JP2001082702A - Overheat damage diagnosing method for boiler water- wall tube - Google Patents

Overheat damage diagnosing method for boiler water- wall tube

Info

Publication number
JP2001082702A
JP2001082702A JP25909699A JP25909699A JP2001082702A JP 2001082702 A JP2001082702 A JP 2001082702A JP 25909699 A JP25909699 A JP 25909699A JP 25909699 A JP25909699 A JP 25909699A JP 2001082702 A JP2001082702 A JP 2001082702A
Authority
JP
Japan
Prior art keywords
scale
tube
damage
density
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25909699A
Other languages
Japanese (ja)
Other versions
JP3892629B2 (en
Inventor
Motoroku Nakao
元六 仲尾
Teruo Koyama
輝夫 小山
Teruaki Matsumoto
曜明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP25909699A priority Critical patent/JP3892629B2/en
Publication of JP2001082702A publication Critical patent/JP2001082702A/en
Application granted granted Critical
Publication of JP3892629B2 publication Critical patent/JP3892629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method to efficiently and high-precisely detect the overheat damage portion of a bailer water-wall tube and high-precisely diagnose the degree of damage and a remaining life. SOLUTION: (1) Screening of a damage portion and ranking of an evaluation portion are carried out from the oxidation scale thickness of an outer surface on the water-wall tube furnace side. (2) Regarding a portion where an outer surface oxidation scale thickness on the water-wall tube furnace side exceeds a given value, density of a tube inner surface oxidation scale is measured, a portion having a density of 4 g/cm3 or more forms an overheat damage portion. A destructive method (such as a method for measuring a scale amount and a scale thickness) and a non-decretive method (such as, an X-ray CT method and an ultrasonic density method), are given as a method for measuring density of a tube inner surface oxidation scale. (3) An overheat damage portion having density of 4 g/cm3 or more of a tube inner scale is calculated by a method by a method for predicting it from a tube inner surface scale thickness and an overheat supposing time, and an overheat temperature by a method for predicting it from the aforesaid steam oxidation scale thickness. (4) A creep damage rate is calcite from a load stress, calculated from the size (a diameter and a thickness) and the pressure of the water-wall tube, a superheat temperature, an overheat time, and the strength of the material, and a remaining life is diagnosed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電システム
の損傷診断技術に関わり、特にボイラ火炉蒸発水壁管の
局部的な過熱損傷を効率的且つ高精度に診断する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for diagnosing damage to a thermal power generation system, and more particularly to a method for efficiently and accurately diagnosing local overheating of a boiler furnace evaporating water wall tube.

【0002】[0002]

【従来の技術】発電用ボイラの火炉水壁管は、高温高圧
水を1000℃ 以上の高温燃焼ガスの輻射熱で加熱蒸
発させるものであり、過酷な温度条件にあるが、水壁管
材が使用限界温度以上に過熱(オーバヒート)しないよ
うな設計がなされている。しかしながらボイラを長時間
運転していると水壁管の内面スケールの局所残留による
流量アンバランス、メンブレン等の非圧部品の酸化減肉
による熱吸収量の変化等により設計当初の流体温度や熱
負荷からは予測しえない部位で水壁管材の過熱損傷が生
じることがある。
2. Description of the Related Art Furnace water wall pipes of power boilers are for heating and evaporating high-temperature and high-pressure water by radiant heat of a high-temperature combustion gas of 1000 ° C. or more, and are under severe temperature conditions. It is designed so as not to overheat (overheat) above the temperature. However, if the boiler is operated for a long time, the fluid temperature and heat load at the initial stage of the design will be affected by the flow rate imbalance due to local residue of the inner surface scale of the water wall pipe, and the change in heat absorption due to oxidation thinning of non-pressure parts such as membranes. Can cause overheating damage to the water wall tubing in areas that cannot be predicted from the water.

【0003】また最近の火力発電用ボイラは、負荷変化
運転が頻繁に実施されたり、低負荷運転が継続されるこ
ともあり、局所的に熱負荷が高くなる運転時間が増加す
る傾向にある。
[0003] In recent boilers for thermal power generation, the load change operation is frequently performed or the low load operation is continued, and the operation time during which the heat load locally increases tends to increase.

【0004】[0004]

【発明が解決しようとする課題】従来、火炉水壁管の経
時的な材料損傷は、1.5〜3年毎に実施される定期検
査時の減肉量測定や非破壊探傷法で検査されている。そ
の際、規定値以上の損傷が見出せれば、その場で新材に
更新することになる。また高熱負荷部位や熱応力の高い
部位では抜管による破壊検査で材料損傷度を診断してい
るが、検査数量が限られていることと最も損傷の激しい
部位を選定するのが極めて困難という問題がある。
Conventionally, the material damage over time of the furnace water wall tube has been inspected by measuring the thinning amount at a regular inspection conducted every 1.5 to 3 years or by a nondestructive flaw detection method. ing. At that time, if any damage equal to or more than the specified value is found, it will be replaced with a new material on the spot. Material damage is diagnosed by destructive inspection by extubation at high heat load and high thermal stress.However, the number of inspections is limited and it is extremely difficult to select the most severely damaged area. is there.

【0005】一方、過熱器や再熱器では、管内面の水蒸
気酸化スケール厚さから過熱温度を予測する手法が一般
的にとられている。過熱器や再熱器では管内面が過熱さ
れた水蒸気により、管内面に酸化鉄のスケールが生じ
る。これを水蒸気酸化と称しているが、この水蒸気酸化
によるスケ−ルの厚さが過熱温度と相関関係があること
から、前述のように、管内面の水蒸気酸化スケール厚さ
から過熱温度を予測することが行われている。
On the other hand, in a superheater and a reheater, a method of predicting the superheat temperature from the thickness of the steam oxidation scale on the inner surface of the tube is generally adopted. In a superheater or a reheater, the scale of iron oxide is generated on the inner surface of the tube due to the steam whose inner surface is overheated. This is called steam oxidation. Since the thickness of the scale due to the steam oxidation has a correlation with the superheat temperature, the superheat temperature is predicted from the steam oxidation scale thickness on the inner surface of the tube as described above. That is being done.

【0006】これは、炭素鋼や低Cr鋼の水蒸気酸化ス
ケール厚さyが次式(1)で表される放物線則 y=(Kp・t)0.5 (1) に従うことから過熱温度を推定する方法である。ここ
で、Kpは反応速度定数であり、次式(2)、(3)に
より求められる。 Kp=A×Exp(−Q/RT) (2) 式(2)は水蒸気酸化の放物線則に基づく実験式であ
り、Q(材料定数)とA(材料定数)は実験により求め
られる値であり、式(3)で log(Kp)=a+b(l/T) (3) でKpを求めることができる。ここで、t:時間、T:
温度(273+℃ )、a、b:データ回帰式の定数で
ある。
This is because the steam oxidation scale thickness y of a carbon steel or a low Cr steel obeys the parabolic law y = (Kp · t) 0.5 (1) expressed by the following equation (1). It is a method of estimating. Here, Kp is a reaction rate constant, which is obtained by the following equations (2) and (3). Kp = A × Exp (−Q / RT) (2) Equation (2) is an empirical equation based on the parabolic law of steam oxidation, and Q (material constant) and A (material constant) are values obtained by experiments. Kp can be obtained by the following equation: log (Kp) = a + b (1 / T) (3) Here, t: time, T:
Temperature (273 + ° C), a, b: constants of the data regression equation.

【0007】この過熱器や再熱器の管寿命を予測する方
法として、特開平8−110006号公報には、同一設
計条件の多数の伝熱管の管内面に発生した水蒸気酸化ス
ケールの厚さを非破壊試験により計測し、最もスケール
厚さの大きい管を代表管として抽出し、該代表管から寿
命を診断するボイラ伝熱管の寿命診断方法が開示されて
いる。
As a method of estimating the life of a superheater or a reheater, Japanese Patent Application Laid-Open No. Hei 8-110006 discloses a method of estimating the thickness of the steam oxidation scale generated on the inner surface of many heat transfer tubes under the same design conditions. There is disclosed a method for diagnosing the life of a boiler heat transfer tube, which measures by a non-destructive test, extracts a tube having the largest scale thickness as a representative tube, and diagnoses the life from the representative tube.

【0008】しかし、水壁管でも生成水蒸気酸化スケー
ル厚さyを同定できれば過熱温度を推定可能であるが、
水壁管の場合、水蒸気により酸化される管から溶出する
酸化鉄と同成分、同構造の酸化鉄(Fe、Fe
)が水中(つまり管からでなく水中から)より析出
付着し、その区別ができないことと定期的(通常2〜5
年間隔)に実施される水壁管の脱スケール(化学洗浄、
酸洗ともいわれる)のため、単に管内面の酸化スケール
厚さyからでは過熱損傷を予測できない。事実、管内面
に1mm近い酸化スケールが付着していても材料損傷の
ない部材もある。
[0008] However, if the thickness y of the generated steam oxidation scale can be identified even with a water wall tube, the superheat temperature can be estimated.
In the case of a water wall tube, the same component and the same structure as the iron oxide eluted from the tube oxidized by water vapor (Fe 3 O 4 , Fe 2
O 3 ) precipitates and adheres from water (that is, from water rather than from a tube), and cannot be distinguished from each other.
Descaled (chemical cleaning,
Therefore, overheating damage cannot be predicted simply from the thickness y of the oxide scale on the inner surface of the tube. In fact, there are some members that do not damage the material even if the oxide scale near 1 mm adheres to the inner surface of the tube.

【0009】図6に過熱器、再熱器管に付着する水蒸気
酸化スケールと水中からの酸化鉄が析出して水壁管に付
着するスケールが生成する場合の説明図を示す。
FIG. 6 is an explanatory view showing the case where steam oxidation scale adhering to the superheater and reheater tubes and scale which adheres to the water wall tube due to precipitation of iron oxide from water.

【0010】従って、現状の技術ではボイラ水壁管で突
発的に発生する過熱損傷を見出す手段はないといえる。
更に最近では、定期検査間隔が延長される動きがあり、
その間、安定運転をするためには、水壁管過熱損傷部位
の事前検出技術と数年後の損傷を高精度に予測可能な診
断技術の開発が不可欠である。
[0010] Therefore, it can be said that there is no means for finding the overheating damage suddenly occurring in the boiler water wall tube in the current technology.
More recently, there has been a movement to extend the regular inspection interval,
In the meantime, in order to ensure stable operation, it is essential to develop a technology for detecting the overheating damage part of the water wall pipe and a diagnostic technology that can predict the damage several years later with high accuracy.

【0011】本発明の課題は、ボイラ水壁管の過熱損傷
部位を効率的且つ精度良く検出し、損傷度合い及び残余
寿命を高精度に診断する技術を提供することにある。
An object of the present invention is to provide a technique for efficiently and accurately detecting an overheated damaged portion of a boiler water wall pipe and diagnosing the degree of damage and the remaining life with high accuracy.

【0012】[0012]

【課題を解決するための手段】本発明者らは、鋭意研究
調査した結果、管外酸化スケール厚さや管内面酸化スケ
ール密度に着目することで、ボイラ水壁管の過熱(オー
バヒート)損傷度を診断できることを見いだした。
Means for Solving the Problems As a result of intensive research and investigation, the inventors of the present invention focused on the thickness of the outer oxidation scale and the density of the oxidation scale on the inner surface of the tube to reduce the degree of overheating damage of the boiler water wall tube. We found that we could diagnose.

【0013】すなわち、本発明の上記課題は、次の
(1)〜(3)の構成により解決される。
That is, the above object of the present invention is solved by the following constitutions (1) to (3).

【0014】(1)ボイラ火炉水壁管の過熱損傷を診断
する手法において、火炉側管外面酸化スケール厚さによ
り、詳細診断部位のスクリーニングとランキングを行う
ボイラ水壁管の過熱損傷診断方法。
(1) A method of diagnosing overheating damage of a boiler water wall tube in a method for diagnosing overheating damage of a water wall tube of a furnace boiler, wherein a detailed diagnosis site is screened and ranked based on the thickness of the oxidation scale on the outer surface of the furnace tube.

【0015】(2)ボイラ火炉水壁管の過熱損傷を診断
する手法において、水壁管内面の酸化物スケールの見掛
比重(密度)値より、過熱損傷の有無を評価又は判定す
るボイラ水壁管の過熱損傷診断方法。
(2) In the method of diagnosing overheating damage to the boiler furnace water wall tube, the boiler water wall is used to evaluate or determine the presence or absence of overheating damage from the apparent specific gravity (density) value of the oxide scale on the inner surface of the water wall tube. Diagnosis method of overheating damage of pipe.

【0016】本発明の実施の形態では。管内面酸化スケ
ールの密度が4g/cm以上の部位を過熱損傷部位と
する。そして、管内面酸化スケールの密度測定手法とし
ては、破壊法(スケール量及びスケール厚さの測定法な
ど)、非破壊法(X線CT法、超音波密度法など)が挙
げられる。
In an embodiment of the present invention. The portion where the density of the oxidation scale on the inner surface of the tube is 4 g / cm 3 or more is defined as the overheat damaged portion. As a method for measuring the density of the oxidized scale on the inner surface of the tube, a destructive method (such as a method for measuring the amount of scale and scale thickness) and a non-destructive method (such as an X-ray CT method and an ultrasonic density method) are exemplified.

【0017】(3)水壁管火炉側外面の酸化スケール厚
さより、損傷部位のスクリーニング及び評価部位のラン
キングを行ない、水壁管火炉側外面酸化スケール厚さが
所定値以上の部位について、管内面酸化スケールの密度
を測定し、密度が4g/cm以上の部位を過熱損傷部
位とし、管内面スケールの密度が4g/cm以上の過
熱損傷部位に対して、管内面酸化スケール厚さと過熱想
定時間から予測し、水壁管の寸法(径及び肉厚)及び内
圧より算出した負荷応力と過熱温度、過熱時間及び当該
材料の強度よりクリープ損傷率を算出し、残余寿命を診
断するボイラ水壁管の過熱損傷診断方法。
(3) Based on the thickness of the oxide scale on the outer surface of the water-wall tube furnace, screening of a damaged portion and ranking of evaluation sites are performed. the density of the oxide scale was determined, density and overheating damage site 4g / cm 3 or more sites for density 4g / cm 3 or more overheating damage site within a vessel surface scale, tube inner surface oxide scale thickness and overheating assumed Boiler water wall that predicts from the time, calculates the load stress calculated from the dimensions (diameter and wall thickness) of the water wall pipe and the internal pressure and the creep damage rate from the superheat temperature, the superheat time and the strength of the material, and diagnoses the remaining life Diagnosis method of overheating damage of pipe.

【0018】[0018]

【作用】図2は、ボイラ水壁管断面の一部である。管外
面及び内面にそれぞれ酸化スケール3、4が生成又は付
着するが、その厚さは、より高温で蒸発が生じる火炉側
が厚くなる。また、図3に示したように過熱損傷領域5
では管外面、内面共にスケール3、4の厚さが増大す
る。
FIG. 2 shows a part of the cross section of the boiler water wall tube. Oxidation scales 3 and 4 are formed or adhere to the outer and inner surfaces of the tube, respectively, but the thickness is increased on the furnace side where evaporation occurs at higher temperatures. In addition, as shown in FIG.
In this case, the thickness of the scales 3 and 4 increases on both the outer and inner surfaces of the tube.

【0019】管外面酸化スケール3の生成速度も高温程
大きくなるが、内面側の流体条件によって伝熱管の過熱
温度は異なるため、その厚さから一概に損傷度を評価診
断することはできない。図4は水壁管外面の酸化スケー
ル3の厚さと過熱損傷度の関係をプロットしたものであ
る。管外面酸化スケール3の厚さが200μm以上の場
合でも過熱損傷のないことがあり、前述したように管外
面酸化スケール3の厚さだけで過熱損傷と診断すること
はできない。しかし、図4からは、過熱損傷の大きい部
位では、管外面酸化スケール3の厚さはほとんどのケー
スで厚くなっており、管外面酸化スケール3の厚さから
過熱損傷領域5のスクリーニングや詳細損傷評価部位の
ランキングをすることができる。
The generation rate of the oxidation scale 3 on the outer surface of the tube also increases as the temperature increases, but since the superheat temperature of the heat transfer tube varies depending on the fluid condition on the inner surface side, it is not possible to evaluate and diagnose the degree of damage from the thickness. FIG. 4 is a plot of the relationship between the thickness of the oxide scale 3 on the outer surface of the water wall tube and the degree of overheating damage. Even when the thickness of the outer tube oxidation scale 3 is 200 μm or more, there may be no overheating damage. As described above, it is not possible to diagnose overheat damage only by the thickness of the outer tube oxidation scale 3. However, from FIG. 4, the thickness of the oxide scale on the outer surface of the tube is increased in most cases in the portion where the overheat damage is large. It is possible to rank the evaluation sites.

【0020】次に、過熱損傷のあった部位と健全部位の
水壁管内面酸化スケール4の厚さとスケール量の関係を
プロットしてみた。その結果を図5に示す。これから過
熱損傷の見られた管内面スケール(ソリッドマーク)4
は、健全管(オープンマーク)に比べて同じスケール厚
さでも重量(mg/cm)が多く、健全管と過熱損傷
管では明確に区別できることを見出した。図中の実線
は、比重4g/cmの線であり、管内面酸化スケール
4に見掛比重(密度)が4g/cm以上の管で過熱損
傷が生じていることになる。これは、通常の水壁管内面
に水中から析出付着する酸化物スケール4は、一般に軟
質でポーラスなため見掛の比重が小さいが、過熱損傷領
域5では水蒸気酸化スケールが生成し、見掛比重が大き
くなったためと推定できる。
Next, the relationship between the thickness of the oxidized scale 4 on the inner surface of the water wall pipe and the amount of the scale in the portion having the overheat damage and the healthy portion was plotted. The result is shown in FIG. Pipe inner surface scale (solid mark) 4 from which overheating damage has been observed
Found that even with the same scale thickness, the weight (mg / cm 2 ) was larger than that of a healthy pipe (open mark), and that a healthy pipe and an overheated damaged pipe could be clearly distinguished. The solid line in the figure is a line having a specific gravity of 4 g / cm 3 , which means that the tube having an apparent specific gravity (density) of 4 g / cm 3 or more in the pipe inner surface oxidation scale 4 is overheated. This is because the oxide scale 4, which is deposited and adhered from the water on the inner surface of the normal water wall pipe, is generally soft and porous, and thus has a small apparent specific gravity. Can be estimated to have increased.

【0021】前述したように水中からの析出付着スケー
ルと水蒸気酸化スケールの主成分は酸化鉄(Fe
、Fe)で、これらの酸化物の理論比重
は、約5.5であり、水蒸気酸化によって生じるスケー
ルは水中析出酸化鉄によるスケールに比べて、より緻密
なため、スケールの密度は酸化鉄の密度(比重)の理論
値に近づく。なお、健全部での水中からの析出付着スケ
ールの見掛比重(密度)は、約3g/cmとして、ス
ケール量から厚さ換算されることがある。
As described above, the main components of the scale deposited from water and the scale of steam oxidation are iron oxide (Fe).
3 O 4 , Fe 2 O 3 ), the theoretical specific gravity of these oxides is about 5.5, and the scale generated by steam oxidation is more dense than the scale formed by iron oxide precipitated in water. The density approaches the theoretical value of the density (specific gravity) of iron oxide. In addition, the apparent specific gravity (density) of the deposited scale from water in the sound part may be converted to thickness from the scale amount as about 3 g / cm 3 .

【0022】スケール成分、構造及び断面光学顕微鏡観
察結果から管内面の酸化スケール4が付着析出スケール
か水蒸気酸化スケールかを同定することは困難であった
が、見掛比重を求めることより容易に判定することがで
きるようになる。
Although it was difficult to identify whether the oxide scale 4 on the inner surface of the tube was an adhered precipitate scale or a steam-oxidized scale based on the scale components, structure, and the results of observation with a cross-sectional optical microscope, it was easily determined by determining the apparent specific gravity. Will be able to

【0023】有意な厚み(通常50μm以上)の水蒸気
酸化スケールは時間条件にも依存するが、450℃ 以
上で生成することから、水壁管で水蒸気酸化スケールが
生じていれば過熱されていることになる。
A steam oxidation scale having a significant thickness (usually 50 μm or more) depends on time conditions, but is generated at 450 ° C. or more. become.

【0024】管内面火炉側に生成しているスケールが水
蒸気酸化スケールであれば、先に述べた放物線則を用
い、過熱温度を推定することができ、更に内圧及び寸法
より算出した負荷応力値と当該部の材料強度より、現状
でのクリープ損傷率や残余寿命を算出できる。
If the scale formed on the inner furnace side of the tube is a steam oxidation scale, the superheat temperature can be estimated by using the above-described parabolic law, and the load stress value calculated from the internal pressure and the size can be calculated. The current creep damage rate and remaining life can be calculated from the material strength of the portion.

【0025】[0025]

【発明の実施の形態】以下本発明の具体的実施例をフロ
ーシート図面をもって説明する。図1は、本発明になる
ボイラ水壁管の過熱損傷診断方法のフローシートであ
る。以下順に内容を記述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to flow sheet drawings. FIG. 1 is a flow sheet of a method for diagnosing overheating damage to a boiler water wall tube according to the present invention. The contents are described in the following order.

【0026】熱負荷、蒸気密度、想定温度(流体、ガ
ス、メタル)等より過熱可能性領域を予測する。この
の工程は、本発明の必須の工程ではないが、過熱部位を
ある程度絞り込むために実施するものである。
An overheat-possible region is predicted from heat load, vapor density, assumed temperature (fluid, gas, metal) and the like. Although this step is not an essential step of the present invention, it is performed to narrow down the overheated site to some extent.

【0027】管外面酸化スケール3の厚さから損傷部
位のスクリーニングと詳細損傷診断部位のランキングを
する工程 図4に示したようにボイラ火炉水壁管の過熱損傷が生じ
ている部位は、火炉側外面の酸化スケール3が厚くなる
明確な傾向があることから、管外面酸化スケール3の厚
さが100〜150μm以上の部位を詳細評価部位に選
定する。
Step of Screening Damaged Sites and Ranking Detailed Damage Diagnosis Sites Based on the Thickness of the Oxide Scale 3 on the Outside Surface of the Tube As shown in FIG. Since there is a clear tendency for the oxide scale 3 on the outer surface to be thicker, a portion where the thickness of the outer oxide scale 3 is 100 to 150 μm or more is selected as the detailed evaluation portion.

【0028】詳細評価する部位の順序あるいはランキン
グは、外面酸化スケール厚さの厚い順にすればよい。管
外面酸化スケール厚さの測定方法としては、超音波法が
好適であるが、その他の方法を採用してもよい。外観
上、外面酸化スケール3が剥離している場合には、より
高温になっている可能性が高く、その部位は剥離分を加
算して評価すべきである。
The order or ranking of the parts to be evaluated in detail may be in the order of the thickness of the outer oxide scale. As a method for measuring the thickness of the oxide scale on the outer surface of the tube, an ultrasonic method is suitable, but other methods may be employed. If the external oxidation scale 3 is peeled off from the appearance, it is highly likely that the temperature has become higher, and the portion should be evaluated by adding the peeled amount.

【0029】管内面酸化スケール4の見掛比重(密
度)を測定する工程 破壊検査法(抜管サンプルによりスケール量(mg/c
)及びスケール厚さ(mm)を測定し、見掛比重を
算出)あるいは非破壊検査法(X線CT法、超音波密度
法等)で管内面側の酸化スケール4の見掛比重(密度)
を測定する。
A step of measuring the apparent specific gravity (density) of the oxidation scale 4 on the inner surface of the pipe Destructive inspection method (scale amount (mg / c
m 2 ) and scale thickness (mm), and calculate the apparent specific gravity) or the non-destructive inspection method (X-ray CT method, ultrasonic density method, etc.) to determine the apparent specific gravity of the oxide scale 4 on the inner surface of the tube ( density)
Is measured.

【0030】過熱損傷の有無の判定をする工程 水壁管内面側酸化スケール4の見掛比重(密度)の値
が、4g/cm以上である部位を過熱損傷部位と判定
する(図5参照)。本発明の主旨は、水壁管内面の酸化
スケール4の見掛比重(密度)から過熱損傷の有無を判
定することにある。
Step of Determining the Presence or Absence of Overheating A portion where the apparent specific gravity (density) value of the oxidation scale 4 on the inner surface of the water wall tube is 4 g / cm 3 or more is determined as the overheating damaged portion (see FIG. 5). ). The gist of the present invention is to determine the presence or absence of overheating damage from the apparent specific gravity (density) of the oxide scale 4 on the inner surface of the water wall pipe.

【0031】水壁管内面スケール厚さ及び過熱時間よ
り過熱温度を算定する工程 水壁管内面の酸化物スケール4が見掛比重(密度)の高
い水蒸気酸化スケールになっている場合には、水蒸気酸
化スケール成長の放物線則から過熱温度を算定すること
ができる。前述したように、水蒸気酸化スケール厚さ
(y:mm)は、前記(1)式で表示できる。
Step of Calculating Superheated Temperature from Water Wall Pipe Inner Scale Thickness and Superheating Time If the oxide scale 4 on the water wall pipe inner surface is a steam oxidation scale having a high apparent specific gravity (density), the steam The superheating temperature can be calculated from the parabolic law of oxide scale growth. As described above, the thickness (y: mm) of the steam oxidation scale can be represented by the above equation (1).

【0032】ボイラ水壁管に多用されているSTBA2
0(0.5Cr−0.5Mo鋼)を例にとり、過熱温度
の試算結果(℃ )を次の表1に示す。範囲で示したの
は、データのばらつきを考慮したものである。
STBA2 frequently used for boiler water wall pipes
Taking 0 (0.5Cr-0.5Mo steel) as an example, the following Table 1 shows the calculation results (° C.) of the superheat temperature. The range is given in consideration of data variations.

【0033】[0033]

【表1】 [Table 1]

【0034】このように、見掛比重の大きい水蒸気酸化
スケール厚さと想定過熱時間から過熱温度を一義的に求
めることができる。
As described above, the superheat temperature can be uniquely obtained from the thickness of the steam oxidation scale having a large apparent specific gravity and the assumed superheat time.

【0035】メタル温度、内圧による負荷応力及び材
料強度よりクリープ損傷率及び残余寿命を予測診断する
工程
A process of predicting and diagnosing a creep damage rate and a remaining life from a metal temperature, an applied stress due to an internal pressure, and a material strength.

【0036】の計算例で3,000hで300μmの
水蒸気酸化スケールが生成している場合(メタル温度
は、590℃ )を例にとった試算結果を以下に示す。
The following is a calculation result of a calculation example in which a steam oxidation scale of 300 μm is generated at 3,000 h (metal temperature is 590 ° C.) in the calculation example.

【0037】過熱温度条件(590℃ )、水壁管の寸
法(外径φ25.4×4.2mm厚さ)及び内圧(25
MPa)から算出した負荷応力(65MPa)及び当該
材(STBA20)のクリープ強度から3,000h時
点でのクリープ損傷率を計算すると18%となる。さら
に同条件での残余寿命(クリープ損傷率が100%にな
るまでの時間)は、9,000hであると試算できる。
The superheat temperature condition (590 ° C.), the dimensions of the water wall tube (outer diameter φ25.4 × 4.2 mm thickness) and the inner pressure (25
From the applied stress (65 MPa) calculated from the pressure stress (MPa) and the creep strength of the material (STBA20), the creep damage rate at 3,000 h is 18%. Further, the remaining life (time until the creep damage rate reaches 100%) under the same conditions can be estimated to be 9,000 h.

【0038】なお、クリープ損傷率は、次式(4)の当
該部材の負荷応力とクリープ寿命のラルソンミラーパラ
メータの関係回帰式より算出できる。 P=T+(c+log(t)) (4) ここで、Tは絶対温度(K:273+℃ )、tは時間
(h)、cは定数である。また、Pは温度と時間で定ま
るラルソンミラーパラメータ(P)と称される値であ
り、負荷応力とクリープ破断するP値との間に2次曲線
で近似できる相関関係があり、その関係式を用いて損傷
率を算出する。
The creep damage rate can be calculated from the following equation (4), which is a regression equation between the load stress of the member and the Larson-Miller parameter of the creep life. P = T + (c + log (t)) (4) Here, T is an absolute temperature (K: 273 + ° C.), t is time (h), and c is a constant. P is a value called Larson-Miller parameter (P) determined by temperature and time, and there is a correlation between load stress and P value at which creep rupture can be approximated by a quadratic curve. Use to calculate the damage rate.

【0039】例えば、STB410鋼の負荷応力とPの
関係式から、負荷応力70MPaの場合、クリープ寿命
Pとして、P=15,500が得られる。当該部の温度
が、500℃の場合、クリープ破断時間は、約20,0
00時間となる。
For example, from the relational expression between the applied stress and ST of STB410 steel, when the applied stress is 70 MPa, the creep life P is P = 15,500. When the temperature of the part is 500 ° C., the creep rupture time is about 20,0
00 hours.

【0040】上記式(4)に、P=15,500、c=
15.753、T=273+500、を代入してtを求
めた値(約20,000h)が、クリープ寿命、現時点
での運転(昇温)時間が12,000hでは、残余寿命
が(20,000−12,000)で8,000hとな
り、クリープ損傷率は、(12,000/20,00
0)で60%となる。
In the above equation (4), P = 15,500 and c =
The value obtained by substituting 15.753 and T = 273 + 500 to obtain t (about 20,000 h) is the creep life and the current operation (heating) time of 12,000 h, and the remaining life is (20,000). -12,000) and the creep damage rate is (12,000 / 20000).
0) is 60%.

【0041】[0041]

【発明の効果】本発明は、以上のような構成であること
から、ボイラ水壁管の予測しえない部位で生じる過熱損
傷を高精度且つ効率的に診断できることから予防保全に
有効であり、火力発電プラントでの安定した電力供給が
可能となる。
The present invention is effective for preventive maintenance because it has the above-mentioned structure and can accurately and efficiently diagnose overheat damage occurring at an unpredictable portion of a water wall pipe of a boiler. Stable power supply in a thermal power plant is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明になるボイラ水壁管の過熱損傷診断方
法のフローである。
FIG. 1 is a flowchart of a method for diagnosing overheating damage of a boiler water wall tube according to the present invention.

【図2】 ボイラ水壁管の一部の断面図である。FIG. 2 is a sectional view of a part of a boiler water wall tube.

【図3】 ボイラ水壁管の一部の断面図である。FIG. 3 is a cross-sectional view of a part of a boiler water wall tube.

【図4】 水壁管外面の酸化スケールの厚さと過熱損傷
度の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the thickness of the oxide scale on the outer surface of the water wall tube and the degree of overheating damage.

【図5】 過熱損傷のあった部位と健全部位の水壁管内
面酸化スケールの厚さとスケール量の関係を示した図で
ある。
FIG. 5 is a diagram showing the relationship between the thickness and the scale amount of the oxidized scale on the inner surface of the water wall pipe at the part where overheating was damaged and the healthy part.

【図6】 過熱器、再熱器管に付着する水蒸気酸化スケ
ールと水中からの酸化鉄が析出して水壁管に付着する場
合の説明図である。
FIG. 6 is an explanatory diagram showing a case where steam oxidation scale adhering to a superheater / reheater tube and iron oxide from water precipitate and adhere to a water wall tube.

【符号の説明】[Explanation of symbols]

1 ボイラ火炉水壁管 2 メンブレン 3 管外面酸化スケール 4 管内面酸化スケ
ール 5 過熱損傷領域
DESCRIPTION OF SYMBOLS 1 Boiler furnace water wall pipe 2 Membrane 3 Pipe oxidation scale 4 Pipe oxidation scale 5 Overheat damage area

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ火炉水壁管の過熱損傷を診断する
手法において、火炉側管外面酸化スケール厚さにより、
詳細診断部位のスクリーニングとランキングを行うこと
を特徴とするボイラ水壁管の過熱損傷診断方法。
1. A method for diagnosing overheating damage of a boiler furnace water wall tube, comprising:
A method for diagnosing overheating damage to a boiler water wall pipe, which comprises screening and ranking detailed diagnosis sites.
【請求項2】 ボイラ火炉水壁管の過熱損傷を診断する
手法において、水壁管内面の酸化物スケールの密度値よ
り、過熱損傷の有無を評価又は判定することを特徴とす
るボイラ水壁管の過熱損傷診断方法。
2. A method of diagnosing overheating of a water wall tube of a boiler furnace, wherein the presence or absence of the overheating damage is evaluated or determined from a density value of an oxide scale on an inner surface of the water wall tube. Overheating damage diagnosis method.
【請求項3】 管内面酸化物スケールの密度が4g/c
以上の部材又は部位を過熱損傷域と判定することを
特徴とする請求項2記載のボイラ水壁管の過熱損傷診断
方法。
3. The density of the oxide scale on the inner surface of the tube is 4 g / c.
3. The method for diagnosing overheating damage of a boiler water wall tube according to claim 2, wherein a member or a portion of m3 or more is determined as an overheating damage area.
【請求項4】 水壁管火炉側外面の酸化スケール厚さよ
り、損傷部位のスクリーニング及び評価部位のランキン
グを行ない、水壁管火炉側外面酸化スケール厚さが所定
値以上の部位について、管内面酸化スケールの密度を測
定し、密度が4g/cm以上の部位を過熱損傷部位と
し、管内面スケールの密度が4g/cm以上の過熱損
傷部位に対して、管内面酸化スケール厚さと過熱想定時
間から過熱温度を予測し、水壁管の寸法及び内圧より算
出した負荷応力と過熱温度、過熱時間及び当該材料の強
度よりクリープ損傷率を算出し、残余寿命を診断するこ
とを特徴とするボイラ水壁管の過熱損傷診断方法。
4. Screening of damaged portions and ranking of evaluation sites based on the thickness of the oxidation scale on the outer surface of the water wall tube furnace side, and oxidizing the inner surface of the tube for the portion where the thickness of the outer wall oxidation scale on the water wall tube furnace side is equal to or more than a predetermined value. the density of the scale was measured, density and overheating damage site 4g / cm 3 or more sites for density 4g / cm 3 or more overheating damage site within a vessel surface scale, tube inner surface oxide scale thickness and overheating expected time Boiler water characterized by predicting the superheat temperature from the temperature, calculating the creep damage rate from the load stress calculated from the dimensions and the internal pressure of the water wall pipe, the superheat temperature, the superheat time and the strength of the material, and diagnosing the remaining life. Diagnosis method of overheating damage of wall pipe.
JP25909699A 1999-09-13 1999-09-13 Overheat damage diagnosis method for boiler water wall pipe Expired - Fee Related JP3892629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25909699A JP3892629B2 (en) 1999-09-13 1999-09-13 Overheat damage diagnosis method for boiler water wall pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25909699A JP3892629B2 (en) 1999-09-13 1999-09-13 Overheat damage diagnosis method for boiler water wall pipe

Publications (2)

Publication Number Publication Date
JP2001082702A true JP2001082702A (en) 2001-03-30
JP3892629B2 JP3892629B2 (en) 2007-03-14

Family

ID=17329274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25909699A Expired - Fee Related JP3892629B2 (en) 1999-09-13 1999-09-13 Overheat damage diagnosis method for boiler water wall pipe

Country Status (1)

Country Link
JP (1) JP3892629B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438424A (en) * 2013-08-28 2013-12-11 贵州电力试验研究院 Method and device for adjusting temperature of water-cooled wall of supercritical once-through boiler
JP2015124991A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Scale adhesion amount estimation system
CN107490000A (en) * 2017-08-28 2017-12-19 北京航空航天大学 The wall temperature monitoring method and system at a kind of Dissimilar Metal Joints In Power Boilers position
JP2021110039A (en) * 2019-12-30 2021-08-02 武▲漢▼大学 Method of calculating thickness of oxide film of martensitic heat resistant steel by supercritical high-temperature steam
WO2023095720A1 (en) * 2021-11-26 2023-06-01 三菱重工業株式会社 Method for maintaining boiler facility
CN116796621A (en) * 2023-03-23 2023-09-22 国能长源荆门发电有限公司 Oxidation detection method and system for superheater tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438424A (en) * 2013-08-28 2013-12-11 贵州电力试验研究院 Method and device for adjusting temperature of water-cooled wall of supercritical once-through boiler
JP2015124991A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Scale adhesion amount estimation system
CN107490000A (en) * 2017-08-28 2017-12-19 北京航空航天大学 The wall temperature monitoring method and system at a kind of Dissimilar Metal Joints In Power Boilers position
CN107490000B (en) * 2017-08-28 2019-03-08 北京航空航天大学 A kind of the wall temperature monitoring method and system at Dissimilar Metal Joints In Power Boilers position
JP2021110039A (en) * 2019-12-30 2021-08-02 武▲漢▼大学 Method of calculating thickness of oxide film of martensitic heat resistant steel by supercritical high-temperature steam
JP7161656B2 (en) 2019-12-30 2022-10-27 武▲漢▼大学 Calculation Method of Oxide Film Thickness of Martensitic Heat-Resistant Steel in Supercritical High-Temperature Steam
WO2023095720A1 (en) * 2021-11-26 2023-06-01 三菱重工業株式会社 Method for maintaining boiler facility
CN116796621A (en) * 2023-03-23 2023-09-22 国能长源荆门发电有限公司 Oxidation detection method and system for superheater tube
CN116796621B (en) * 2023-03-23 2023-12-12 国能长源荆门发电有限公司 Oxidation detection method and system for superheater tube

Also Published As

Publication number Publication date
JP3892629B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
Kapayeva et al. Remaining life assessment for boiler tubes affected by combined effect of wall thinning and overheating
JP6680900B2 (en) Method for estimating operating temperature of austenitic heat-resistant steel containing Cu (copper), method for estimating creep damage life of austenitic heat-resistant steel containing Cu, method for estimating operating temperature of austenitic heat-resistant steel tube containing Cu, and Cu Method for Estimating Creep Damage Life of Heat Transfer Tube Made of Austenitic Heat Resisting Steel Containing Carbon
JP3892629B2 (en) Overheat damage diagnosis method for boiler water wall pipe
JP5592685B2 (en) Hematite scale adhesion diagnostic method
JP2013185764A (en) Method and apparatus for diagnosing superheat damage of boiler water wall tube
JP3652418B2 (en) Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe
JP2007064675A (en) Damage diagnosis method of giga-domain by laminated oxidation thinning
Cane et al. Creep life assessment methods
Salman et al. Determination of correlation functions of the oxide scale growth and the temperature increase
JP4831624B2 (en) Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
JP2005091028A (en) Method for diagnosing corrosion fatigue damage of boiler water wall tube
JP3825378B2 (en) Life evaluation method of heat-resistant steel
Kapayeva et al. Ultrasonic and EMAT-important tools to analyze a combined effect of multiple damage mechanisms in boiler tubes
JP2008032480A (en) Damage evaluation method of heat-resistant steel, and damage evaluation device thereof
JP2002156325A (en) Surface crack depth analytical method of metal member
JP2009036670A (en) Working temperature estimating method of austenitic steel
JPH11294708A (en) Life judging method of heat transfer tube
JP2016045106A (en) Estimation method of working temperature of member, and estimation device of working temperature of member
JP2021004787A (en) Damage risk evaluation method, system maintenance management method and risk evaluation device
Ellis Corrosion Fatigue and Life Assessment of Tube Bends
Emilianowicz et al. Application of the corrosion tester in corrosion tests using the acoustic emission method
Zhilin et al. Diagnosis of damage in the oxide layer on steam superheater pipes
JP2003254916A (en) Damage estimation method of austenitic steel heat transfer tube
Jaske et al. Current issues in optimizing the useful life of reformer tubes
Ravi et al. An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees