet is subjected to the action of the centrifugal force due to this swirling component. As a result, the trajectory of the water droplet is not concentric (32) shown in FIG. It becomes a trajectory like
It will adhere to the outer peripheral wall. This is shown in relation to the distance δ between the stationary blade outlet end and the rotor blade inlet end. In FIG. 6, water droplets flowing out from the point b of the stationary blade length L are formed between the stationary blade outlet end and the rotor blade inlet end. It will adhere to the outer peripheral wall at the position of the distance δ.
As is clear from this, the water droplet in the range B on the tip side from the point b adheres to the outer peripheral wall before moving the distance δ.
FIG. 7 shows the relationship between the water droplets adhering to the outer peripheral wall and the range B in the vane blade length direction. As is clear from this figure, as the distance δ between the stationary blade outlet end and the rotor blade inlet end is larger, the range B from the tip becomes wider, and many parts of the blade length direction wetness distribution shown in FIG. It can be captured by attaching to the outer peripheral wall.

【0031】したがって、静翼1の後縁部1aが軸方向
上流側へ角度εで傾斜している静翼であれば、静翼後縁
部1aから流出するドレンは傾斜させない従来の静翼と
比べて上流側から流出することになり、翼先端部から翼
根元側に向かってより広範囲の部分のドレンを外周壁に
付着させることができる。さらに、このような形状に配
置された静翼であれば、静翼後縁部1aから下流側にお
いてドレンが付着する外周壁部の面積を大きくすること
ができ、より多量のドレンを排除することが可能とな
る。これらのドレンは外周壁面上に付着し流れるので、
ドレン排出装置は外周壁上の動翼前縁部2aの直前に設
置することで効率よくドレンを排除できる。
Therefore, if the trailing edge 1a of the stationary blade 1 is inclined toward the upstream side in the axial direction at an angle ε, the drain flowing out from the trailing edge 1a of the stationary blade is different from the conventional stationary blade which is not inclined. As a result, the water flows out from the upstream side, so that a wider range of drain can be attached to the outer peripheral wall from the blade tip toward the blade root. Furthermore, if the stationary blade is arranged in such a shape, the area of the outer peripheral wall to which the drain adheres on the downstream side from the trailing edge 1a of the stationary blade can be increased, and a larger amount of drain can be eliminated. Becomes possible. Since these drains adhere and flow on the outer peripheral wall,
The drain can be efficiently removed by installing the drain discharge device immediately before the blade leading edge 2a on the outer peripheral wall.

【0032】また、流路中央部の内周側にて発生するド
レンは外周壁に付着するには至らず、次の段落へ持ち越
されるが、前述した効果によって外周側に移動する。対
して、内周壁近傍にて発生するドレンは図9の流線の形
状および静翼出口端と動翼入口端との距離が小さくなっ
ていることからあまり流路外周側には移動しない。以上
のことから流路内周側に発生し、前述した構造を持つ段
落装置によっても排出できずに次の段落に流入するドレ
ンは、流路中央部よりのものは外周側に移動し、内周壁
付近のものはあまり移動せずに流入することになる。
The drain generated on the inner peripheral side of the center of the flow path does not adhere to the outer peripheral wall and is carried over to the next paragraph, but moves to the outer peripheral side by the above-described effect. On the other hand, the drain generated in the vicinity of the inner peripheral wall does not move much to the outer peripheral side of the flow path due to the shape of the streamline in FIG. 9 and the small distance between the exit end of the stationary blade and the entrance end of the moving blade. From the above, the drain that is generated on the inner peripheral side of the flow path and cannot be discharged even by the paragraph apparatus having the above-described structure and flows into the next paragraph moves from the central part of the flow path to the outer peripheral side. Things near the peripheral wall will flow in without moving much.

【0033】しかし、このように排出できずに次の段落
に流入するドレンは、段落の入口である静翼1の先端部
分の外周および内周壁側にドレン排出溝7を穿設するこ
とによって取り除くことができる。このドレン排出溝7
は、前段落の動翼後縁部から流出する蒸気中のドレンが
次段落の静翼前縁部の腹側に比較的集中することから、
静翼の腹側に穿設することで排出効果を高めることがで
きる。また、静翼の表面にドレン排出溝7又はドレン排
出溝8を形成するため、静翼内を中空にして表面から蒸
気を吸い込む場合に比較して、静翼の構造が簡単で、か
つ、製造が容易である。
However, the drain which cannot be discharged as described above and flows into the next paragraph is removed by forming a drain discharge groove 7 on the outer peripheral and inner peripheral wall sides of the tip portion of the stationary blade 1 which is the entrance of the paragraph. be able to. This drain discharge groove 7
Is because the drain in the steam flowing out of the trailing edge of the rotor blade in the previous paragraph is relatively concentrated on the ventral side of the leading edge of the stator blade in the next paragraph,
By piercing on the ventral side of the stationary blade, the discharge effect can be enhanced. In addition, since the drain discharge groove 7 or the drain discharge groove 8 is formed on the surface of the stationary blade, the structure of the stationary blade is simpler and the manufacturing process is simpler than in the case where the interior of the stationary blade is hollow and steam is sucked from the surface. Is easy.

【0034】また、静翼後縁部においても同様にドレン
排出溝8を穿設することで、静翼1を膨張しながら通過
する蒸気中に生じ、静翼表面上を流れるドレンを排出す
ることができる。静翼後縁部においてはドレンは静翼背
側に集中することから、この部分においてはドレン排出
溝8は背側に穿設したほうが良く、排出効果を考えると
ドレン排出溝7と同様に外周および内周壁側に設けるの
が良い。
Similarly, by forming a drain discharge groove 8 also at the trailing edge of the stationary blade, the drain generated in the steam passing through the stationary blade 1 while expanding and discharging on the stationary blade surface can be discharged. Can be. At the trailing edge of the stationary blade, the drain is concentrated on the back side of the stationary blade. Therefore, it is better to form the drain discharge groove 8 on the back side in this portion. And on the inner peripheral wall side.

【0035】本実施例によれば、蒸気中にドレンが生じ
る蒸気タービン低圧部の拡大流通路内に配置される静翼
を、回転方向に傾斜させて配置するとともに、静翼と動
翼の軸方向距離を根元部から先端部に向かうにつれて大
きくなるように形成し、外周壁の動翼前縁部直前部分に
ドレン排出装置を設けたことで、この拡大流通路内の三
次元流れを適正化させて静翼下流側の外周壁に付着する
ドレン量を増加させることができる。また、段落の入口
に当たる静翼前縁部において、ドレンが集中しやすい腹
側部にドレン排出溝を設けること、静翼流路部で発生す
るドレンが集中する静翼後縁部にもドレン排出溝を設け
ることでドレン排出効果を高めることができる。さら
に、水滴による動翼先端へのエロージョンについても低
減させることができ、このことがタービン内部に発生す
る湿り損失を低減させることにつながり、高効率の蒸気
タービンの段落装置を得ることができる。
According to the present embodiment, the stationary blades disposed in the enlarged flow passage of the low-pressure part of the steam turbine in which the drain is generated in the steam are arranged to be inclined in the rotating direction, and the shafts of the stationary blades and the moving blades are arranged. The direction distance is formed so as to increase from the root to the tip, and a drain discharge device is provided immediately before the leading edge of the rotor blade on the outer peripheral wall to optimize the three-dimensional flow in this enlarged flow passage. Thus, the amount of drain adhering to the outer peripheral wall on the downstream side of the stationary blade can be increased. In addition, a drain discharge groove is provided on the ventral side where drain is likely to concentrate at the leading edge of the vane, which corresponds to the entrance of the paragraph. By providing the groove, the drain discharge effect can be enhanced. Furthermore, erosion of the blade tip by water droplets can also be reduced, which leads to a reduction in wet loss generated inside the turbine, and a highly efficient steam turbine stage device can be obtained.

【0036】さらに、ドレン排出溝7の形状は、静翼の
先端側(外周側)から根元側(内周側)へ向かうに伴
い、下流側へ傾斜しているのが好ましい。これにより、
静翼表面のドレンを、蒸気の流れを利用して、効率よく
ドレン補集装置へ導くことができる。また、内周壁近傍
で蒸気の流れが乱れやすいため、ドレン排出溝7の形状
は、静翼の先端側(外周側)から根元側(内周側)へ向
かうに伴い、ドレン排出溝7の深さを小さく、又は凹凸
部の大きさを小さくするのが好ましい。これにより、ド
レン排出溝7の形成に起因する内周壁近傍での蒸気の流
れの乱れの増加を抑制することができる。
Further, it is preferable that the shape of the drain discharge groove 7 is inclined downstream as it goes from the tip side (outer peripheral side) to the root side (inner peripheral side) of the stationary blade. This allows
The drain on the surface of the stationary blade can be efficiently guided to the drain collection device by utilizing the flow of steam. Further, since the flow of steam is easily disturbed in the vicinity of the inner peripheral wall, the shape of the drain discharge groove 7 becomes deeper from the tip side (outer peripheral side) to the root side (inner peripheral side) of the stationary blade. It is preferable to reduce the size or the size of the uneven portion. Thus, it is possible to suppress an increase in turbulence of the steam flow near the inner peripheral wall due to the formation of the drain discharge groove 7.

【0037】尚、以上の説明では、静翼1を傾斜させる
にあたり、周方向にも軸方向にも直線的に傾斜するよう
説明してきたが、常にこのように形成しなければならな
いわけでなく、周方向または軸方向のどちらか一方を曲
線的に傾斜させ、他の一方を直線的に傾斜させたり、周
方向および軸方向ともに曲線的に傾斜させてもよい。以
上で述べた段落装置において、湿り損失の低減による段
落効率の向上量は従来の段落装置と比較して平均値で約
1%改善されることが明らかとなっている。
In the above description, when the stationary blade 1 is inclined, it has been described that the stationary blade 1 is inclined linearly both in the circumferential direction and in the axial direction. However, the inclination is not always required. Either the circumferential direction or the axial direction may be curvedly inclined, and the other one may be linearly inclined, or both the circumferential direction and the axial direction may be curvedly inclined. In the paragraph apparatus described above, it is clear that the amount of improvement in paragraph efficiency due to the reduction in wet loss is improved by about 1% on average as compared with the conventional paragraph apparatus.

【0038】[0038]

【発明の効果】本発明によれば、静翼の根元部に形成し
た溝により、蒸気中に生じるドレンを静翼において効率
よく捕獲し、ドレンを排除するため、湿り損失によるタ
ービン性能の低下と下流側に位置する動翼先端の浸食を
低減できる効果を奏する。
According to the present invention, the drain formed in the steam is efficiently captured by the stationary blade by the groove formed at the root portion of the stationary blade, and the drain is removed. This has the effect of reducing erosion at the blade tip located downstream.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蒸気タービンの段落装置の縦断側面
図。
FIG. 1 is a vertical sectional side view of a paragraph device of a steam turbine of the present invention.

【図2】本発明の静翼の正面図。FIG. 2 is a front view of a stationary blade according to the present invention.

【図3】本発明の蒸気タービンの最下部に位置する静翼
の縦断側面図。
FIG. 3 is a vertical sectional side view of a stationary blade located at the lowermost part of the steam turbine of the present invention.

【図4】図1,図3におけるC−C断面での断面図。FIG. 4 is a sectional view taken along the line CC in FIGS. 1 and 3;

【図5】本発明の蒸気タービンの静翼出口部における翼
長方向の湿り度分布を示す特性図。
FIG. 5 is a characteristic diagram showing a wetness distribution in a blade length direction at a stator blade outlet portion of the steam turbine of the present invention.

【図6】本発明の蒸気タービンの段落装置を下流側から
見た正面図及び静翼翼列の投影図。
FIG. 6 is a front view of the stage device of the steam turbine of the present invention viewed from the downstream side and a projected view of a stationary blade cascade.

【図7】静翼後縁・動翼前縁間距離と静翼先端からのド
レン付着範囲との関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between a distance between a trailing edge of a stationary blade and a leading edge of a moving blade and a drain adhesion range from the tip of the stationary blade.

【図8】従来の蒸気タービンの段落装置の縦断側面図。FIG. 8 is a vertical side view of a conventional steam turbine paragraph device.

【図9】従来の蒸気タービンの段落装置における作動流
体の流動状況を示す縦断側面図。
FIG. 9 is a vertical sectional side view showing a flow state of a working fluid in a conventional steam turbine stage device.

【図10】本発明の蒸気タービンの段落装置における作
動流体の流動状況を示す縦断側面図。
FIG. 10 is a vertical sectional side view showing a flow state of a working fluid in the paragraph device of the steam turbine of the present invention.

【図11】本発明の蒸気タービンの他のドレン排出装置
の断側面図。
FIG. 11 is a cross-sectional side view of another drain discharge device of the steam turbine of the present invention.

【図12】本発明の蒸気タービンの他のドレン排出装置
の断側面図。
FIG. 12 is a cross-sectional side view of another drain discharge device of the steam turbine of the present invention.

【図13】本発明の蒸気タービンの縦断側面図。FIG. 13 is a vertical sectional side view of the steam turbine of the present invention.

【図14】本発明の静翼のドレン排出溝を示す断面図。FIG. 14 is a sectional view showing a drain discharge groove of the stationary blade of the present invention.

【図15】本発明の蒸気タービンの最下部の静翼の断面
図。
FIG. 15 is a sectional view of a lowermost stationary blade of the steam turbine of the present invention.

【符号の説明】[Explanation of symbols]

1…静翼、2…動翼、3…外輪、4…内輪、5…ドレン
捕獲装置、6…回転ディスク、7,8…ドレン排出溝、
9,10…ドレン補集装置、11,12…ドレン補集
室、13…ドレン通路、14…ドレン排出孔、20…ケ
ーシング、21…回転体、22…タービン軸、23…拡
大流通路、φ…周方向傾斜角、ε…軸方向傾斜角。
DESCRIPTION OF SYMBOLS 1 ... Static blade, 2 ... Moving blade, 3 ... Outer ring, 4 ... Inner ring, 5 ... Drain capture device, 6 ... Rotating disk, 7, 8 ... Drain discharge groove,
9, 10 drain collecting device, 11, 12 drain collecting chamber, 13 drain passage, 14 drain discharge hole, 20 casing, 21 rotating body, 22 turbine shaft, 23 expanding flow passage, φ ... Slope angle in the circumferential direction, ε ... Slope angle in the axial direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 義昭 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 3G002 GA08 GA09 GA16 GA17 GB04 GB05  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoshiaki Yamazaki 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi, Ltd. Electric Power and Electrical Development Laboratory 3G002 GA08 GA09 GA16 GA17 GA04 GB05 GB05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蒸気タービンの蒸気流路に配置される静翼
において、その根元部表面に、略翼長方向に伸びる溝を
備えたことを特徴とする静翼。
1. A stationary blade arranged in a steam flow path of a steam turbine, wherein a groove extending substantially in a blade length direction is provided on a root surface of the stationary blade.
【請求項2】前記溝は、凹面側の前縁部又は凸面側の後
縁部の少なくとも一方に形成されることを特徴とする請
求項1に記載の静翼。
2. The vane according to claim 1, wherein the groove is formed on at least one of a leading edge on a concave surface and a trailing edge on a convex surface.
【請求項3】蒸気が通過する拡大流路内に形成された静
翼と、前記静翼の先端を固定する外輪と、前記静翼の根
元端を固定する内輪と、前記静翼の下流側に配置されそ
の根元端が回転軸に固定された動翼とを備えた蒸気ター
ビンにおいて、前記静翼の根元部表面に形成され前記静
翼の略翼長方向に伸びる溝と、前記内輪内でかつ前記溝
に連通するように形成された空間とを備えたことを特徴
とする蒸気タービン。
3. A stationary blade formed in an enlarged flow passage through which steam passes, an outer ring for fixing a tip of the stationary blade, an inner ring for fixing a root end of the stationary blade, and a downstream side of the stationary blade. A steam turbine having a rotor blade whose root end is fixed to a rotating shaft, the groove being formed on the root surface of the stator blade and extending substantially in the blade length direction of the stator blade; And a space formed to communicate with the groove.
【請求項4】前記溝は、前記静翼の先端側から根元側へ
向かうに伴い、前記蒸気の流れの下流側に傾斜するよう
に形成されたことを特徴とする請求項3に記載の蒸気タ
ービン。
4. The steam according to claim 3, wherein the groove is formed so as to be inclined toward the downstream side of the flow of the steam as going from the tip side to the root side of the stationary blade. Turbine.
【請求項5】膨張流体が通過する拡大流路を有するケー
シングと、前記拡大流路の壁部に固定保持され、径方向
に延びて配置されている静翼と、該静翼の下流側に配置
され、回転軸とともに回転する動翼とを備えた蒸気ター
ビンにおいて、前記静翼を回転軸の回転方向に傾斜させ
て配置するとともに、該静翼と前記動翼との軸方向間隔
を径方向内側より外側の方が大きくなるように形成さ
せ、該静翼の下流側外周壁上に設けられたドレン捕獲装
置と、該静翼根元部及び先端部における入口部腹側翼面
上及び出口部背側翼面上に設けられたドレン捕獲溝と、
該静翼の外周部及び内周部に設けられ前記ドレン捕獲溝
に連通するドレン補集室とを備えたことを特徴とする蒸
気タービン。
5. A casing having an enlarged flow passage through which an inflation fluid passes, a stationary blade fixed and held on a wall of the enlarged flow passage and arranged in a radial direction, and a downstream side of the stationary blade. And a moving blade that rotates together with the rotating shaft, wherein the stationary blade is disposed so as to be inclined in the rotation direction of the rotating shaft, and the axial distance between the stationary blade and the moving blade is set in the radial direction. A drain capturing device provided on the outer peripheral wall on the downstream side of the stationary blade, the drain capturing device being formed so as to be larger on the outer side than on the inner side; A drain capture groove provided on the side wing surface,
A steam turbine, comprising: a drain collection chamber provided on an outer peripheral portion and an inner peripheral portion of the stationary blade and communicating with the drain capturing groove.
JP26816099A 1999-09-22 1999-09-22 Steam turbine Expired - Fee Related JP3815143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26816099A JP3815143B2 (en) 1999-09-22 1999-09-22 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26816099A JP3815143B2 (en) 1999-09-22 1999-09-22 Steam turbine

Publications (2)

Publication Number Publication Date
JP2001090506A true JP2001090506A (en) 2001-04-03
JP3815143B2 JP3815143B2 (en) 2006-08-30

Family

ID=17454748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26816099A Expired - Fee Related JP3815143B2 (en) 1999-09-22 1999-09-22 Steam turbine

Country Status (1)

Country Link
JP (1) JP3815143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151056A (en) * 2008-12-25 2010-07-08 Toshiba Corp Steam turbine
JP2014114721A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Steam turbine
EP2952700A1 (en) * 2014-06-03 2015-12-09 Siemens Aktiengesellschaft Internal casing assembly for a turbomachine and corresponding method of manufacturing
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889456B1 (en) * 2012-07-11 2019-03-06 Mitsubishi Hitachi Power Systems, Ltd. Axial-flow exhaust turbine
JP6813446B2 (en) * 2017-07-12 2021-01-13 三菱パワー株式会社 Drain discharge structure of steam turbine and its modification method
CN115917119B (en) 2020-09-28 2024-06-07 三菱重工业株式会社 Steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151056A (en) * 2008-12-25 2010-07-08 Toshiba Corp Steam turbine
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion
JP2014114721A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Steam turbine
EP2952700A1 (en) * 2014-06-03 2015-12-09 Siemens Aktiengesellschaft Internal casing assembly for a turbomachine and corresponding method of manufacturing
WO2015185294A1 (en) * 2014-06-03 2015-12-10 Siemens Aktiengesellschaft Inner casing structure for a turbomachine, and associated manufacturing method

Also Published As

Publication number Publication date
JP3815143B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US6802881B2 (en) Rotating wave dust separator
JP3585795B2 (en) centrifuge
US5494405A (en) Method of modifying a steam turbine
JP2007315385A (en) Airfoil and method for removing moisture and injecting steam
JP2003514194A (en) Axial fan
JP2016125488A (en) Dirt extraction apparatus for gas turbine engine
JP5431047B2 (en) Steam turbine
JP2009504979A (en) Compressor cleaning
JP2011117451A (en) System for reducing effect of erosion on component
JP7292421B2 (en) Turbine stator vane, turbine stator vane assembly, and steam turbine
JP2009138540A (en) Steam turbine and moisture removing structure for steam turbine stage
JP2004124751A (en) Moisture separation device for steam turbine
JP2001090506A (en) Stationary blade and stream turbine
JPS5919792Y2 (en) energy recovery device
JP4296829B2 (en) Oil mist collection method and oil mist separator
JP2753237B2 (en) Stationary structure of steam turbine
JP2002097902A (en) Water removing pocket having improved water removing efficiency
JPH0326802A (en) Stationary blade apparatus of steam turbine
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
JPH0245441Y2 (en)
JP3862893B2 (en) Drain separation structure of steam turbine
JP3950308B2 (en) Moisture removal device in steam turbine
JP5984612B2 (en) Steam turbine
JPH1122474A (en) Scroll for ceramic turbine
JP2000145404A (en) Moisture scattering prevention structure of steam turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees