JP2001083134A - Method for determining nitrogen in organic compound by kjeldahl method - Google Patents

Method for determining nitrogen in organic compound by kjeldahl method

Info

Publication number
JP2001083134A
JP2001083134A JP25657699A JP25657699A JP2001083134A JP 2001083134 A JP2001083134 A JP 2001083134A JP 25657699 A JP25657699 A JP 25657699A JP 25657699 A JP25657699 A JP 25657699A JP 2001083134 A JP2001083134 A JP 2001083134A
Authority
JP
Japan
Prior art keywords
decomposition
sample
sulfuric acid
microwave
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25657699A
Other languages
Japanese (ja)
Other versions
JP4233179B2 (en
Inventor
Toshiyuki Yonemochi
敏之 米持
Shinichi Nakajima
信一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP25657699A priority Critical patent/JP4233179B2/en
Publication of JP2001083134A publication Critical patent/JP2001083134A/en
Application granted granted Critical
Publication of JP4233179B2 publication Critical patent/JP4233179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a shortening operation of an analyzing time and to improve safety by decomposing by a microwave decomposing device and determining by an ion chromatography. SOLUTION: First, a sample, a fluoric acid and a decomposition accelerator are introduced into a microwave decomposition container, and decomposed. A hydrogen peroxide of 1/10 to 1/2 of a range by a volume reference and a copper sulfate as a catalyst are used for a sulfuric acid amount to be used. Its decomposing time of about 5 to 30 min is sufficient. After the decomposition is finished, a decomposed liquid is cooled and suitably diluted. A cation column is used as a separation column. A calibration curve solution and a diluted sample solution are analyzed by an ion chromatography, an ammonium ion is determined by the curve to obtain a nitrogen content in the sample. Thus, its analysis is performed by an apparatus having high general purposes. A distillation or capturing of free ammonia or a titration of ammonia by a sulfuric acid is eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はケルダール法によ
る有機化合物中の窒素定量法に関わり、更に詳しくは窒
素濃度の測定にイオンクロマトグラフィーを用いる窒素
定量法に関する。
The present invention relates to a method for determining nitrogen in organic compounds by the Kjeldahl method, and more particularly to a method for determining nitrogen using ion chromatography for measuring nitrogen concentration.

【0002】[0002]

【従来の技術】有機化合物中の窒素含量を測定する場
合、一般的に用いられている方法にケルダール窒素定量
法がある。このケルダール窒素定量法は分析精度が良好
で、タンパク質など種々の窒素含有有機化合物の定量に
広く用いられており、日本薬局方では窒素定量法として
ケルダール法が採用されている。ケルダール法の原理は
周知のごとく、試料を適切な分解促進剤である触媒の存
在下で濃硫酸により加熱分解し、試料中の窒素を硫酸ア
ンモニウムとして固定し、これに水酸化ナトリウムなど
の強アルカリを加え、遊離したアンモニアを蒸留して捕
集し、硫酸により滴定して試料中のアンモニア量を定量
するものである。しかしながら、加熱分解には時間を要
する場合があり、蒸留、滴定まで行うと複数の試料を分
析する場合には相当の時間を要する。また、操作が煩雑
であり分析者の熟練を要することや試料の加熱分解ある
いはアンモニア定量時の滴定には濃硫酸を使用するため
危険性を伴うなどの指摘がある。そこで、分析時間の短
縮、分析操作の煩雑さを回避するためケルダール窒素定
量法における種々の改良がなされている。
2. Description of the Related Art A commonly used method for measuring the nitrogen content in an organic compound is a Kjeldahl nitrogen determination method. This Kjeldahl nitrogen determination method has good analytical accuracy and is widely used for the determination of various nitrogen-containing organic compounds such as proteins, and the Japanese Pharmacopoeia has adopted the Kjeldahl method as a nitrogen determination method. As is well known, the principle of the Kjeldahl method is that a sample is heated and decomposed with concentrated sulfuric acid in the presence of a catalyst, which is a suitable decomposition accelerator, and nitrogen in the sample is fixed as ammonium sulfate, and a strong alkali such as sodium hydroxide is added thereto. In addition, the released ammonia is collected by distillation and titrated with sulfuric acid to determine the amount of ammonia in the sample. However, thermal decomposition may take a long time, and if distillation and titration are performed, a considerable amount of time is required when analyzing a plurality of samples. In addition, it is pointed out that the operation is complicated and requires the skill of an analyst, and there is a danger that concentrated sulfuric acid is used in thermal decomposition of a sample or titration at the time of quantifying ammonia. Therefore, various improvements have been made in the Kjeldahl nitrogen determination method in order to shorten the analysis time and to avoid the complexity of the analysis operation.

【0003】例えば、分解時間を短縮する方法として、
特開昭54−30891号公報、特開昭55−451号
公報、特開昭61−258166号公報には、分解触媒
として過硫酸カリ、アンチモン酸塩、無機ペルオクソ塩
を用いることが記載されている。また、特開昭50−2
5286号公報、特開昭63−286763号公報等に
は、自動分解装置、自動蒸留滴定装置、硫酸、触媒添加
の自動化など、それぞれの装置を組み合わせることによ
って一部あるいは全工程を自動化した方法が記載されて
いる。
[0003] For example, as a method of shortening the decomposition time,
JP-A-54-30891, JP-A-55-451, and JP-A-61-258166 describe the use of potassium persulfate, antimonate and inorganic peroxosalt as a decomposition catalyst. I have. Also, Japanese Patent Application Laid-Open No. 50-2
No. 5286, Japanese Unexamined Patent Publication No. Sho 63-286763, etc., describe a method in which some or all steps are automated by combining the respective devices, such as an automatic decomposition device, an automatic distillation titration device, sulfuric acid, and an automatic catalyst addition. Has been described.

【0004】また、特開昭63−72336号公報、食
品総合研究所研究報告、61、15(1997)には、
分解工程の短縮における時間の短縮、操作の簡略化のた
めマイクロ波装置を用いて有機化合物を分解することが
記載されている。
[0004] Also, JP-A-63-72336, Food Research Institute Research Report, 61, 15 (1997) states that
It describes that an organic compound is decomposed using a microwave device in order to shorten the time required for the decomposition step and to simplify the operation.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
のケルダール窒素定量法の欠点である分析時間、及び操
作性を改善する試みとして試料の加熱分解、遊離したア
ンモニアの蒸留、捕集、滴定の3段階をそれぞれ自動化
した装置等が開示されているが、これら自動化された装
置は高価であり、更にこの装置を他の分析への応用する
という点では汎用性に欠けているという問題があった。
また、分解触媒の改良や、マイクロ波装置を用いる方法
は、試料の分解時間を短縮する効果があるものの、依然
としてアンモニアの定量には従来の方法が用いられてお
り改善の余地がのこされている。本発明は、分析時間の
短縮、分析操作の簡便性、安全性の向上を図り、しかも
汎用性の高い装置を用いてケルダール法による有機化合
物中の窒素定量方法を提供することを目的とする。
As described above, as an attempt to improve the analysis time and the operability, which are the drawbacks of the conventional Kjeldahl nitrogen determination method, as an attempt to improve the thermal decomposition of the sample, the distillation, collection, and titration of the released ammonia. However, there are problems that these automated devices are expensive, and that they lack versatility in applying this device to other analyses. Was.
Although the improvement of the decomposition catalyst and the method using a microwave device have the effect of shortening the decomposition time of the sample, the conventional method is still used for the determination of ammonia, and there is room for improvement. I have. An object of the present invention is to provide a method for quantifying nitrogen in an organic compound by the Kjeldahl method using a device with high versatility, which shortens the analysis time, simplifies the analysis operation, and improves safety.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、含窒素有機化合物を
マイクロウエーブ分解装置により分解し、硫酸アンモニ
ウムとした分解液をイオンクロマトグラフィーにより定
量することで、分析時間の短縮、分析操作の簡便性、安
全性の向上を図り、しかも汎用性の高い装置を用いて有
機化合物中の窒素を定量することが可能となり本発明を
完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, decomposed a nitrogen-containing organic compound with a microwave decomposition apparatus and quantified a decomposition liquid as ammonium sulfate by ion chromatography. By doing so, analysis time can be shortened, analysis operation can be simplified, safety can be improved, and nitrogen in organic compounds can be quantified using a highly versatile apparatus, thereby completing the present invention. Was.

【0007】即ち、本発明は、ケルダール法を用いた有
機化合物中の窒素定量法において、マイクロウエーブ分
解装置で濃硫酸中、過酸化水素、及び硫酸銅を用いて有
機化合物を分解する工程、及びイオンクロマトグラフィ
ーを用いてアンモニウムイオンを定量する工程を含むこ
とを特徴とする窒素定量方法(請求項1)に関する。
That is, the present invention provides a method for determining nitrogen in an organic compound using the Kjeldahl method, wherein a microwave decomposition apparatus is used to decompose the organic compound using concentrated hydrogen sulfate, hydrogen peroxide, and copper sulfate. The present invention relates to a method for quantifying nitrogen (claim 1), which comprises a step of quantifying ammonium ions using ion chromatography.

【0008】また、マイクロウエーブ分解装置を用いて
有機化合物を分解する工程において、用いる過酸化水素
の量を用いる濃硫酸の量に対して容積基準で1/10〜
1/2とすることを特徴とする請求項1に記載の窒素定
量法(請求項2)に関する。
In the step of decomposing an organic compound using a microwave decomposition apparatus, the amount of hydrogen peroxide used is 1/10 to 10% by volume based on the amount of concentrated sulfuric acid used.
The present invention relates to the method for quantifying nitrogen according to claim 1, wherein the amount is set to 1 /.

【0009】[0009]

【発明の実施の形態】本発明に用いられるマイクロウエ
ーブ分解装置としては、含窒素有機化合物を分解するの
に十分なエネルギー量のマイクロ波を照射し急速に分解
できる装置であれば特に制限されず、湿式化学分析にお
ける多目的サンプル前処理処理装置として使用され、特
に高い精度を要求される原子吸光、ICP、ICP−M
S分析のサンプル分解に広く使用されている汎用の装置
を使用することができる。また、開放系、密閉系の両方
とも使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The microwave decomposition apparatus used in the present invention is not particularly limited as long as it can be rapidly decomposed by irradiating a microwave having an energy amount sufficient to decompose a nitrogen-containing organic compound. Used as a multi-purpose sample pretreatment device in wet chemical analysis, especially for atomic absorption, ICP, ICP-M which requires high precision
A general-purpose device widely used for the sample decomposition of S analysis can be used. Further, both an open system and a closed system can be used.

【0010】マイクロウエーブ分解法ではマイクロ波の
迅速な分解能を利用しており、特に密閉系では外部の汚
染を受けることなく、また目的元素が揮散により損失す
ることなく分解できる。また、従来のケルダール法と異
なり、硫酸、触媒等を添加する際に容器の壁に付着しな
いよう等の特別の注意を払う必要がなくなる。装置とし
ては、近年のマイクロウエーブ分解装置の進歩による分
解温度、時間、マイクロ波加熱電力などのプログラミン
グが可能で、安全機能が十分な装置が好ましい。
The microwave decomposition method utilizes the rapid resolution of microwaves. Particularly in a closed system, decomposition can be carried out without receiving external contamination and without loss of the target element due to volatilization. Also, unlike the conventional Kjeldahl method, it is not necessary to pay special attention such as not to adhere to the container wall when adding sulfuric acid, catalyst or the like. As the device, a device capable of programming the decomposition temperature, time, microwave heating power, and the like due to recent advances in microwave decomposition devices and having a sufficient safety function is preferable.

【0011】本発明に用いられるイオンクロマトグラフ
ィーは、イオン交換クロマトグラフィーの一つであり、
分離カラムを用いて試料中のイオン成分を分離し、分離
カラムの後に接続した除去カラムによって、移動相とし
て用いた溶離液を水または低伝導度のものに変換して溶
離液のバックグラウンドを低減することにより目的のイ
オン成分を電気伝導度セルによって検出することを可能
にしたクロマトグラフ法であり、試料中の陽イオン、陰
イオン、または遷移金属の分析に汎用されている一般的
な方法を使用することができる。アンモニウムイオンの
保持時間は約4〜5分であるため、一度に多数の試料を
分析する場合においても短時間で定量が可能である。ま
た、自動注入装置を用いれば分析に拘束される時間は短
縮される。
[0011] The ion chromatography used in the present invention is one of ion exchange chromatography.
Separation of ionic components in the sample using a separation column, and removal column connected after the separation column converts the eluent used as the mobile phase to water or a low-conductivity one to reduce the eluent background This is a chromatographic method that makes it possible to detect the target ionic component by an electric conductivity cell by performing a general method commonly used for the analysis of cations, anions, or transition metals in a sample. Can be used. Since the retention time of ammonium ions is about 4 to 5 minutes, quantification can be performed in a short time even when analyzing a large number of samples at once. Also, the use of an automatic injection device reduces the time bound by the analysis.

【0012】本発明の方法では、まず試料、硫酸、分解
促進剤をマイクロウエーブ分解容器に入れ、マイクロウ
ェーブ分解装置にて分解を行う。試料量、硫酸、分解促
進剤の添加量は例えば日本薬局方で採用されているセミ
ミクロケルダール法等に準じて調整することができる
が、マイクロウエーブ分解容器の大きさに依存するため
必要に応じて適当に調整する必要がある。試料は、その
性状に関係なく測定が可能であり、直接秤量した試料を
容器に直接移し取ることもできるし、少量秤量する場合
には、溶媒で希釈後分取することもできる。希釈する溶
媒としては、窒素を含まない溶媒であれば特に制限され
ないが、溶解するものであれば希硫酸が特に好ましい。
In the method of the present invention, first, a sample, sulfuric acid, and a decomposition accelerator are placed in a microwave decomposition vessel and decomposed by a microwave decomposition apparatus. The amount of the sample, sulfuric acid, and the amount of the decomposition accelerator can be adjusted according to, for example, the semi-micro Kjeldahl method employed in the Japanese Pharmacopoeia, but depending on the size of the microwave decomposition container, it is necessary. It needs to be adjusted appropriately. The sample can be measured irrespective of its properties, and the directly weighed sample can be directly transferred to a container, and when weighing a small amount, it can be collected after dilution with a solvent. The solvent to be diluted is not particularly limited as long as it does not contain nitrogen, but dilute sulfuric acid is particularly preferable as long as it is soluble.

【0013】硫酸は水分含量の少ない濃硫酸を用いるの
が好ましい。用いる量は、分解する試料量、及び反応容
器によって制限はされるが、通常、含まれる窒素量2〜
3mgに対して硫酸2〜10mlの範囲で使用される。
分解促進剤としては、例えば試料100mgに対して、
硫酸カリウム10g、硫酸銅1gの混合物を1g、過酸
化水素1ml用いることが例示することができる。その
他、各種の硫酸塩や、酸化水銀等の重金属、酸化セレ
ン、酸化アンチモン等の15族典型金属が一般的に用い
られているが、本発明の方法ではイオンクロマトグラフ
ィーによる定量を行うことから過剰のカリウムイオン等
はアンモニウムイオンの定量の妨害となる場合があり、
更に分析後の廃棄物の環境への影響を考慮して、アンモ
ニウムイオンの定量に影響を与えない塩の選択および
量、及び過酸化水素の量を調整することにより最適の分
解条件を見出した。
As the sulfuric acid, it is preferable to use concentrated sulfuric acid having a low water content. The amount used is limited depending on the amount of the sample to be decomposed and the reaction vessel, but usually the amount of nitrogen contained is 2 to 2.
It is used in the range of 2 to 10 ml of sulfuric acid for 3 mg.
As a decomposition accelerator, for example, for 100 mg of a sample,
The use of 1 g of a mixture of 10 g of potassium sulfate and 1 g of copper sulfate and 1 ml of hydrogen peroxide can be exemplified. In addition, various sulfates, heavy metals such as mercury oxide, and group 15 typical metals such as selenium oxide and antimony oxide are generally used. However, in the method of the present invention, excess amount is used because the amount is determined by ion chromatography. Potassium ions may interfere with the determination of ammonium ions,
Further, in consideration of the influence of the waste after analysis on the environment, the optimum decomposition conditions were found by adjusting the selection and amount of the salt that does not affect the determination of ammonium ion and the amount of hydrogen peroxide.

【0014】即ち、用いる硫酸の量に対して、容積基準
で1/10〜1/2、好ましくは1/5〜2/5の範囲
で過酸化水素を用い、更に硫酸銅を触媒に用いること
で、分解促進剤としてもっとも汎用されている硫酸カリ
ウムを用いることなく93%以上の回収率で含窒素有機
化合物を分解することが可能となった。多数のサンプル
を一度に分析する場合、硫酸カリウム等の塩はなるべく
少ない方が、廃棄物の量を極力抑えられるため、分析効
率が向上する。
That is, hydrogen peroxide is used in a range of 1/10 to 1/2, preferably 1/5 to 2/5, based on the volume of sulfuric acid used, and copper sulfate is used as a catalyst. Thus, the nitrogen-containing organic compound can be decomposed at a recovery rate of 93% or more without using potassium sulfate, which is most widely used as a decomposition accelerator. When a large number of samples are analyzed at once, the smaller the amount of salts such as potassium sulfate, the more the amount of waste can be minimized, thereby improving the analysis efficiency.

【0015】用いる過酸化水素は、通常30%のものが
使用されるが、50%ものを使用することもできる。用
いる硫酸銅は、通常溶解性を考慮して水和物で使用され
る。用いる量は、通常試料に対して10倍〜1000倍
の範囲で使用される。
The hydrogen peroxide used is usually 30%, but 50% can also be used. The copper sulfate used is usually used as a hydrate in consideration of solubility. The amount to be used is usually used in the range of 10 times to 1000 times the sample.

【0016】密閉型のマイクロウェーブ分解装置を用い
た場合、試料、硫酸、触媒、過酸化水素をマイクロウエ
ーブ分解容器に入れに蓋をして密閉する。マイクロウェ
ーブ分解装置を用いる方法では、通常マイクロ波を照射
後は触媒、過酸化水素等を更に加える必要はないが、反
応が不十分な場合には照射を停止して試薬を加えること
もできる。
When a closed type microwave decomposition apparatus is used, a sample, sulfuric acid, a catalyst, and hydrogen peroxide are put in a microwave decomposition container, and a lid is closed. In a method using a microwave decomposition apparatus, it is usually unnecessary to further add a catalyst, hydrogen peroxide or the like after irradiation with microwaves, but when the reaction is insufficient, irradiation can be stopped and a reagent can be added.

【0017】分解容器を分解装置に設置し、試料の種類
・量に応じてマイクロ波の出力を適当に設定し、照射し
て分解を行うことができる。マイクロ波の出力は分解時
間ともある程度関係するが、装置の安全基準を超えない
限り適当な範囲に設定することができ、更に、経時的に
変化させることもできる。
The decomposition vessel can be installed in a decomposition apparatus, the microwave output can be set appropriately according to the type and amount of the sample, and irradiation can be performed to perform decomposition. The microwave output is related to the decomposition time to some extent, but can be set to an appropriate range as long as the safety standard of the device is not exceeded, and can be changed over time.

【0018】分解時間は、分解する試料の量にもよる
が、5分から30分程度で十分に分解できる。分解終了
後、マイクロウェーブ分解容器を装置から取り出し冷却
し、イオンクロマトグラフィーの検量線濃度の範囲内と
なるように分解液を適当に希釈調製するだけで有機化合
物の含窒素分をアンモニウムイオンとして検出すること
ができる。
Although the decomposition time depends on the amount of the sample to be decomposed, it can be sufficiently decomposed in about 5 to 30 minutes. After decomposition, remove the microwave decomposition container from the device, cool it, and appropriately dilute the decomposition solution so that it is within the range of the calibration curve concentration of ion chromatography, and detect the nitrogen content of organic compounds as ammonium ions. can do.

【0019】アンモニウムイオンをイオンクロマトグラ
フィー法で検出する手順としては、まず検量線を作成す
る。検量線濃度は試料中の窒素含量、イオンクロマトグ
ラフィーの検出器感度等を勘案し決定する。検量線溶
液、希釈試料溶液をイオンクロマトグラフィーにて分析
を行う。分離カラムは陽イオン用カラムを使用し、分離
カラムに適した溶離液を用いる。例えば、ポリマー系充
填剤でカルボン酸あるいはスルホン酸を官能基に持つ陽
イオン交換カラムを使用した場合、溶離液として10〜
20mmol/lのメタンスルホン酸または塩酸などの
酸性溶液を例示することができる。
As a procedure for detecting ammonium ions by ion chromatography, a calibration curve is first prepared. The concentration of the calibration curve is determined in consideration of the nitrogen content in the sample, the sensitivity of the detector for ion chromatography, and the like. The calibration curve solution and the diluted sample solution are analyzed by ion chromatography. As the separation column, a cation column is used, and an eluent suitable for the separation column is used. For example, when a cation exchange column having a carboxylic acid or a sulfonic acid as a functional group is used as a polymer-based filler, 10 to 10
An acidic solution such as methanesulfonic acid or hydrochloric acid of 20 mmol / l can be exemplified.

【0020】また、溶離液に用いている電解質を水ある
いは低伝導度のものに変換して目的とするイオン成分の
検出感度を上げる効果のある陽イオン分析用サプレッサ
ーを使用することが望ましい。硫酸濃度が高いと硫酸イ
オンがクロマトグラムに影響を与えるので試料溶液の希
釈等で調整する。検量線よりアンモニウムイオンを定量
し、試料中の窒素含量を求める。
It is also desirable to use a cation analysis suppressor which has the effect of converting the electrolyte used for the eluent to water or a substance having a low conductivity to increase the detection sensitivity of the target ionic component. If the sulfuric acid concentration is high, the sulfate ion affects the chromatogram. Ammonium ions are quantified from the calibration curve to determine the nitrogen content in the sample.

【0021】以下実施例により、本発明を詳細に説明す
るが、本発明の範囲は実施例に限定されるものではな
い。
Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited to the examples.

【0022】[0022]

【実施例】実施例1 DL−メチオニン(試薬特級)1.50gを精秤し0.
1モル/lの硫酸50mlに溶解した。この試料溶液
0.3mlを100mlのマイクロウエーブ分解容器に
取り、硫酸銅(II)5水和物(試薬特級)100m
g、濃硫酸(96〜98%)5ml、30%過酸化水素
1mlを添加し蓋をして密閉した。マイクロウエーブ分
解容器を分解装置に設置し、分解を開始する。マイクロ
ウエーブ分解条件は250W:1分、0W:2分、25
0W:5分、400W:6分、650W:10分、冷却
5分の分解プログラムで分解を行った。分解終了後、分
解容器を冷却し、分解液を100mlメスフラスコに移
し、水を加えて100mlとする。更に、この溶液0.
3mlを50mlのメスフラスコに分取し水を加えて5
0mlとし、これを希釈試料溶液とした。
EXAMPLES Example 1 1.50 g of DL-methionine (special reagent grade) was precisely weighed to give 0.1 g.
It was dissolved in 50 ml of 1 mol / l sulfuric acid. 0.3 ml of this sample solution is placed in a 100 ml microwave decomposition vessel, and copper (II) sulfate pentahydrate (special grade reagent) 100 m
g, concentrated sulfuric acid (96-98%), 5 ml, and 30% hydrogen peroxide, 1 ml, were sealed with a lid. The microwave disassembly vessel is set in the disassembly device and disassembly is started. Microwave decomposition conditions are 250W: 1 minute, 0W: 2 minutes, 25
Decomposition was performed by a decomposition program of 0 W: 5 minutes, 400 W: 6 minutes, 650 W: 10 minutes, and cooling 5 minutes. After completion of the decomposition, the decomposition vessel is cooled, the decomposition liquid is transferred to a 100 ml measuring flask, and water is added to make 100 ml. In addition, the solution
Dispense 3 ml into a 50 ml volumetric flask and add water to
0 ml, which was used as a diluted sample solution.

【0023】イオンクロマトグラフィーにて試料中のア
ンモニウムイオンを定量するため、3点検量線用溶液を
調製した。市販のアンモニウムイオン標準液(1000
μg/ml)を用いて、それぞれ0、0.08、0.2
μg/mlとなる溶液を調製し検量線溶液とする。この
溶液には希釈試料溶液とマトリックスを合わせるため硫
酸0.03ml/100mlを加えた。検量線溶液、希
釈試料溶液をそれぞれイオンクロマトグラフィーで分析
し、得られた検量線から試料中のアンモニウムイオンを
定量し、試料より計算した窒素含有量と比較して回収率
を求め、その結果を第1表に示した。
To determine the amount of ammonium ion in the sample by ion chromatography, a solution for a three-point calibration curve was prepared. Commercially available ammonium ion standard solution (1000
μg / ml) and 0, 0.08, 0.2
A solution having a concentration of μg / ml is prepared and used as a calibration curve solution. To this solution, 0.03 ml / 100 ml of sulfuric acid was added to combine the diluted sample solution and the matrix. The calibration curve solution and the diluted sample solution were each analyzed by ion chromatography, the ammonium ion in the sample was quantified from the obtained calibration curve, and the recovery rate was determined by comparing with the nitrogen content calculated from the sample. The results are shown in Table 1.

【0024】実施例2、3、4 濃硫酸4ml、過酸化水素水2ml(実施例2)、濃硫
酸5ml、過酸化水素0.5ml(実施例3)、濃硫酸
5ml、過酸化水素2ml(実施例4)を用いる以外実
施例1と同様に分析を行い、その回収率を第1表に示し
た。
Examples 2, 3 and 4 4 ml of concentrated sulfuric acid, 2 ml of aqueous hydrogen peroxide (Example 2), 5 ml of concentrated sulfuric acid, 0.5 ml of hydrogen peroxide (Example 3), 5 ml of concentrated sulfuric acid, 2 ml of hydrogen peroxide ( The analysis was carried out in the same manner as in Example 1 except that Example 4) was used, and the recovery rates are shown in Table 1.

【0025】比較例1、2、 濃硫酸6ml、過酸化水素水4ml(比較例1)、濃硫
酸4ml、過酸化水素4ml(比較例2)を用いる以外
実施例1と同様に反応を行い、回収率を第1表に示し
た。
Comparative Examples 1 and 2 The reaction was carried out in the same manner as in Example 1 except that 6 ml of concentrated sulfuric acid, 4 ml of aqueous hydrogen peroxide (Comparative Example 1), 4 ml of concentrated sulfuric acid, and 4 ml of hydrogen peroxide (Comparative Example 2) were used. The recovery is shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例5 実施例1に記載されている操作をサンプリング数2回の
4日間について行い、回収率を求め第2表に示した。
Example 5 The operation described in Example 1 was performed twice for four days with two samplings, and the recovery rate was determined and is shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】得られたデータを用いて分散分析を行い、
第3表に示した。
Analysis of variance is performed using the obtained data.
The results are shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】以上の結果を用い分析精度の推定を行った
ところ、窒素含量理論値に対し、回収率はほぼ100%
を示し、日間に有意差はなく、分析精度は良好であるこ
とが確認された。
When the accuracy of the analysis was estimated using the above results, the recovery rate was almost 100% of the theoretical value of the nitrogen content.
, And there was no significant difference between the days, confirming that the analysis accuracy was good.

【0032】[0032]

【発明の効果】本発明より汎用性の高い装置によりケル
ダール法による窒素分析が可能となった。また、イオン
クロマトグラフィーでアンモニウムイオンを定量するこ
とにより、遊離アンモニアの蒸留、捕集や硫酸によるア
ンモニアの滴定が不要となることから安全に分析を行う
ことができ、分析時間が短縮された。したがって、窒素
含有有機化合物の分解にマイクロウエーブ分解装置を用
い、分解液中のアンモニウムイオンの定量にイオンクロ
マトグラフィーを用いることにより、 分解、定量に要する分析時間あるいは分析に拘束され
る時間が短縮される。 分解し遊離したアンモニアの蒸留・捕集操作を必要と
しないことから分析時間の短縮となり、また強アルカリ
を用いてアンモニアを遊離させ蒸留する操作に関する危
険性を伴わない。 アンモニアの定量をイオンクロマトグラフィーで行う
ことから、滴定に使用する硫酸を扱うことがなく安全に
操作ができる。 これらより5試料について分析を行った場合、従来法
では約7時間要したところ本発明法では約3〜4時間に
短縮された。 マイクロウエーブ分解装置あるいはイオンクロマトグ
ラフィーは他の分析に汎用されている。 などの効果があった。
According to the present invention, nitrogen analysis by the Kjeldahl method has become possible with a device more versatile than the present invention. In addition, by quantifying ammonium ions by ion chromatography, the analysis can be performed safely because the distillation and collection of free ammonia and the titration of ammonia with sulfuric acid become unnecessary, and the analysis time was shortened. Therefore, by using a microwave decomposition device to decompose nitrogen-containing organic compounds and using ion chromatography to quantify ammonium ions in the decomposition solution, the analysis time required for decomposition and quantification or the time restricted by analysis is reduced. You. Since the operation of distilling and collecting the decomposed and released ammonia is not required, the analysis time is shortened, and there is no danger in the operation of releasing and distilling ammonia using a strong alkali. Since the determination of ammonia is performed by ion chromatography, the operation can be performed safely without handling sulfuric acid used for titration. When five samples were analyzed from these, it took about 7 hours in the conventional method, but was reduced to about 3 to 4 hours in the method of the present invention. Microwave digesters or ion chromatography are commonly used for other analyses. And so on.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B01J 19/12 B01J 19/12 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B01J 19/12 B01J 19/12 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ケルダール法を用いた有機化合物中の窒
素定量法において、マイクロウエーブ分解装置で濃硫酸
中、過酸化水素、及び硫酸銅を用いて有機化合物を分解
する工程、及びイオンクロマトグラフィーを用いてアン
モニウムイオンを定量する工程を含むことを特徴とする
窒素定量方法。
In a method for determining nitrogen in an organic compound using the Kjeldahl method, a step of decomposing an organic compound in concentrated sulfuric acid using hydrogen peroxide and copper sulfate in a microwave decomposition apparatus, and ion chromatography. A method for quantifying nitrogen, comprising a step of quantifying ammonium ions using the method.
【請求項2】 マイクロウエーブ分解装置を用いて有機
化合物を分解する工程において、用いる過酸化水素の量
を用いる濃硫酸の量に対して容積基準で1/10〜1/
2とすることを特徴とする請求項1に記載の窒素定量
法。
2. In the step of decomposing an organic compound using a microwave decomposition apparatus, the amount of hydrogen peroxide used is 1/10 to 1/1 / volume based on the amount of concentrated sulfuric acid used.
2. The method for quantifying nitrogen according to claim 1, wherein the method is 2.
JP25657699A 1999-09-10 1999-09-10 Determination of nitrogen in organic compounds by Kjeldahl method Expired - Fee Related JP4233179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25657699A JP4233179B2 (en) 1999-09-10 1999-09-10 Determination of nitrogen in organic compounds by Kjeldahl method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25657699A JP4233179B2 (en) 1999-09-10 1999-09-10 Determination of nitrogen in organic compounds by Kjeldahl method

Publications (2)

Publication Number Publication Date
JP2001083134A true JP2001083134A (en) 2001-03-30
JP4233179B2 JP4233179B2 (en) 2009-03-04

Family

ID=17294562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25657699A Expired - Fee Related JP4233179B2 (en) 1999-09-10 1999-09-10 Determination of nitrogen in organic compounds by Kjeldahl method

Country Status (1)

Country Link
JP (1) JP4233179B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013890A (en) * 2011-06-30 2013-01-24 Cem Corp Instrument for performing microwave-assisted reactions
CN110824101A (en) * 2019-11-14 2020-02-21 兰州蓝星纤维有限公司 Method for measuring functional groups on surface of carbon fiber
CN111693474A (en) * 2020-06-29 2020-09-22 中国第一重型机械股份公司 Novel detection method of amino nitrogen/crude protein
CN117672048A (en) * 2024-01-31 2024-03-08 山东大学 Nitrogen source analysis virtual simulation experiment system and method based on nitrogen isotope test

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013890A (en) * 2011-06-30 2013-01-24 Cem Corp Instrument for performing microwave-assisted reactions
US9161395B2 (en) 2011-06-30 2015-10-13 Cem Corporation Instrument for performing microwave-assisted reactions
US9769885B2 (en) 2011-06-30 2017-09-19 Cem Corporation Instrument for performing microwave-assisted reactions
CN110824101A (en) * 2019-11-14 2020-02-21 兰州蓝星纤维有限公司 Method for measuring functional groups on surface of carbon fiber
CN110824101B (en) * 2019-11-14 2022-05-13 兰州蓝星纤维有限公司 Method for measuring functional groups on surface of carbon fiber
CN111693474A (en) * 2020-06-29 2020-09-22 中国第一重型机械股份公司 Novel detection method of amino nitrogen/crude protein
CN117672048A (en) * 2024-01-31 2024-03-08 山东大学 Nitrogen source analysis virtual simulation experiment system and method based on nitrogen isotope test
CN117672048B (en) * 2024-01-31 2024-04-19 山东大学 Nitrogen source analysis virtual simulation experiment system and method based on nitrogen isotope test

Also Published As

Publication number Publication date
JP4233179B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
Yang et al. Isotopic fractionation of mercury induced by reduction and ethylation
US20140147926A1 (en) Method of analyzing aldehyde compound in metal plating solution
CN103412034A (en) Measuring method for quickly measuring contents of heavy metals in tobacco by using microwave digestion/ICP-MS method
Fayazi et al. Pre-concentration procedure using dispersive liquid–liquid microextraction for the determination of bismuth by flame atomic absorption spectrometry
Knežević et al. ETAAS determination of aluminium and copper in dialysis concentrates after microcolumn chelating ion-exchange preconcentration
Sun et al. Rapid determination of molybdate in natural waters by coprecipitation and neutron activation analysis
CN111189956B (en) H 2 O 2 Method for detecting content of nitrite in sodium chloride sample by using oxidized ion chromatography
JP2001083134A (en) Method for determining nitrogen in organic compound by kjeldahl method
Maxwell III et al. Rapid method for determination of radiostrontium in emergency milk samples
Buffle Speciation of trace elements in natural waters
JP3422219B2 (en) Selenium analysis method and selenium analyzer
Saito et al. Highly sensitive detection of neodymium ion in small amount of spent nuclear fuel samples using novel fluorescent macrocyclic hexadentate polyaminocarboxylate probe in capillary electrophoresis-laser-induced fluorescence detection
Pesavento et al. Determination of the metal complexing capacity of aqueous solutions containing ligands by titration in the presence of complexing resins
Cornelis et al. Speciation measurements by HPLC-HGAAS of dimethylarsinic acid and arsenobetaine in three candidate lyophilized urine reference materials
JP2005069746A (en) Back extraction method of silicomolybdic acid and silicon quantifying method using silicomolybdic acid (blue) absorptiometric method
Patidar et al. Profiling of trace elemental impurities in caustic soda matrix by inductively coupled plasma mass spectrometric technique
CN105974037A (en) Pretreatment method for determining trace quantity of anions in ammonium sebate through ion chromatography
Borissova et al. Titrimetric and spectrophotometric determination of chlorhexidine digluconate in tooth pastes
Iwasaki Determination of mugram amounts of palladium in titanium alloys by x-ray fluorescence spectrometry after solvent extraction and collection on a filter paper
Blazewicz Selected problems on ion chromatography determinations of trace elements in clinical samples
RU2764779C1 (en) Method for joint determination of the mass content of cationic impurity elements in compounds of plutonium, neptunium, americium and curium by the atomic emission spectrometry method
Egorov et al. Automated radiochemical analysis of total 99 Tc in aged nuclear waste processing streams
JP4602070B2 (en) Sample pretreatment method for arsenic analysis by chemical form
Kurayasu et al. Determination of oxide ions in aluminum chloride-alkali chloride melts by Karl Fischer titration
JP2017191088A (en) Method for analyzing deterioration in organic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees