JP2001086677A - Permanent-magnet synchronous motor - Google Patents

Permanent-magnet synchronous motor

Info

Publication number
JP2001086677A
JP2001086677A JP25839199A JP25839199A JP2001086677A JP 2001086677 A JP2001086677 A JP 2001086677A JP 25839199 A JP25839199 A JP 25839199A JP 25839199 A JP25839199 A JP 25839199A JP 2001086677 A JP2001086677 A JP 2001086677A
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous motor
rotor
shaft
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25839199A
Other languages
Japanese (ja)
Inventor
Tsukasa Taniguchi
谷口  司
Haruo Oharagi
春雄 小原木
Koki Yamamoto
弘毅 山本
Satoshi Kikuchi
菊地  聡
Miyoshi Takahashi
身佳 高橋
Haruo Miura
治雄 三浦
Yasuo Fukushima
康雄 福島
Masaharu Senoo
正治 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25839199A priority Critical patent/JP2001086677A/en
Publication of JP2001086677A publication Critical patent/JP2001086677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the generation loss of a rotor when driving is made by an inverter being operated with a fundamental frequency by eliminating the continuity of a shaft, a permanent magnet, and a reinforcing material in a permanent-magnet synchronous motor with a rotor where a stator, an axial division permanent magnet, and a reinforcing material are provided. SOLUTION: A rotor is conductive. In the rotor, in the outer periphery of a shaft 6 of a magnetic body, a conductive permanent magnet 7 is provided in the outer periphery of a middle sleeve 10, and a reinforcing material CFRP 10 made of conductive carbon fiber is provided in the outer periphery of the permanent magnet 7. Insulating coating is applied onto the inner- and outer- periphery surfaces of the permanent magnet 7, and the insulating coating is formed on the inner periphery and side surface of a CFRP 8, thus reducing the continuity of a component and the harmonic loss caused by a harmonic current from an inverter when being driven by an inverter with a fundamental frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機等を駆動す
る超高速可変速電動機として使用される永久磁石式同期
電動機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type synchronous motor used as an ultra high speed variable speed motor for driving a compressor or the like.

【0002】[0002]

【従来の技術】永久磁石式同期電動機は、電動機効率が
高いことから、産業用駆動源として多用されている。電
動機の回転数が低い場合はシャフトに永久磁石を貼り付
けて使用されているが、電動機の回転数が高い場合は永
久磁石が飛散する恐れがある。上記不具合を解決する手
段として、超高速の永久磁石式同期電動機においては、
永久磁石の外周にカーボン繊維やチタンリングを設ける
方法が、特開平10−243586号公報で開示されている。
2. Description of the Related Art Permanent magnet type synchronous motors are frequently used as industrial drive sources because of their high motor efficiency. When the rotation speed of the motor is low, the permanent magnet is attached to the shaft, but when the rotation speed of the motor is high, the permanent magnet may be scattered. As a means for solving the above-mentioned problems, in an ultra-high-speed permanent magnet synchronous motor,
A method of providing a carbon fiber or a titanium ring on the outer periphery of a permanent magnet is disclosed in JP-A-10-243586.

【0003】上記従来技術においては、永久磁石の飛散
を防止できるが、永久磁石式同期電動機がインバータで
運転され、高調波電流による脈動磁束が回転子側に入射
したときに、回転子に発生する損失については考慮され
ていない問題があった。
In the above-mentioned prior art, the scattering of the permanent magnet can be prevented. However, when the permanent magnet type synchronous motor is operated by the inverter and the pulsating magnetic flux due to the harmonic current is incident on the rotor, it is generated in the rotor. There was a problem that loss was not considered.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上の点に鑑
みなされたものであり、本発明の目的は1kHz前後の
基本周波数で動作するインバータで駆動しても回転子の
発生損失が少ない、超高速の永久磁石式同期電動機を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to reduce a loss generated by a rotor even when driven by an inverter operating at a fundamental frequency of about 1 kHz. An object of the present invention is to provide an ultra-high speed permanent magnet synchronous motor.

【0005】[0005]

【課題を解決するための手段】上記目的は、固定子鉄心
の複数のスロット中に電機子巻線を巻装した固定子と、
導電性で磁性体のシャフトの外周に導電性でリング状の
軸方向分割永久磁石、さらにその外周にカーボン繊維か
らなる補強材を設けた回転子を有する永久磁石式同期電
動機において、シャフトと永久磁石と補強材との導通を
排除することにより達成される。
An object of the present invention is to provide a stator having an armature winding wound in a plurality of slots of a stator core,
In a permanent magnet synchronous motor having a conductive ring-shaped axially divided permanent magnet on the outer periphery of a conductive magnetic shaft and a rotor provided with a reinforcing member made of carbon fiber on the outer periphery, the shaft and the permanent magnet This is achieved by eliminating continuity between the wire and the reinforcement.

【0006】永久磁石の磁束は回転子のカーボン繊維か
らなる補強材、永久磁石、シャフトを介して固定子に導
かれる。そして、永久磁石式電動機を基本周波数1kH
z前後のインバータで駆動したとき、インバータからの
高調波電流に起因して高調波の磁束が発生する。この高
調波は基本周波数の5倍,7倍,11倍,13倍,17
倍,19倍になり、各構成部材で高調波損失を発生させ
る。ここで、各構成部材の導通があると、各構成部材に
うず電流回路が形成させ、高調波損失が発生する。そこ
で、各構成部材の導通を排除することにより、高調波損
失を低減できるため、超高速の永久磁石式同期電動機が
提供できる。
[0006] The magnetic flux of the permanent magnet is guided to the stator via a reinforcing material made of carbon fibers of the rotor, the permanent magnet, and the shaft. Then, the permanent magnet type electric motor is set to a fundamental frequency of 1 kHz.
When driven by inverters before and after z, harmonic magnetic flux is generated due to the harmonic current from the inverter. These harmonics are 5, 7, 11, 13, and 17 times the fundamental frequency.
That is, the frequency is increased by a factor of 19 and harmonic components are generated in each component. Here, if there is conduction between the components, an eddy current circuit is formed in each component, and harmonic loss occurs. Thus, by eliminating conduction between the constituent members, harmonic losses can be reduced, and an ultra-high-speed permanent magnet synchronous motor can be provided.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図3を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG.

【0008】図1に本発明の一実施例に係る永久磁石式
同期電動機の径方向断面図、図2に本発明の一実施例に
係る永久磁石式同期電動機の軸方向断面図、図3に本発
明の一実施例に係る永久磁石式同期電動機の永久磁石の
軸方向断面図を示す。図において、固定子1は固定子鉄
心2に設けられた複数のスロット3中に巻装された三相
U,V,Wの電機子巻線4から構成される。回転子5は
導伝性で磁性体のシャフト6の外周に同一材料の中間ス
リーブ10を、中間スリーブ10の外周に導伝性の永久
磁石7を、永久磁石7の外周に導伝性のカーボン繊維か
らなる補強材のCFRP10を有する。この回転子5は
中間スリーブ10の外周側に永久磁石7,CFRP8の
順に配置組み立て、中間スリーブ10の端部に封止材1
1で固定した後、永久磁石7の着磁を行い、シャフト6
に実装される。固定子1と回転子5からなる永久磁石式
同期電動機は、永久磁石7の磁極位置に従って電機子巻
線4にインバータ9から電流を供給することにより、回
転駆動される。
FIG. 1 is a radial sectional view of a permanent magnet synchronous motor according to one embodiment of the present invention, FIG. 2 is an axial sectional view of a permanent magnet synchronous motor according to one embodiment of the present invention, and FIG. 1 shows an axial sectional view of a permanent magnet of a permanent magnet type synchronous motor according to one embodiment of the present invention. In the figure, a stator 1 is composed of three-phase U, V, W armature windings 4 wound in a plurality of slots 3 provided in a stator core 2. The rotor 5 has an intermediate sleeve 10 of the same material on the outer circumference of a conductive magnetic shaft 6, a conductive permanent magnet 7 on the outer circumference of the intermediate sleeve 10, and a conductive carbon on the outer circumference of the permanent magnet 7. It has CFRP10, a reinforcing material made of fiber. The rotor 5 is arranged and assembled on the outer peripheral side of the intermediate sleeve 10 in the order of the permanent magnet 7 and the CFRP 8, and the sealing material 1 is attached to the end of the intermediate sleeve 10.
After fixing at 1, the permanent magnet 7 is magnetized and the shaft 6
Implemented in The permanent magnet synchronous motor including the stator 1 and the rotor 5 is driven to rotate by supplying a current from the inverter 9 to the armature winding 4 according to the magnetic pole position of the permanent magnet 7.

【0009】ここで、問題となるのはインバータ9から
の高調波電流である。本発明の対象としている永久磁石
式同期電動機は、空気圧縮機などの羽根車を駆動するも
ので、回転数が40,000rpm以上の超高速機である。
インバータの駆動周波数の関係から、電動機はおのずと
2極機となる。したがって、駆動周波数は667Hz以
上となる。この667Hz以上のインバータ9からの電
流は、PWMで印加電圧調整されるため、高調波が重畳
され、周波数分析すると、基本周波数の5倍,7倍,1
1倍,13倍,17倍,19倍が重畳される。この奇数
次の電流成分によって高調波の磁束が回転子側へ入射す
る。回転子側は導伝性の永久磁石7やシャフト6(中間
スリーブ10)が存在するので、この高調波磁束を打ち
消すようにうず電流が流れ、うず電流損を発生させる。
回転子トータルのうず電流損は、各高調波成分によるう
ず電流損の加算となり、出力が180kWの回転子で実
測すると、5kWにもなり、超高速の永久磁石式同期電
動機が実現できない。すなわち、損失は磁石を温度上昇
させ、有効磁束が減少し、所望の出力が得られないこと
になる。種々実験を行った結果、高調波磁束による損失
は永久磁石7が10%、中間スリーブ10が70%、残
り20%が他の損失であることが判明した。問題は他の
損失であり、種々実験検討した結果、各構成部材の絶縁
状態に関係していることが判明した。すなわち、図3に
示すように、永久磁石7は軸方向に分割し、芯円度を出
すために内外周を切削している。永久磁石7の側面は初
期絶縁を施しているので問題ないが、永久磁石7の内外
周面の絶縁がないため、軸方向に分割した永久磁石7の
内周面が中間スリーブ10を介して短絡され、永久磁石
7の内周面に短絡層が形成されていることが判明した。
また、軸方向に分割した永久磁石7の外周面がCFRP
8のカーボン繊維を介して短絡され、永久磁石7の外周
面に短絡層が形成されていることが判明した。
Here, what matters is the harmonic current from the inverter 9. The permanent magnet type synchronous motor to which the present invention is applied drives an impeller such as an air compressor and is an ultrahigh-speed machine having a rotation speed of 40,000 rpm or more.
Because of the drive frequency of the inverter, the motor is naturally a two-pole motor. Therefore, the driving frequency is 667 Hz or more. The current from the inverter 9 of 667 Hz or more is subjected to PWM adjustment of the applied voltage, so that higher harmonics are superimposed.
1 time, 13 times, 17 times, and 19 times are superimposed. Due to this odd-order current component, harmonic magnetic flux enters the rotor side. Since the conductive permanent magnet 7 and the shaft 6 (the intermediate sleeve 10) are present on the rotor side, an eddy current flows so as to cancel the harmonic magnetic flux, thereby generating an eddy current loss.
The total eddy current loss of the rotor is the sum of the eddy current loss due to each harmonic component, and when actually measured with a 180 kW rotor, the eddy current loss is as high as 5 kW, so that an ultra-high speed permanent magnet synchronous motor cannot be realized. That is, the loss causes the temperature of the magnet to rise, the effective magnetic flux decreases, and a desired output cannot be obtained. As a result of conducting various experiments, it was found that the loss due to the harmonic magnetic flux was 10% for the permanent magnet 7, 70% for the intermediate sleeve 10, and 20% for the remaining loss. The problem is other loss, and as a result of various experimental studies, it has been found that the loss is related to the insulation state of each component. That is, as shown in FIG. 3, the permanent magnet 7 is divided in the axial direction, and the inner and outer peripheries are cut in order to increase the degree of center. There is no problem because the side surfaces of the permanent magnet 7 are initially insulated. However, since there is no insulation on the inner and outer peripheral surfaces of the permanent magnet 7, the inner peripheral surface of the axially divided permanent magnet 7 is short-circuited via the intermediate sleeve 10. As a result, it was found that a short-circuit layer was formed on the inner peripheral surface of the permanent magnet 7.
The outer peripheral surface of the permanent magnet 7 divided in the axial direction is CFRP.
8 was short-circuited via the carbon fiber, and a short-circuit layer was formed on the outer peripheral surface of the permanent magnet 7.

【0010】これに対し、本発明では、永久磁石7の内
外周面に絶縁皮膜をコーティングし(内周面の絶縁コー
ティングが7a、外周面の絶縁コーティングが7b、側
面の絶縁コーティングが7c)、かつCFRP8の内周
及び側面に絶縁皮膜(内周面の絶縁皮膜が8a、側面の
絶縁皮膜が8b)を形成させたものである。すなわち、
中間スリーブ10の外周面によって軸方向に分割した永
久磁石7の内周面に短絡層を形成することが排除され、
CFRP8の内周面によって軸方向に分割した永久磁石
7の外周面に短絡層を形成することが排除される。ま
た、CFRP8の内周面と中間スリーブ10及び封止材
11の外周面との短絡を絶縁皮膜8aで排除しているの
で、CFRP8と中間スリーブ10と封止材11間での
短絡回路を排除できる。CFRP8の側面に絶縁皮膜8
bを設けているため、CFRP8と中間スリーブ10と
封止材11間での短絡回路を排除できる。さらに、永久
磁石7の側面に絶縁コーティング7cを設けているた
め、永久磁石7と中間スリーブ10と封止材11間での
短絡回路を排除できる。これにより、高調波磁束が発生
しても、残りの他の損失である永久磁石7,CFRP
8,中間スリーブ10、及び封止材11間の短絡回路を
排除してうず電流損を低減できるため、トータル損失の
20%を排除できる。したがって、永久磁石7の温度上
昇が緩和され、有効磁束が得られ、超高速の永久磁石式
同期電動機が実現できる。
On the other hand, in the present invention, the inner and outer peripheral surfaces of the permanent magnet 7 are coated with an insulating coating (the inner peripheral insulating coating is 7a, the outer peripheral insulating coating is 7b, and the side insulating coating is 7c). Further, an insulating film (the insulating film on the inner peripheral surface is 8a and the insulating film on the side surface is 8b) is formed on the inner periphery and side surfaces of the CFRP8. That is,
The formation of a short-circuit layer on the inner peripheral surface of the permanent magnet 7 divided in the axial direction by the outer peripheral surface of the intermediate sleeve 10 is eliminated,
Forming a short-circuit layer on the outer peripheral surface of the permanent magnet 7 divided in the axial direction by the inner peripheral surface of the CFRP 8 is eliminated. In addition, since the short circuit between the inner peripheral surface of the CFRP 8 and the outer peripheral surfaces of the intermediate sleeve 10 and the sealing material 11 is eliminated by the insulating film 8a, a short circuit between the CFRP 8, the intermediate sleeve 10 and the sealing material 11 is eliminated. it can. Insulation film 8 on the side of CFRP8
Since b is provided, a short circuit between the CFRP 8, the intermediate sleeve 10, and the sealing material 11 can be eliminated. Further, since the insulating coating 7c is provided on the side surface of the permanent magnet 7, a short circuit between the permanent magnet 7, the intermediate sleeve 10, and the sealing material 11 can be eliminated. As a result, even if harmonic magnetic fluxes are generated, the remaining magnets such as the permanent magnet 7, CFRP
8. Since the eddy current loss can be reduced by eliminating the short circuit between the intermediate sleeve 10 and the sealing material 11, 20% of the total loss can be eliminated. Therefore, the temperature rise of the permanent magnet 7 is reduced, an effective magnetic flux is obtained, and an ultra-high speed permanent magnet synchronous motor can be realized.

【0011】なお、超高速の永久磁石式同期電動機は4
0,000rpmから80,000rpmを対象としているの
で、基本周波数は667Hzから1333Hzにもな
る。本発明ではこの基本周波数を総じて1kHz前後と
称している。
The ultra-high-speed permanent magnet type synchronous motor has four
Since the frequency range is from 0000 rpm to 80,000 rpm, the fundamental frequency is from 667 Hz to 1333 Hz. In the present invention, this fundamental frequency is generally called about 1 kHz.

【0012】[0012]

【発明の効果】以上詳述したように、本発明によれば、
永久磁石の内外周と側面,CFRPの内周と側面を絶縁
皮膜を設けたり、あるいはコーティングして各構成部材
(シャフト,中間スリーブ,永久磁石、及び封止材)間
の導通を排除したことにより、永久磁石式電動機を基本
周波数1kHz前後のインバータで駆動したとき、イン
バータからの高調波電流に起因して発生する高調波損失
を低減できるため、超高速の永久磁石式同期電動機が提
供できる。
As described in detail above, according to the present invention,
The inner and outer perimeters and side surfaces of the permanent magnet and the inner perimeter and side surfaces of the CFRP are provided with an insulating coating or coated to eliminate conduction between the components (shaft, intermediate sleeve, permanent magnet, and sealing material). When a permanent magnet type electric motor is driven by an inverter having a fundamental frequency of about 1 kHz, a harmonic loss generated due to a harmonic current from the inverter can be reduced, so that an ultra high speed permanent magnet type synchronous electric motor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る永久磁石式同期電動機
の径方向断面図である。
FIG. 1 is a radial sectional view of a permanent magnet type synchronous motor according to one embodiment of the present invention.

【図2】本発明の一実施例に係る永久磁石式同期電動機
の軸方向断面図である。
FIG. 2 is an axial sectional view of a permanent magnet type synchronous motor according to one embodiment of the present invention.

【図3】本発明の一実施例に係る永久磁石式同期電動機
の永久磁石の軸方向断面図である。
FIG. 3 is an axial sectional view of a permanent magnet of the permanent magnet type synchronous motor according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…永久磁石式同期電動機、2…固定子鉄心、3…スロ
ット、4…電機子巻線、5…回転子、6…シャフト、7
…永久磁石、7a…永久磁石7の内周面の絶縁コーティ
ング、7b…永久磁石7の外周面の絶縁コーティング、
7c…永久磁石7の側面の絶縁コーティング、8…CF
RP、8a…CFRP8の内周面の絶縁皮膜、8b…C
FRP8の側面の絶縁皮膜、9…インバータ、10…中
間スリーブ、11…封止材。
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet synchronous motor, 2 ... Stator core, 3 ... Slot, 4 ... Armature winding, 5 ... Rotor, 6 ... Shaft, 7
... permanent magnet, 7a ... insulating coating on the inner peripheral surface of the permanent magnet 7, 7b ... insulating coating on the outer peripheral surface of the permanent magnet 7,
7c: insulating coating on the side of the permanent magnet 7, 8: CF
RP, 8a ... Insulation coating on inner peripheral surface of CFRP8, 8b ... C
Insulating film on side surface of FRP 8, 9 ... Inverter, 10 ... Intermediate sleeve, 11 ... Sealant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 弘毅 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 菊地 聡 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高橋 身佳 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 三浦 治雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業部内 (72)発明者 福島 康雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業部内 (72)発明者 妹尾 正治 千葉県習志野市東習志野七丁目1番1号 株式会社日立製作所産業機器グループ内 Fターム(参考) 5H621 BB10 GA01 GA04 HH01 5H622 AA03 CA01 CA12 CB01 CB06 PP01 PP07 PP11 PP18 PP19 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroki Yamamoto 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Satoshi Kikuchi 7-1 Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Mika Takahashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Laboratory (72) Inventor Haruo Miura Tsuchiura City, Ibaraki Prefecture 603, Kandatecho, Tsuchiura Business Unit, Hitachi Ltd. (72) Inventor Yasuo Fukushima 603, Kandamachi, Tsuchiura-shi, Ibaraki Prefecture, Tsuchiura Business Department, Hitachi Ltd. No. 1 F term in the Industrial Machinery Group, Hitachi, Ltd. (reference) 5H621 BB10 GA01 GA04 HH01 5H622 AA03 CA01 CA1 2 CB01 CB06 PP01 PP07 PP11 PP18 PP19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】シャフトの外周に導電性でリング状の軸方
向分割永久磁石、さらにその外周にカーボン繊維からな
る補強材を設けた回転子を有する永久磁石式同期電動機
において、シャフトと永久磁石と前記補強材との導通を
排除したことを特徴とする永久磁石式同期電動機。
1. A permanent magnet type synchronous motor having a rotor provided with a conductive ring-shaped axially divided permanent magnet on the outer periphery of a shaft and a reinforcing member made of carbon fiber on the outer periphery of the shaft. A permanent magnet synchronous motor, wherein conduction with the reinforcing member is eliminated.
【請求項2】固定子鉄心の複数のスロット中に電機子巻
線を巻装した固定子と、導電性で磁性体のシャフトの外
周に導電性でリング状の軸方向分割永久磁石、さらにそ
の外周にカーボン繊維からなる補強材を設けた回転子を
有する永久磁石式同期電動機において、前記シャフトと
前記永久磁石間に中間スリーブを配置し、該中間スリー
ブと該永久磁石と前記補強材との導通を排除したことを
特徴とする永久磁石式同期電動機。
2. A stator having an armature winding wound in a plurality of slots of a stator core, a conductive ring-shaped axially divided permanent magnet on the outer periphery of a conductive magnetic shaft, and In a permanent magnet type synchronous motor having a rotor provided with a reinforcing member made of carbon fiber on the outer periphery, an intermediate sleeve is disposed between the shaft and the permanent magnet, and conduction between the intermediate sleeve, the permanent magnet, and the reinforcing member is provided. A permanent magnet synchronous motor characterized by eliminating the following.
【請求項3】請求項1または請求項2において、前記永
久磁石式同期電動機が2極であることを特徴とする永久
磁石式同期電動機。
3. A permanent magnet synchronous motor according to claim 1, wherein said permanent magnet synchronous motor has two poles.
【請求項4】請求項1または請求項2において、前記中
間スリーブが前記永久磁石の軸方向長さより長いことを
特徴とする永久磁石式同期電動機。
4. A permanent magnet synchronous motor according to claim 1, wherein said intermediate sleeve is longer than an axial length of said permanent magnet.
JP25839199A 1999-09-13 1999-09-13 Permanent-magnet synchronous motor Pending JP2001086677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25839199A JP2001086677A (en) 1999-09-13 1999-09-13 Permanent-magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25839199A JP2001086677A (en) 1999-09-13 1999-09-13 Permanent-magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2001086677A true JP2001086677A (en) 2001-03-30

Family

ID=17319597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25839199A Pending JP2001086677A (en) 1999-09-13 1999-09-13 Permanent-magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2001086677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors
US9667109B2 (en) 2011-03-31 2017-05-30 Abb Research Ltd. Permanent magnet electrical machine rotors with stacked annular magnets and retainers and construction methods therefor
CN107710556A (en) * 2015-09-16 2018-02-16 三菱电机株式会社 The rotor and electric rotating machine of electric rotating machine
JP2019213264A (en) * 2018-05-31 2019-12-12 株式会社明電舎 Surface permanent magnet type rotor of rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667109B2 (en) 2011-03-31 2017-05-30 Abb Research Ltd. Permanent magnet electrical machine rotors with stacked annular magnets and retainers and construction methods therefor
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors
CN107710556A (en) * 2015-09-16 2018-02-16 三菱电机株式会社 The rotor and electric rotating machine of electric rotating machine
CN107710556B (en) * 2015-09-16 2019-09-10 三菱电机株式会社 The rotor and rotating electric machine of rotating electric machine
JP2019213264A (en) * 2018-05-31 2019-12-12 株式会社明電舎 Surface permanent magnet type rotor of rotary electric machine
JP7043979B2 (en) 2018-05-31 2022-03-30 株式会社明電舎 Surface permanent magnet type rotor of rotary electric machine

Similar Documents

Publication Publication Date Title
JP5513608B2 (en) Claw pole type AC electric motor
US7902700B1 (en) Low harmonic loss brushless motor
JPS62123951A (en) Dc brushless motor of slotless type
JP6776841B2 (en) Rotating electric machine control system and its adjustment method
JP2001211614A (en) Squirrel-cage induction motor for high-speed revolutions
US20030011274A1 (en) Discoid machine
JP2002112475A (en) Permanent magnet rotating electric machine, air compressor and power generator using it
KR20130067218A (en) Motor
US20120139465A1 (en) Asymmetrical reluctance machine
JP2001057751A (en) Permanent magnet type synchronous motor and air compressor
KR101767002B1 (en) Wound rotor synchronous motor and operating method thereof
US10833545B2 (en) Rotor for hybrid homopolar machine
JP2001086677A (en) Permanent-magnet synchronous motor
JP2000333391A (en) Permanent magnet type electric rotating machine
JP2000197290A (en) Permanent magnet rotary electric machine and electric motor car using the same
JP2003037967A (en) Concentrated winding magnet motor
CN112787476B (en) Integrated direct-current induction hybrid excitation brushless motor based on alternating-pole rotor
JP2019193352A (en) Rotary electric machine
JP2002209350A (en) Motor or rotor of power generator
CN107294270A (en) A kind of asymmetric energized stator alternate angle double salient-pole electric machine and its control method
Kohara et al. Vibration comparison of current superimposition variable flux machine and switched reluctance machine
US3293467A (en) Single-phase electric motors
JP2001352721A (en) Stator for induction motor and assembly method thereof
JP2002034182A (en) Motor rotor and manufacturing method therefor, induction motor, and synchronous motor
JP2000156945A (en) Permanent magnet electric rotating machine and permanent magnet induction synchronous motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees